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Abstract: In this paper, we introduce a new three-step iterative scheme for finding the common
solutions of the variational inequality using the technique of updating the solution. We suggest,
iterative algorithms involving three-steps for the predictor-corrector method of variational inequality
in real Hilbert spaces H. Our results include the Takahashi and Toyoda, extra gradient, Mann and
Noor iterations as special cases. We also investigate the convergence criteria of the three-step iterative
scheme. As special cases, the earlier findings are included in our results, which can be seen as an
advancement and improvement over the previous investigation. This is a new refinement in our
existing literature and previously known algorithms. A numerical example is given to illustrate the
efficiency and performance of the proposed self-adaptive scheme.
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iteration methods; convergence criteria; numerical results
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1. Introduction

Making decisions is greatly impacted by uncertainty. It appears that as we get more
connected, we uncover more sources of uncertainty. For instance, the price and cost
functions for electricity are unpredictable, and transportation, communication, and financial
systems have been caused by how these systems function and the way they interact with
one another. This raises a number of intriguing issues related to modeling uncertainty and
making decisions in the face of ambiguity. Variational principles have practical importance
in a variety of industries and commercial situations due to their natural modeling capability
for numerous real-world applications. Variational principles provide a framework for
optimization, where the target is to get the optimum solution or approximation for a set
of possibilities. For more than two centuries, this has been the main area of mathematics,
particularly in engineering sciences. Newton, Fermat, Leibniz, Bernoulli, and Lagrange are
credited with developing the variational principles, see [1].

Variational inequalities theory is an important and well-established field, represent-
ing an enrichment of variational principles. The Variational Inequality Problem (VIP)
encompasses several well-known mathematical issues, such as optimization problems,
complementarity problems, and fixed-point problems. As a result, the VIP offers a method-
ological framework for studying various equilibrium issues in engineering and economics.
Consequently, it is possible to consider the theory of VIPs as a methodology that facilitates
the modeling, analysis, and computations for a variety of real-world applications.
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Hartman and Stampacchia first developed variational inequalities in 1966 [2] as a tool
for studying partial differential equations, particularly in mechanics, and defined within
infinite-dimensional fields.

The finite-dimensional Variational Inequality Problem (VIP) was subsequently general-
ized from the nonlinear complementarity problem (NCP), which was initially identified by
Cottle in his research thesis in 1964 [3]. Since then, this field has evolved into a flourishing
branch of mathematical programming, offering a wealth of theory, efficient algorithms for
problem solving, connections to a wide range of fields, and numerous significant applica-
tions in engineering and economics. VIPs find applications in representing frictional contact
problems, traffic equilibrium challenges, engineering scenarios, and economic contexts.
For instance, VIPs are employed to gain insights into strategic resources, including wireless
and wireline systems within the realm of communication technology and networks [4–6].

We applied it to interactions in cognitive radio systems and networks [7]. Furthermore,
we tackled contact problems within the engineering field and traffic network equilibria [8,9].
By employing the VIP, we establish the existence of a traffic equilibrium pattern, develop
an algorithm for pattern creation, and estimate its convergence rate [10,11].

Notably, these concepts are interconnected with variational inequalities, the static
traffic equilibrium model, the market equilibrium problem in dynamics, and extend to
continuum cases. Furthermore, a computational method is outlined for identifying so-
lutions to the equilibrium problem and formulating the VI, particularly tailored to the
traffic equilibrium system [12]. The principles of variational inequalities are leveraged to
construct dynamic and other control-theoretical systems, establishing models for urban
network flows that anticipate time-varying conditions [13,14]. Employing the auxiliary
principal technique, inequalities derived from variations propose and explore iterative
solutions for trifunctional equilibrium challenges [15]. Many of these applications often
involve a certain degree of uncertainty, possibly stemming from incomplete data or inherent
unpredictability within the problem. Consequently, the investigation of the variational
inequality problem (VIP) has captured the attention of mathematicians and, more broadly,
the operations research community in recent years.

Later on, the concept of VIP was extended to vector variational inequality prob-
lems [16]. Due to the diverse nature of problems across various fields of mathematics,
particularly in engineering sciences, VIs have been expanded in numerous directions. GVI,
introduced by Noor [17] in 1988, extends the theory of VI and finds numerous applications
across various fields. Another class of VI, known as mixed variational inequalities (MVI),
incorporates four operators and was introduced by Noor in 2011, as seen in [16–19]. This
class is also referred to as the extended general mixed variational inequality. Cottle, Pang,
and Stone conducted a comprehensive analysis of the Linear Complementarity Problem
(LCP) see [3]. In the realm of numerical methods development for variational inequalities,
Scarf pioneered the first constructive iterative method to approximate a fixed point of
continuous mapping and the computation of economic equilibria [20].

Numerous studies have explored numerical approaches for VIs, with many of the pre-
2003 findings available in the books of Facchinei and Pang see [21]. Since the publication of
Facchinei and Pang’s works, the field has witnessed numerous methodological innovations.
There are a large number of publications on self-adaptive methods applied to solving
variational inequalities by other authors. For a comprehensive review of these works,
please refer to the references therein [22–33]. Inertial type self-adaptive iterative algorithms
for pseudomonotone equilibrium problems and fixed point problems are mentioned in [25],
and convergence analysis of an inertial Tseng’s extragradient algorithm [34] for solving
pseudomonotone variational inequalities proved in [24]. In this study, we employ a three-
step iterative scheme to propose a modified self-adaptive algorithm for solving VIs. This
novel technique builds upon previously established algorithms. Convergence analysis is a
crucial step to validate the authenticity of these new algorithms, and we have undertaken
this analysis, providing proof under appropriate conditions.
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Motivating Examples and Background

Examples of what motivates us to continue our studies include:

(i) In Nash games, participants engage in noncooperative competition, and the Nash
equilibrium is a stable point that denotes a set of strategies where unilateral deviation
is undesirable.

(ii) The analysis of supplies, demand, and prices of commodities in a network of physically
distinct marketplaces is a component of problems involving spatial price equilibrium.

(iii) In addition to being employed in traffic planning and toll collection policy deci-
sions, traffic equilibrium problems seek to anticipate steady-state traffic flows in a
crowded network.

(iv) Market arrangements with a few firms are captured by oligopolistic market equi-
librium issues, which also allow for strategic interactions between the enterprises.
Financial markets, electrical markets, department stores, computer companies, and the
automotive, chemical, and mineral extraction industries are a few examples.

In order to tackle these difficult problems we need a standard approach for obtaining
approximate solutions to VIs. In the next section, we shall discuss source problems and
some basic results of variational inequality theory.

2. Preliminary Results

Systems of equations: Observe that a VI(Rn, F) can be used to model the issue of solving a
system of nonlinear equations with the solution F(q) = 0. It is clear that F′s zeros perfectly
satisfy the variational inequality problem.
Problems related to Optimization: An optimization problem is identified by a set of
constraints as well as its objective function, which must either be maximized (profit) or
minimized (loss), depending on the task. A problem containing optimization involving
objective function f and constraint in a set K is denoted by minimize f (q) subject to the
constraint q ∈ K.
Complementarity problems: Consider the complementarity condition q.q∗ = 0, which
indicates that if we take q as a positive, it is understood that q∗ must be 0 and vice versa.
The sets present in the decision variables that represent the equilibrium of supply and de-
mand in economic systems usually interact in complementary ways. The complementarity
problem (CP) is also included in the VIP as a special instance; if the VIP’s underlying set K
is defined as a cone, then the VIP can be equivalently represented as a Complementarity
Problem (CP).
Problems related to fixed points: A fixed point of a function is a point which the function
maps to itself. These functions are closely related to the VIP solutions based on projection
mapping. Specifically, all VIP solutions can be represented as fixed points on a designed
projection map.
Variational inequality and its generalization: Let’s examine a real Hilbert space H, where
the inner product of two vectors is represented as ⟨ . , . ⟩ , and the norm is denoted by ∥ . ∥.
Given a set, typically denoted as K, and a mapping, denoted as T, g : H → H, the goal is to
find q ∈ K such that:

⟨ρT(q), q∗ − q⟩ ≥ 0, ∀ q∗ ∈ K, ρ > 0. (1)

Here, we assume that the map T is continuous and set K is closed and convex.
The given inequality is denoted by VI(K, T), and called the classical variational inequality
problem. A general-variational inequality, or GVI(K, g), is the generalization of VI(K, T),
and it appears when two operators T and g are used in VI(K, T), such that:

⟨ρT(q), g(q∗)− g(q)⟩ ≥ 0, ∀ q∗ ∈ H, g(q), g(q∗) ∈ K, ρ > 0.

Lemma 1 ([4]). The inequality is satisfied by q ∈ K for z ∈ H, such that;

⟨q − z, q∗ − q⟩ ≥ 0, ∀ q∗ ∈ K, (2)
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iff
q = PKz, (3)

here PK is in closed convex set K and nonexpansive projection of H, that is

∥PK(q)− PK(q∗)∥ ≤ ∥q − q∗∥, ∀q , q∗ ∈ H.

As a result of Lemma (1), we have

⟨z − PK(z), PK(z)− q∗⟩ ≥ 0, ∀ q∗ ∈ K (4)

and
∥PK(z)− q∗∥ ≤ ∥z − q∗∥, ∀z ∈ Rn, q∗ ∈ K.

Lemma 1 makes it simple to demonstrate that the Problem 1 is equal to the fixed-point
problem.

Definition 1 ([35]). PK is called the metric projection of H onto K, if for every point q ∈ K, there
exists a unique nearest point in K, such that

PK(z) = argmin{q − y, y ∈ K}

where the metric projection is denoted by PK(z).

Assumption 1. H is a finite dimension space.

Assumption 2. A mapping T, g : H → H is said to be strongly monotone that is,

⟨Tq − Tq∗, q − q∗⟩ ≥ δ∥q − q∗∥2, ∀ q, q∗ ∈ H.

Assumption 3. Lipschitz continuity for operator T is defined as:

∥Tq − Tq∗∥ ≤ σ∥q − q∗∥, ∀ q, q∗ ∈ H.

where σ > 0 is a constant. In particular, from the definitions we have, δ ≤ σ.

Assumption 4. If σ = 1, then T is non-expensive operator such that:

∥Tq − Tq∗∥ ≤ ∥q − q∗∥, ∀ q, q∗ ∈ H.

Lemma 2 ([22]). Let us consider {qn} is sequence of nonnegative real numbers such that:

qn+1 ≤ (1 − γn)qn + ςn

where {γn} ∈ (0, 1) and {ςn} is a sequence such that; if ∑∞
n=1 γn = ∞ and limsupn→∞

ςn
γn

≤ 0, or ∑∞
n=1|ςn| < ∞, then limn→∞qn = 0.

Lemma 3 ([17]). If q ∈ K satisfies the relation

q = Pk[q − ρTq],

then the function q ∈ K is a solution of the VI(K, g),(1), where ρ > 0 is a constant. From Lemma 3
we can see that, Variational inequalities and fixed point problems are related concepts in mathematical
analysis and optimization theory. They both deal with finding a solution to a given problem. Now
we state and prove our main results in the next section.
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3. Main Results

It is evident from Lemma 3 that the fixed-point problems and VI are comparable.
In the VI studies, this alternative equivalence has played a significant role to suggest the
following three-step predictor-corrector iterative technique for finding a common solution
of the variational inequalities. To be precise, Noor [32,33] has suggested the three-step
iterative scheme for variational inequalities. Let us consider

y = PK[q − ρTq]. (5)

w = (1 − βn)y + βnPK[y − ρTy]. (6)

q = (1 − γn)w + γnPK[w − ρTw] (7)

where 0 ≤ βn, γn ≤ 1, for all n ≥ 0.
And we define the residue vector, R(q) as

R(q) = q − w,

= q − (1 − βn)y − βnPK[y − ρTy],

= q − (1 − βn)PK[q − ρTq]− βnPK[PK[q − ρTq]− ρTPK[q − ρTq]].

It is clear q ∈ H is solution of (VI) iff q ∈ H is zero of the equation.

R(q) = 0.

As we know that K is a convex set, for all η ∈ [0, 1] then q, w ∈ K, we have

x = (1 − η)q + ηw ,

= q − η(q − w),

= q − ηR(q).

We can rewrite for a positive step, α,

q = (1 − γn)q + γnPK[q − ρTq],

= (1 − γn)q + γnPK[q − α(ηR(q) + ρTx)],

= (1 − γn)q + γnPK[q − αd(q)],

where d(q) is extragradient such that;

d(q) = ηR(q) + ρTx,

= ηR(q) + ρT(q − ηR(q)).

In this paper, motivated by the iterative schemes (5), (6) and (7), we introduced an
iterative process for updating the solution to suggested two-step and three-step projection
iterative schemes for solving variational inequalities and related optimization problems.
Three-step iterative schemes also known as Noor iterations Algorithm 1. Clearly Noor
iterations include Ishikawa (two-step) Algorithm 2 and Mann (one-step) Algorithm 3
iterative methods as special cases. We also use the technique of updating the solution
to suggest novel Self-adaptive Iterative Scheme Algorithm 4 for solving the variational
inequalities (1).
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Algorithm 1 Three-step predictor–corrector method

For a given q0 ∈ H, compute the approximate solution qn by the iterative scheme.

yn = PK[qn − ρTqn].
wn = (1 − βn)yn + βnPK[yn − ρTyn].

qn+1 = (1 − γn)wn + γnPK[wn − ρTwn].

where βn, γn ∈ [0, 1] for all n ≥ 0. This Algorithm is known as a three-step predictor-
corrector method. For βn = 0 , Algorithm 1 reduces to Algorithm 2 [32].

Algorithm 2 Two-step iterative method

For an arbitrarily chosen q0 ∈ H, compute the sequence {qn} by the iterative scheme:

yn = PK[qn − ρTqn].

qn+1 = (1 − γn)yn + γnPK[yn − ρTyn].

In the context of this work, Algorithm 2 is referred to as the two-step iterative method.
When the parameter γn = 1 then, Algorithm 2 simplifies to become Algorithm 3,
demonstrating a specific case within the broader algorithmic framework such that: [4]

Algorithm 3 One-step iteration method

Compute the sequence {qn}, for an arbitrarily chosen initial point q0 ∈ H, by the iterative
scheme;

yn = PK[qn − ρTqn].

qn+1 = PK[yn − ρTyn].

or,

qn+1 = PK[PK(qn − ρTqn)− ρT[PK(qn − ρTqn)]].

Which is called extragradient Algorithm.

Algorithm 4 Self-adaptive Iterative Scheme

Now compute the approximate solution qn+1, for a given q0 ∈ H by the iterative
schemes. We use the technique of updating the solution to suggest predictor correc-
tor techniques for solving the variational inequalities (1).

yn = PK[qn − ρTqn].
wn = (1 − βn)yn + βnPK[yn − ρTyn].
qn = (1 − γn)wn + γnPK[wn − ρTwn].

Step 0. Given ϵ > 0, ρ > 0, γ ∈ [1, 2), µ ∈ [0, 1) and q0 ∈ H, set n = 0.
Step 1. Stopping criteria: Let ρn be defined as ρ. To proceed, check if the norm of R(qn) is

less than ϵ.If this condition holds true, terminate the process. Otherwise, seek the
smallest non-negative integer mn, such that, ρn = ρµmn , that satisfies,

ρnηn⟨Tqn − T(qn − ηnR(qn)), R(qn)⟩ ≤ σ∥R(qn)∥2, σ ∈ [0, 1].
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Step 2. Compute
d(qn) = ηR(qn) + ρnT(qn − ηnR(qn)),

αn =
(ηn − σ)

γn

∥ R(qn) ∥2

∥ d(qn) ∥2 ,

Step 3. Get next iteration

qn+1 = (1 − γn)qn + γnPK[qn − αnd(qn)], n = 0, 1, 2, 3.......

Otherwise, go to the step 1.
In the upcoming section, we delve into the convergence criteria of the above algorithm,

which forms the primary driving force behind our findings and outcomes. The analysis
of convergence holds significant importance in establishing the existence of a solution
under specific conditions. This theorem encapsulates the convergent aspect of the newly
established outcomes.

Theorem 1. If qα ∈ H is a solution of variational inequality and operator T : H → H is
pseudomonotone then

⟨q − qα, d(q)⟩ ≥ (η − σ) ∥ R(q) ∥2 .

Proof of Theorem 1. let qα ∈ H is a solution of variational inequality and operator T :
H → H is pseudomonotone operator, then

⟨Tqα, q∗ − qα⟩ ≥ 0 ∀q∗ ∈ K,

this implies that
⟨Tq∗, q∗ − qα⟩ ≥ 0 ∀q∗ ∈ K,

since T is pseudomonotone.
Taking q∗ = q − ηR(q) = x in above equation.

⟨Tq∗, q − ηR(q)− qα⟩ ≥ 0, (8)

⟨ρTx, q − qα⟩ ≥ η⟨ρTx, R(q)⟩. (9)

From Lemma 1 we have
⟨q − z, q∗ − q⟩ ≥ 0. (10)

Taking

z = q − ρTq,

q = (1 − βn)y + βnPK[y − ρTy] = w,

q∗ = qα

in Equation (10) we have,

⟨(1 − βn)y + βnPK[y − ρTy]− (q − ρTq), qα − (1 − βn)y − βnPK[y − ρTy]⟩ ≥ 0.

⟨w − q + ρTq, qα − w⟩ ≥ 0.

⟨ρTq − (q − w), qα − q + (q − w)⟩ ≥ 0.

Substituting R(q) = q − w.

⟨ρTq − R(q), qα − q + R(q)⟩ ≥ 0,

⟨R(q)− ρTq, q − qα − R(q)⟩ ≥ 0,

⟨R(q)− ρTq, q − qα⟩ ≥ ⟨R(q)− ρTq, R(q)⟩,
⟨R(q), q − qα⟩ ≥ ⟨ρTq, q − qα⟩+ ⟨R(q)− ρTq, R(q)⟩.
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Taking
⟨ρTq, q − qα⟩ ≥ 0.

We have
⟨R(q), q − qα⟩ ≥ ⟨R(q)− ρTq, R(q)⟩.

For η ≥ 0, we have
η⟨R(q), q − qα⟩ ≥ η⟨R(q)− ρTq, R(q)⟩. (11)

By adding (9) and (11), we get;

⟨ηR(q), q − qα⟩+ ⟨ρTx, q − qα⟩ ≥ η⟨R(q)− ρTq, R(q)⟩+ η⟨ρTx, R(q)⟩,

⟨ηR(q) + ρTx, q − qα⟩ ≥ η⟨R(q)− ρTq + ρTx, R(q)⟩,

then we have

⟨q − qα, d(q)⟩ ≥ η⟨R(q), R(q)⟩ − ηρ⟨R(q), Tq − Tx⟩,
≥ η∥R(q)∥2 − ηρ⟨R(q), Tq − Tx⟩.

We know that x = q − ηR(q), so

ρη⟨Tq − T(q − ηR(q)), R(q)⟩ ≤ σ ∥ R(q) ∥2, σ ∈ [0, 1]

⟨q − qα, d(q)⟩ ≥ η∥R(q)∥2 − σ ∥ R(q) ∥2,

≥ (η − σ)∥R(q)∥2.

Which is the required result.

Theorem 2. If qα ∈ H is a solution of variational inequality (1) and qn+1 be the approximate
solution obtained from Algorithm 4 then

∥qn+1 − qα∥2 ≤ ∥qn − qα∥2 − (ηn − σ)2 ∥R(qn)∥4

∥d(qn)∥2 .

where ηn is the smallest nonnegative integer that satisfied the given inequality in such a way:

ρnηn⟨Tqn − T(qn − ηnR(qn)), R(qn)⟩ ≤ σ ∥ R(qn) ∥2, σ ∈ [0, 1].

Proof of Theorem 2. From Algorithm 4, we have

qn+1 = (1 − γn)qn + γnPK[qn − αnd(qn)], (12)

so,
∥qn+1 − qα∥2 = ∥(1 − γn)qn + γnPK[qn − αnd(qn)]− qα∥2,

as PK is non-expansive, then we have

∥qn+1 − qα∥2 ≤ ∥(1 − γn)qn + γn(qn − αnd(qn))− qα∥2,

≤ ∥qn − γnqn + γnqn − γnαnd(qn)− qα∥2,

≤ ∥qn − γnαnd(qn)− qα∥2,

≤ ∥qn − qα∥2 − 2γnαn⟨qn − qα, d(qn)⟩+ γ2
nα2

n∥d(qn)∥2.

As we know that from (Theorem 1),

⟨q − qα, d(q)⟩ ≥ (η − σ)∥R(q)∥2, ∀ qα ∈ H.
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so,
∥qn+1 − qα∥2 ≤ ∥qn − qα∥2 − 2γnαn(η − σ)∥R(qn)∥2 + γ2

nα2∥d(qn)∥2.

Since,

αn =
(ηn − σ)

γn

∥ R(qn) ∥2

∥ d(qn) ∥2 ,

∥qn+1 − qα∥2 ≤ ∥qn − qα∥2 − 2(η − σ)2 ∥ R(qn) ∥4

∥ d(qn) ∥2 + (η − σ)2 ∥ R(qn) ∥4

∥ d(qn) ∥2 ,

≤ ∥qn − qα∥2 − (η − σ)2 ∥ R(qn) ∥4

∥ d(qn) ∥2 .

This is the required result.

Theorem 3. Let T be a nonlinear operator having Lipschitz continuous property with constant
σ > 0, and strongly monotonic property with constant δ > 0. If 0 ≤ γn, βn ≤ 1, for all n ≥ 0
and Σ∞

n=0γn = 0 then there exist a constant ρ > 0 such that 0 < ρ < 2δ
σ2 . Afterward, the iterative

scheme yields an approximate solution qn+1, which ultimately converges to the exact solution q of
the variational inequality.

Proof of Theorem 3. Given that T is strongly monotonic with a constant δ > 0, and Lips-
chitz continuous with a constant σ > 0. Now from Algorithm 4 (Updated self-adaptive
Iterative algorithm) we can ascertain the existence of a fixed point q ∈ H, satisfying the
following conditions:

q = (1 − γn)w + γnPK[w − ρTw]. (13)

w = (1 − βn)y + βnPK[y − ρTy]. (14)

y = PK[q − ρTq]. (15)

Since qn+1 and q are the solutions of VI (1), it follows from Algorithm 4 that

∥qn+1 − q∥ = ∥(1 − γn)wn + γnPK[wn − ρTwn]− (1 − γn)w − γnPK[w − ρTw]∥
= ∥(1 − γn)(wn − w) + γn(PK[wn − ρTwn]− PK[w − ρTw])∥.

Using the property of non-expansive of PK, we obtain the following result:

∥qn+1 − q∥ ≤ (1 − γn)∥wn − w∥+ γn∥wn − w − ρ(Twn − Tw)∥. (16)

Consider

∥wn − w − ρ(Twn − Tw)∥2 = ∥(wn − w∥2 − 2ρ⟨wn − w, Twn − Tw⟩+ ρ2∥Twn − Tw∥2

As T is strongly monotonic with constant δ > 0 and Lipschitz continuous with constant
σ > 0, we have,

∥wn − w − ρ(Twn − Tw)∥2 ≤ (1 − 2ρδ + ρ2σ2)∥wn − w∥2

After back subsitution into Equation (16), we obtained the following result

∥qn+1 − q∥ ≤ (1 − γn)∥wn − w∥+ γnθ∥wn − w∥, (17)

≤ (1 − γn + γnθ)∥wn − w∥, (18)
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where θ =
√

1 − 2ρδ + ρ2σ2. Now consider

∥wn − w∥ = ∥(1 − βn)yn + βnPK[yn − ρTyn]− (1 − βn)y − βnPK[y − ρTy]∥,

= ∥(1 − βn)(yn − y) + βn(PK[yn − ρTyn]− PK[y − ρTy])∥.

As PK is non-expensive, then we have

∥wn − w∥ ≤ (1 − βn)∥yn − y∥+ βn∥yn − y − ρ(Tyn − Ty)∥. (19)

Similarly consider

∥yn − y − ρ(Tyn − Ty)∥2 = ∥(yn − w∥2 − 2ρ⟨yn − y, Tyn − Ty⟩+ ρ2∥Tyn − Ty∥2

As T is strongly monotonic and Lipschitz continuous, so we have.

∥yn − w − ρ(Tyn − Ty)∥2 ≤ (1 − 2ρδ + ρ2σ2)∥yn − y∥2

After back subsitution into Equation (19), we obtained the following result

∥wn − w∥ ≤ (1 − βn)∥yn − y∥+ βnθ∥yn − y∥,

≤ (1 − βn + βnθ)∥yn − y∥, (20)

for 0 < ρ <
2δ

σ2 , we have θ < 1 which implies:

(1 − βn + βnθ) < 1.

Thus,
∥wn − w∥ ≤ ∥yn − y∥. (21)

Similarly from (15) and Algorithm 1, we have

∥yn − y∥ = ∥PK[qn − ρTqn]− PK[q − ρTq]∥,

≤ ∥qn − q − ρ(Tqn − Tq)∥,

as PK is non-expensive and T is strongly monotonic and Lipschitz continuous, so we have,

∥yn − y∥ ≤ θ∥qn − q∥

For convergence criteria 0 < ρ <
2δ

σ2 , so we have θ < 1 using this fact, then we have

∥yn − y∥ ≤ ∥qn − q∥. (22)

By subsituting Equations (20) and (22) into Equation (18), we get

∥qn+1 − q∥ ≤ (1 − γn + γnθ)(1 − βn + βnθ)∥qn − q∥
∥qn+1 − q∥ ≤ Π∞

i,j=0(1 − γi(1 − θ))(1 − β j(1 − θ)∥qn − q∥

Since γ, β ∈ [0, 1] and Σ∞
i=1γi, β j < ∞, so

Lim
n→∞

Π∞
i,j=0(1 − γi(1 − θ))(1 − β j(1 − θ) = 0, (23)

Lim
n→∞

∥qn − q∥ → 0 (24)

Lim
n→∞

qn+1 = q. (25)
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The above result shows that the general solution qn+1 of Algorithm 4 converges to approxi-
mate solution q . Since θ < 1 and from Equation (23), the Problem (1) has a unique solution
consequently qn+1, which is the required result. It also follows from (21) and (22) that the
sequences wn and yn strongly converge to q in H. These results show that under certain
conditions, the solution exists and it is unique. This was the main motivation of the results.
In the next section, we provide the numerical example for the solution of the problem. This
is the implementation of the defined results.

4. Numerical Example

In this section, numerical results are presented for the proposed three-step predictor-
corrector method. We consider the inequality complimentary problem of finding, q ∈ K
such that:

⟨ T(q), q∗ − q⟩ ≥ 0, ∀ q∗ ∈ K. (26)

where, T(q) = D(q) + Mq + t, the nonlinear part D(q) = d∗arctan(q) and linear part
M = AT A + B of T(q) respectively. The matrix M = AT A + B, where A is an n × n matrix
whose entries are randomly generated in the interval (−5,+5) and a skew-symmetric
matrix B is generated in the same way. The vector q is generated from a uniform distri-
bution in the interval (−500, 500)(easy problems) and (−500, 0)(hard problems), respec-
tively. In D(q), the nonlinear part of T(q), the components are Dj(q) = dj ∗ arctan(qj ),
here dj is a random variable in (0, 1). With the starting point u0 = (0, 0, 0, . . . , 0)T , we take,
µ = 2

3 , δ = 0.95, and γ = 1.95 for the given test. Computation of codes written in matlab
begins with ρ0 = 0 and stop as soon as ∥D(qn)∥ ≤ 10−7. The test results for hard problems
(q ∈ (−500, 0 )) are reported in Table 1.

Table 1. Numerical Results for q ∈ (−500, 0).

Size of Matrix [19] Self-Adaptive Iterative Scheme

n No. Iterations No. Iterations
ine 100 54 45

150 77 67
200 34 29
300 43 32
500 96 85

We have compared our numerical results with published work by Noor. et al. (2017) [19].
It has been observed that the number of iterations is less in the three-step predictor-corrector
self-adaptive method. So, the new Self-adaptive Iterative Scheme is a better and improved
version of previous published work.

5. Conclusions

The three-step method, in particular, is quite generic and includes several innovative
and well-known approaches for resolving variational inequalities. This work aims to
establish a theoretical foundation for these iterations. Through our analysis, we observed
that three-step iterations are considerably more practical and manageable for calculations
compared to two- and one-step iterations when dealing with nonlinear problems arising
in elasticity and mechanics. Furthermore, we have provided proof for the convergence
analysis, which constitutes the primary motivation behind this paper. An example is given
to illustrate the efficiency of the proposed method. Comparison with other methods shows
that the three-step predictor-corrector self-adaptive method perform better.
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