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Abstract: In the theory of gene networks, the mathematical apparatus that uses dynamical systems
is fruitfully used. The same is true for the theory of neural networks. In both cases, the purpose
of the simulation is to study the properties of phase space, as well as the types and the properties
of attractors. The paper compares both models, notes their similarities and considers a number of
illustrative examples. A local analysis is carried out in the vicinity of critical points and the necessary
formulas are derived.
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1. Introduction

In this article, we study Neural Networks, called also Artificial Neural Networks
(ANN), and their mathematical models, using ordinary differential equations. The mo-
tivation for the study of ANNs came from attempts to understand the principles and
organization of the human brain. Understanding came that human brains work differ-
ently from digital computers. Their effectiveness comes from high complexity, nonlinear
modes of regulation, and parallelism of actions. The elements of the human brain were
called neurons.

These elements still perform calculations faster than the fastest digital computers.
The human brain is able to perceive information about the environment in the form of
images and, moreover, it can process the received information needed for interaction with
the environment.

At birth, the human brain has a ready structure for learning which, in familiar terms,
is understood as experience. So, the neural network is designed to model the way in which
the human brain solves usual problems and performs a particular task. A particular interest
in ANN stems from the fact that an important group of neural networks is needed to
solve a problem computations through the process of learning. So, following [1], an ANN
can generally be imagined as a parallel distributed processor, consisting of separate units,
which is able to analyze experimental data and prepare them for use.

Many natural processes involve networks of elements that affect each other following
a general pattern of conditions and the updating rules for any elements. Both genomic
networks and neuronal networks are of this kind. In mathematical models of networks of
both types, the regulatory effect of one element to the outputs of other elements is defined
by a weight matrix. Therefore, the models describing the evolution of these networks
have a lot in common. But, there are also differences. This paper compares models using
systems of ordinary differential equations. To distinguish between these systems, we
use the designations GRN system and ANN system. At the same time, we realize that
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the term ANN system has too general a meaning. An ANN system in the established
sense is understood as a network that operates according to certain rules and is focused
on performing certain tasks. At the same time, the networks undergo training and thus
improve their qualities. This article looks at neural networks from a different point of
view. We are interested in the behavior of systems of both types for different forms of
interaction of elements. The structure of both systems assumes the presence of attractors
that determine future states. The description and comparison of possible attractors for the
systems of both types is our result.

ANNs are made up of many interconnected elements. Weighted signals from different
elements are received by a separate element and processed. A positive signal is understood
as an excitatory connection, while negative one means an inhibitory connection. The
received signals are linearly summed and modified by a nonlinear sigmoidal function
which is called an activation one. The activation function controls the amplitude of an
output. “Each neuron has a sigmoid transfer function, and a continuous positive and
bounded output activity that evolves according to weighted sums of the activities in
the networks. Neural networks with arbitrary connections are often called recurrent
networks” [2]. The dynamics of the continuous time recurrent neural network with n units,
can be described by the system of ordinary differential equations (ODE) ([3])

x′i = −bixi + fi(Σaijxj) + Ii(t), (1)

where xi is the internal state of the i-th unit, bi is the time constant for the i-th unit, aij are
connection weights, Ii(t) is the input to the i-th unit, and fi(Σaijxj) is the response function
of the i-th unit. Usually, f is taken as a sigmoidal function. There are particular response
functions that are non-negative. For instance, functions fi(z) = (1 + exp(µi(z − θi))

−1

were used in [4]. More general cases can be modeled by the system using the function
fi(z) = tanh(aiz − θi), which takes values in the open interval (−1, 1). If the recurrent
neural networks without input are considered, the system

x′i = fi(Σ(aijxj − θi))− bixi (2)

can be considered.
Applications of Artificial Neural Networks are multiple. They can be used in dif-

ferent fields. These fields can be categorized as function approximations, including time
series prediction and modeling; pattern and sequence recognition, novelty detection and
sequential decision making; and data processing, including filtering and clustering. For
applications in Machine Learning (ML), Deep Learning and related problems, consult the
review article [5]. For neuroscience applications and their relation to ML, and machine
learning using biologically realistic models of neurons to carry out the computation, con-
sider the review [6]. The problems of pattern recognition by ANNs, including applications
in manufacturing industries, were studied and analyzed in the review paper [7]. In the
paper [8], the ANN approach is applied for the study of a genetic system.

In this article, we mainly study properties of the mathematical model of a three-
dimensional ANN, but part of our results will refer to two-dimensional or, more generally,
to n-dimensional networks. In particular, we provide information on the types of possible
attractors, and their birth and evolution under changes in multiple parameters. The
asymptotic properties of the system are important for prediction of future states. This, in
turn, can provide instruments for control and management of the modeling network. We
use analytical tools for the study of the phase space and its elements. A set of formulas is
obtained for the local analysis near equilibria. The necessary data for the analysis were
collected by conducting computational experiments and constructing several examples. A
broader study involves examining the model and interpreting the findings for the actual
process being modeled. Examples of this approach are the works [9,10].

Let us describe the structure of the paper. The Problem formulation section provides
the necessary material for the study. The Preliminary results section describes some basic
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properties of the main systems of ordinary differential equations. It deals also with technical
details concerning nullclines, critical points, local analysis by linearization, and some special
cases. The next two sections concern some particular but important cases. The systems
possessing critical points of the type focus, and systems exhibiting the inhibition-activation
behavior, are treated. Both types of systems can have periodic solutions, and that means
that cyclic processes can occur in the modeled network. The system of the special triangular
structure is analyzed in Section 6. It is convenient for analysis and the main conclusions can
be transferred to systems of arbitrary dimensions. The process of birth of stable periodic
trajectories from stable critical points of the type focus is considered in Section 7. The
mechanism of the Andronov–Hopf bifurcation is illustrated for two-dimensional and three-
dimensional neuronal systems. As a by-product, an example of a 3D system that has three
limit cycles is constructed. Some suggestions on the management of neuronal systems are
provided in Section 7. The possibility of effectively changing the properties of the system,
and therefore to partially controlling the network in question, is emphasized. The last
section summarizes the results obtained so far, and outlines further studies in this direction.

2. Problem Formulation

The mathematical model using ordinary differential equations, is

dx1

dt
= 2

1
1 + e−2(a11x1+a12x2+a13x3−θ1)

− 1 − b1x1,

dx2

dt
= 2

1
1 + e−2(a21x1+a22x2+aw23x3−θ2)

− 1 − b2x2,

dx3

dt
= 2

1
1 + e−2(a31x1+a32x2+a33x3−θ3)

− 1 − b3x3.

(3)

The same system can be written as ([11])

dx1

dt
= tanh(a11x1 + a12x2 + a13x3 − θ1)− b1x1,

dx2

dt
= tanh(a21x1 + a22x2 + a23x3 − θ2)− b2x2,

dx3

dt
= tanh(a31x1 + a32x2 + a33x3 − θ3)− b3x3,

(4)

since

2
1

1 + e−2z − 1 =
1 − e−2z

1 + e−2z = − e−2z − 1
e−2z + 1

= − tanh(−z) = tanh(z).

The elements of this 3D network are called neurons. The connections between them are
synapses (or nerves). There is an algorithm that describes how the impulses are propagated
through the network. In the above model, this algorithm is encoded by the matrix

W =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

. (5)

Each neuron accepts signals from others and produces a single output. The extent to
which the input of neuron i is driven by the output of neuron j is characterized by its output
and synaptic weight aij. The dynamic evolution leads to attractors of the system (4), and it
was experimentally observed in neural systems. In theoretical modeling, the emphasis is
put on the attractors of a system. We wish to study them for System (4).
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Similar systems arise in the theory of genetic regulatory networks. The difference is
that the nonlinearity is represented by a positive valued sigmoidal functions. One of such
systems is 

dx1

dt
=

1
1 + e−µ1(a11x1+a12x2+a13x3−θ1)

− b1x1,

dx2

dt
=

1
1 + e−µ2(a21x1+a22x2+a23x3−θ2)

− b2x2,

dx3

dt
=

1
1 + e−µ3(a31x1+a32x2+a33x3−θ3)

− b3x3.

(6)

Notice that System (3), and therefore also System (4), can be obtained from System (6),
where µi = 2, i = 1, 2, 3, by two arithmetic operations, namely multiplication of the
nonlinearity in (6) by 2 and subtracting 1. This changes the range of values in (3) to (−1, 1).

Systems of the form (6) were studied before by many authors. The interested reader
may consult the works ([12–20]). Similar systems appear in the theory of telecommunication
networks ([21]).

In this article, we study the different dynamic regimes for System (4) which can be
observed under various conditions. In particular, we first speak about critical points in
System (4) and evaluate the number of them. Then, we focus on periodic regimes, study
their attractiveness for other trajectories. This can be performed, under some restrictions,
for systems of relatively high dimensionality. Also, the evidences of chaotic behavior
are presented.

3. Preliminary Results

This section contains the description of basic properties of systems under consideration,
and provides information about nullclines, critical points, and their role in the study.

3.1. Invariant Set

Consider the 3D system (4).

Proposition 1. System (4) has an invariant set Q3 = {−1/b1 < x1 < 1/b1, −1/b2 < x2 <
1/b2, −1/b3 < x3 < 1/b3}.

Proof. By inspection of the vector field generated by System (4) on the opposite faces of the
three-dimensional cube Q3. Notice, that the value range for the function tanh z is (−1, 1). □

3.2. Nullclines

The nullclines for the system are defined by the relations

x1 =
1
b1

tanh(a11x1 + a12x2 + a13x3 − θ1),

x2 =
1
b2

tanh(a21x1 + a22x2 + a23x3 − θ2),

x3 =
1
b3

tanh(a31x1 + a32x2 + a33x3 − θ3).

(7)

Example 1. Consider the system with the matrix

W =

 1.2 1.5 0
−1.5 1.2 0

0 0 1.2

 (8)

and b1 = b2 = b3 = 1, θ1 = θ2 = 0.5, θ3 = 1.
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The three nullclines for system (4) with matrix (8) are depicted in Figure 1.

-1.0

-0.5

0.0

0.5

1.0

X1

-1.0

-0.5

0.0

0.5

1.0

X2

-1.0
-0.5

0.0
0.5

1.0
X3

Figure 1. The nullclines for System (4) with Matrix (8) ( x1—red, x2—green, x3—blue).

3.3. Critical Points

The critical points, which are also called the equilibria, can be obtained from System (4).
Geometrically, they are the cross points of the nullclines. The nullclines are defined by
the relations 

x1 −
1
b1

tanh(a11x1 + a12x2 + a13x3 − θ1) = 0,

x2 −
1
b2

tanh(a21x1 + a22x2 + a23x3 − θ2) = 0,

x3 −
1
b3

tanh(a31x1 + a32x2 + a33x3 − θ3) = 0.

(9)

Proposition 2. All critical points are in the invariant set.

The nullclines are located in the sets {−1/b1 < x1 < 1/b1, −1/b2 < x2 < 1/b2,
−1/b3 < x3 < 1/b3}, respectively, and these sets intersect by the invariant set Q3 only.

Proposition 3. At least one critical point exists.

The invariant set Q3 may be considered as a topological ball. Since the vector field
on the border is directed inward, Q3 is mapped into itself continuously. The continuous
contraction mapping Q3 to Q3 has a fixed point. Any fixed point is a solution of the
system (7).

Remark 1. The number of critical points may be greater, up to 27, but finite.

Remark 2. Both assertions 2 and 3 are valid for the n-dimensional case also.

Example 2. Consider System (4) with the matrix

W =

 1.2 2 0
−2 1.2 0
0 0 1.2

 (10)

and b1 = b2 = b3 = 1, θ1 = 0.7, θ2 = 0.3, θ3 = 0.25. There is one critical point (−0.122; 0.362;
0.640).
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The three nullclines for system (4) with matrix (10) are depicted in Figure 2.

-1.0

-0.5

0.0

0.5

1.0

x1

-1.0
-0.50.00.51.0

x2

-1.0
-0.5

0.0
0.5

1.0

x3

Figure 2. The nullclines for system (4) ( x1—red, x2—green, x3—blue) with Matrix (10).

Example 3. Consider example of multiple critical points and the system (4) with the matrix

W =

 1.2 2 0
−2 1.2 0
0 0 1.2

 (11)

and b1 = b2 = b3 = 1, θ1 = 0.7, θ2 = 0.3, θ3 = 0.01.

The three nullclines for system (4) with matrix (11) are depicted in Figure 3.
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1.0
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-0.5

0.0
0.5

1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Figure 3. The nullclines for System (4) ( x1—red, x2—green, x3—blue) with Matrix (11).

There are three critical points (−0.122; 0.362; 0.640), (−0.122; 0.362; 0.050) and (−0.122;
0.362; −0.675).

3.4. Linearization at a Critical Point

Let (x∗1 , x∗2 , x∗3) be a critical point. The linearization around it is given by the system
u′

1 = −b1u1 + a11g1u1 + a12g1u2 + a13g1u3,
u′

2 = −b2u2 + a21g2u1 + a22g2u2 + a23g2u3,
u′

3 = −b3u3 + a31g3u1 + a32g3u2 + a33g3u3,
(12)

where

g1 =
4e−2(a11x∗1+a12x∗2+a13x∗3−θ1)

[1 + e−2(a11x∗1+a12x∗2+a13x∗3−θ1)]2
, (13)
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g2 =
4e−2(a21x∗1+a22x∗2+a23x∗3−θ2)

[1 + e−2(a21x∗1+a22x∗2+a23x∗3−θ2)]2
, (14)

g3 =
4e−2(a31x∗1+a32x∗2+a33x∗3−θ3)

[1 + e−2(a31x∗1+a32x∗2+a33x∗3−θ3)]2
. (15)

One has

A − λI =

∣∣∣∣∣∣
a11g1 − b1 − λ a12g1 a13g1

a21g2 a22g2 − b2 − λ a23g2
a31g3 a32g3 a33g3 − b3 − λ

∣∣∣∣∣∣ (16)

and the characteristic equation for b1 = b2 = b3 = 1 is

det|A − λI| = −Λ3 + (a11g1 + a22g2 + a33g3)Λ2

+[g1g2(a12a21 − a11a22) + g1g3(a13a31 − a11a33)
+g2g3(a23a32 − a22a33)]Λ
+g1g2g3(a11a22a33 + a12a23a31 + a13a21a32
−a11a23a32 − a12a21a33 − a13a22a31) = 0,

(17)

where Λ = λ + 1.

3.5. Regulatory Matrices With Zero Diagonal Elements

Set a11 = a22 = a33 = 0. The regulatory matrix is

W =

 0 a12 a13
a21 0 a23
a31 a32 0

 (18)

and the system of differential equations takes the form
x′1 = tanh(a12x2 + a13x3 − θ1)− x1,
x′2 = tanh(a21x1 + a23x3 − θ2)− x2,
x′3 = tanh(a31x1 + a32x2 − θ3)− x3.

(19)

Let (x∗1 , x∗2 , x∗3) be a critical point. The respective linearized system around it is
u′

1 = −u1 + a12g1u2 + a13g1u3,
u′

2 = −u2 + a21g2u1 + a23g2u3,
u′

3 = −u3 + a31g3u1 + a32g3u2,
(20)

where g1, g2, g3, given in (13) to (15), are computed assuming that the regulatory matrix
is (18). The characteristic equation for Λ = λ + 1 takes the form

−Λ3 + BΛ + C = 0, (21)

where
B = g1g2(a12a21) + g1g3(a13a31) + g2g3(a23a32), (22)

C = g1g2g3(a12a23a31 + a13a21a32). (23)

Equation (21) has the form
y3 + py + q = 0. (24)

Recall the Cardano formulas for Equation (24). This equation has complex roots if

Q :=
( p

3

)3
+

( q
2

)2
(25)
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is positive. The complex roots can be obtained as

y2,3 = − a + b
2

± i(a − b)
√

3
2

, (26)

where
a = (− q

2
+

√
Q)

1
3 , b = (− q

2
−

√
Q)

1
3

are real cubic roots satisfying a · b = − p
3 . The real root of Equation (24) is y1 = a + b.

Example 4. Consider System (19) with the matrix

W =

 0 1.2 2
−2 0 1.2
0.1 0.1 0

 (27)

and b1 = b2 = b3 = 1, θ1 = 0.3, θ2 = 0.3, θ3 = 0.01.

The three nullclines for system (19) with matrix (53) are depicted in Figure 4.
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-0.5

0.0

0.5

1.0

X1

-1.0
-0.5

0.0
0.5

1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Figure 4. The nullclines for System (19) ( x1—red, x2—green, x3—blue) with Matrix (53).

There is a single critical point (−0.496; 0.311; −0.308). The characteristic numbers
obtained by the linearization process are λ1 = −1.125, λ2,3 = −0.937 ± 1.178i.

4. Focus Type Critical Points

Consider again Equation (21). In our notation,

Q := −
(B

3

)3
+

(C
2

)2
. (28)

Suppose that Q > 0. Let (x∗1 , x∗2 , x∗3) be a critical point in question. The associated
characteristic numbers λ are

λ1 = −1 + (a + b),

λ2,3 = −1 − a + b
2

± i(a − b)
√

3
2

,
(29)

where

a =
(C

2
+

√
Q
) 1

3
, b =

(C
2
−

√
Q
) 1

3
(30)
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are the real values of cubic roots, and Q is given by (28). We will call such a critical point 3D-
focus. It is unstable if the real part −1− a+b

2 is positive. We arrive at the following assertion.

Proposition 4. Let (x∗1 , x∗2 , x∗3) be a critical point of the system (19). Suppose that(C
2

)2
>

(B
3

)3
. (31)

Then, Q > 0 and this critical point is a 3D-focus.

Proof. Follows from (28) to (30).

Corollary 1. Suppose the condition B < 0 holds for a critical point. Then, this point is a 3D-focus.

Proof. The relation (31) is fulfilled if B < 0.

Proposition 5. Suppose (x∗1 , x∗2 , x∗3) is a critical point of type focus of the system (19). This point
is an unstable focus if the condition −1 − a+b

2 > 0 holds.

Proof. Follows from (29), since then the real part of λ2,3 in (29) is positive.

Example 5. Consider System (19) with the matrix

W =

 0 1.5 3
−3 0 1.5
3 0.1 0

 (32)

and b1 = b2 = b3 = 1, θ1 = 0.6, θ2 = 0.3, θ3 = 0.1.

The three nullclines for system (19) with matrix (32) are depicted in Figure 5.

-1.0-0.50.00.51.0

X1

-1.0

-0.5

0.0

0.5

1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Figure 5. The nullclines for System (19) ( x1—red, x2—green, x3—blue).

The system has three critical points: p1, p2 and p3 at (0.790;−0.836; 0.975), (0.176;−0.248;
0.384) and (−0.982; 0.819;−0.995). The characteristic numbers λ are given in Table 1.
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Table 1. The characteristic numbers λ.

- λ1 λ2 λ3

p1 −0.9268 −1.0366 − 0.6101 i −1.0366 + 0.6101 i
p2 1.1972 −2.0986 − 0.8406 i −2.0986 + 0.8406 i
p3 −0.9821 −1.0090 − 0.2189 i −1.0090 + 0.2189 i

5. Inhibition-Activation

Consider the system
x′1 = tanh(a12x2 + a13x3 − θ1)− x1,
x′2 = tanh(a21x1 + a23x3 − θ2)− x2,
x′3 = tanh(a31x1 + a32x2 − θ3)− x3,

(33)

where a12, a13, a23 are negative, a21, a31, a32 are positive.
Let the regulatory matrix be

W =

 0 −1 −1
1 0 −1
1 1 0

, (34)

and θ1 = θ2 = θ3 = θ. There is a single critical point. Introduce

g1 =
4e−2(−x2−x3−θ)

[1 + e−2(−x2−x3−θ)]2
, (35)

g2 =
4e−2(x1−x3−θ)

[1 + e−2(x1−x3−θ)]2
, (36)

g3 =
4e−2(x1+x2−θ)

[1 + e−2(x1+x2−θ)]2
. (37)

The range of values of gi is the interval (0, 1). The linearized system is
u′

1 = −u1 − g1u2 − g1u3,
u′

2 = −u2 + g2u1 − g2u3,
u′

3 = −u3 + g3u1 + g3u2.
(38)

One can obtain the matrix

A − λI =

∣∣∣∣∣∣
−1 − λ −g1 −g1

g2 −1 − λ −g2
g3 g3 −1 − λ

∣∣∣∣∣∣ (39)

and the characteristic equation

det|A − λI| = −λ3 − 3λ2 + (g1g2 + g1g3 + g2g3 − 3)λ
+(g1g2 + g1g3 + g2g3 − 1) = 0.

(40)

The roots of the characteristic equation are
λ1 = −1,
λ2 = −1 −

√
g1g2 + g1g3 + g2g3 i,

λ3 = −1 +
√

g1g2 + g1g3 + g2g3 i.
(41)

Summing up, we arrive at the following assertion.
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Proposition 6. A critical point of System (33) under the above conditions is 3D-focus; that is,
the following is true: there is 2D-subspace with a stable focus and attraction in the remaining
dimension.

6. The Case of Triangular Regulatory Matrix

We consider the special case of the regulatory matrix being in triangular form,

W =


a11 a12 ... a1n
0 a22 ... a2n
...
0 0 ... ann

. (42)

Since the presentation for the general case differs little from the three-dimensional
case, let us consider the n-dimensional variant. The system of differential equations takes
the form 

x′1 = tanh(a11x1 + a12x2 + ... + a1nxn − θ1)− x1,
x′2 = tanh( a22x2 + ... + a2nxn − θ2)− x2,
...
x′n = tanh( annxn − θn)− xn,

(43)

where n > 1. Suppose that the coefficients aij take values in the interval (0; 1].

6.1. Critical Points

The critical points of System (43) can be determined from
x1 = tanh(a11x1 + a12x2 + ... + a1nxn − θ1),
x2 = tanh( a22x2 + ... + a2nxn − θ2),
...
xn = tanh( annxn − θn).

(44)

Since the right sides in (44) are less than unity in modulus, all critical points locate in
(−1; 1)× (−1; 1)× ... × (−1; 1). Due to sigmoidal character of the function tanh z, the last
equation in (44) may have one , two or three roots.

Proposition 7. There are, at most, three values for xn in System (44).

Proposition 8. At most, 3n critical points are possible in System (43).

Proof. The last equation in (44) may have, at most, three roots, due to the S-shape of the
graph to a sigmoidal function on the right side. Consequently, the penultimate equation in
(44) may have, at most, 3 × 3 roots xn−1. In total, there are nine roots. Proceeding in this
way, we obtain, at most, 3n roots for the very first equation in (44), and therefore, at most
3n critical points for System (43). Hence, the proof.

6.2. Linearized System

The linearized system is
u′

1 = −u1 + a11g1u1 + a12g1u2 + ... + a1ng1un,
u′

2 = −u2 + a22g2u2 + ... + a2ng2un,
...
u′

n = −un + anngnun,

(45)

where

g1 =
4e−2(a11x1+a12x2+...+a1nxn−θ1)

[1 + e−2(a11x1+a12x2+...+a1nxn−θ1)]2
, (46)
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g2 =
4e−2(a22x2+...+a2nxn−θ2)

[1 + e−2(a22x2+...+a2nxn−θ2)]2
, (47)

...

gn =
4e−2(annxn−θn)

[1 + e−2(annxn−θn)]2
. (48)

The values of gi are positive and not greater than unity. The characteristic values for a
critical point are to be obtained from

A − λI =

∣∣∣∣∣∣∣∣
a11g1 − 1 − λ a12g1 ... a1ng1

0 a22g2 − 1 − λ ... a2ng2
... ... ... ...
0 0 ... anngn − 1 − λ

∣∣∣∣∣∣∣∣ (49)

and
det|A − λI| = (a11g1 − 1 − λ)(a22g2 − 1 − λ)...
...(anngn − 1 − λ) = 0.

. (50)

Evidently, 
λ1 = −1 + a11g1,
λ2 = −1 + a22g2,
...
λn = −1 + anngn.

(51)

Therefore, the characteristic values for any critical point are real, and the following
assertion follows.

Proposition 9. The triangular system (43) cannot have critical points of type focus.

7. Systems with Stable Periodic Solutions: Andronov–Hopf Type Bifurcations
7.1. 2D Case

We first study the second-order system
dx1

dt
= tanh(kx1 + bx2 − θ1)− b1x1,

dx2

dt
= tanh(ax1 + kx2 − θ2)− v2x2,

(52)

where b = −a = 2, and k > 0 is the parameter. Choose a k small enough that a unique
critical point is a stable focus. Then, increase k until the stable focus turns to unstable one.
Then, the limit cycle emerges, surrounding the critical point. This is called Andronov–Hopf
bifurcation for 2D systems.

Example 6. Consider System (52) with the matrix

W =

(
k 2
−2 k

)
(53)

and k = 0.5, b1 = b2 = 1, θ1 = 0.1, θ2 = 0.3.

The two nullclines and vector field for system (52) with matrix (53) are depicted in
Figure 6.
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Figure 6. The nullclines and vector field for System (52) ( x1—blue, x2—red) with Matrix (53).

There is one critical point: the stable focus. If the parameter k increases, the stable
focus turns to an unstable one. Then, the limit cycle emerges, surrounding the critical point.

Example 7. Consider System (52) with the matrix

W =

(
k 2
−2 k

)
(54)

and k = 1.1, b1 = b2 = 1, θ1 = 0.1, θ2 = 0.3.

The two nullclines, vector field and limit cycle for system (52) with matrix (54) are
depicted in Figure 7.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

Figure 7. The limit cycle in System (52) ( x1—blue, x2—red) with Matrix (54).

7.2. 3D Case

Consider now the 3D system with the matrix

W =

 k 0 b
0 a22 0
a 0 k

, (55)

where a, b, k are as in 2D system (52). The second nullcline is defined by the relation

x2 =
1
b2

tanh(a22x2 − θ2). (56)
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Choose the parameters so that Equation (56) has three roots. Then, the second nullcline
is a union of three parallel planes.

Example 8. Consider picture of nullclines in Figure 8. There are three periodic solutions in System
(56) with the matrix (57) are depicted in Figure 9.

W =

 1.5 0 2
0 2.5 0
−2 0 1.5

 (57)

and b1 = b2 = b3 = 1, θ1 = 0.1, θ2 = 0, θ3 = 0.2.

-1.0
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0.0

0.5

1.0
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-0.5

0.0

0.5

1.0
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0.0

0.5
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Figure 8. The nullclines of System (56) with the regulatory matrix (57).
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Figure 9. The three periodic solutions of System (56) with the regulatory matrix (57).

8. Control and Management of ANN

First, a citation from [22]: “Models of ANN are specified by three basic entities:
models of the neurons themselves–that is, the node characteristics; models of synaptic
interconnections and structures–that is, net topology and weights; and training or learning
rules—that is, the method of adjusting the weights or the way the network interprets the
information it receives”.

In this section, we discuss the problem of changing the behavior of the trajectories
of System (4). This may be interpreted as partial control over the system. The system has
as parameters the coefficients aij, the values θi and bi in the linear part. Properties of the
system may be changed by varying any of mentioned.

We would like demonstrate how a system of the form (4) can be modified so that
trajectories start to tend to some of indicated attractor. For this, consider the system (4),
which has as attractors three limit cycles. This can be performed via three operations: (1)
put the entries of the 2D regulatory matrix, which corresponds to 2D system with the limit
cycle L, to the four corners of a 3D matrix A; (2) choose the middle element of the 3D matrix
A so, that the equation x2 = tanh(a22x2 − θ2) with respect to x2 has exactly three roots
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r1 < r2 < r3; (3) set the four remaining values of aij to zero. Set also bi to unity. After
finishing these preparations, the second nullcline will be three parallel planes Pi, going
through x2 = ri, i = 1, 2, 3. Each of these planes will contain the limit cycle. Two side limit
cycles will attract trajectories from their neighborhoods. The middle limit cycle will attract
only trajectories, lying in the plane P2.

Now, let us solve the problem of control. Let the limit cycle at P3 be conditionally
“bad”. The problem is to change the system so that all trajectories in Q3 are attracted to
the limit cycle which, at the beginning of the process, was in the plane P1. Problems of this
kind may arise often. In the paper [20], a similar problem was treated mathematically for
genetic networks.

Solution: Change θ2 so that the equation x2 = tanh(a22x2 − θ2) has now the unique
root near P1. The second nullcline is now the plane, passing near r1. This operation is
possible, since the graph of tanh(a22x2 − θ2) is sigmoidal, and changing θ2 means shifting
the original plane P1 in both directions. After that, only one attractor (limit cycle) remains.
The problem is solved.

In neuronal systems, the θ parameters express the threshold of a response function
f ([4]). In genetic networks, θi stands for the influence of external input on gene i, which
modulates the gene’s sensitivity of response ([23]). The technique of changing the θ
parameters and thus shifting the nullclines was applied in the work [24] for building the
partial control over model of genetic network.

9. Conclusions

Modeling of genetic and neural networks, using dynamical systems, is effective in
both cases. The advantage of this approach, compared with other models, is the possibility
of following the evolution of modeled networks. Both systems have invariant sets trapping
the trajectories. As a consequence, the attracting sets exist. The structure and properties
of attractors are important for the prediction of future states of networks. Both systems
must have critical points. These points may be attractive (stable) or repelling. The limit
cycles are possible in both cases. The attractors, exhibiting sensitivity to the initial data, are
possible for three-dimensional GRN and ANN systems. Systems with specific structures
can have predictable properties. For instance, the triangular systems cannot have critical
points of the focus type. In contrast, the inhibition-activation systems typically have critical
points of this type, and can suffer bifurcations of Andronov–Hopf type. Partial control
and management are possible for GRN and ANN systems. In particular, some realistically
large-sized GRN systems allow for control and management by changing the adjustable
parameters. This problem is relevant to modern medicine.
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