
Citation: Wali, M.; Guji, R. Extremal

Sombor Index of Graphs with Cut

Edges and Clique Number. Axioms

2024, 13, 66. https://doi.org/

10.3390/axioms13010066

Academic Editors: Xueliang Li and

Weihua He

Received: 11 October 2023

Revised: 7 January 2024

Accepted: 11 January 2024

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Extremal Sombor Index of Graphs with Cut Edges and
Clique Number
Mihrigul Wali 1,2 and Raxida Guji 2,*

1 School of Mathematical Science, Xiamen University, Xiamen 361005, China; mihray@xjufe.edu.cn
2 School of Statistics and Data Science, Xinjiang University of Finance and Economics, Urumqi 830012, China
* Correspondence: raxida@xjufe.edu.cn

Abstract: The Sombor index is defined as SO(G) = ∑
uv∈E(G)

√
d2(u) + d2(v), where d(u) and d(v)

represent the number of edges in the graph G connected to the vertices u and v, respectively. In this
paper, we characterize the largest and second largest Sombor indexes with a given number of cut
edges. Moreover, we determine the upper and lower sharp bounds of the Sombor index with a given
number of clique numbers, and we characterize the extremal graphs.
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1. Introduction

In graph theory, studying extremal graphs and indices for a class of graphs with given
parameters is an interesting problem. Recently, Gutman introduced a novel topological
index, named the Sombor index in [1] and defined as SO(G) = ∑

uv∈E(G)

√
d2(u) + d2(v),

where d(u) and d(v) represent the number of edges connected to vertices u and v in G, re-
spectively, and further established some mathematical properties for the index. Chen et al.
in [2] considered the extremal values of the Sombor index of trees with some given parame-
ters such as matching number, pendent vertices, diameter, segment number, and branching
number. In the meantime, the corresponding extremal trees are characterized. Li et al.
showed the extremal graphs with respect to the Sombor index among all the n-order trees
with a given diameter [3]. In [4], Redžpović studied the chemical applicability of the
Sombor index. In addition, Cruz et al. in [5] determined the extremal chemical graphs and
hexagonal systems for the Sombor index. In [6], Zhou et al. studied the Sombor index of
trees and unicyclic graphs with a given maximum degree. In [7], they found the maximum
Sombor index of unicyclic graphs with a fixed girth. In [8], they showed applications of the
Sombor index. For more studies in this direction, one may refer to [9–24].

Let G = (V(G), E(G)) be a finite, simple, and connected graph with V(G) =
n⋃

i=1
Vi

and E(G) =
m⋃

i=1
Ei. For any vertex v ∈ V(G), we denote NG(v) = {u|uv ∈ E(G)} and

NG[v] = {u|uv ∈ E(G)} ∪ {v}. The degree d(v) of the vertex v is the number of edges
connected to the vertex v. The vertex v is called pendent vertex if d(v) = 1. The stem
is the vertex adjacent to at least one pendent vertex, and the pendent edge is the edge
incident with the pendent vertex and the stem. If u, v ∈ G, then the distance d(u, v) is the
length of the shortest path connecting the two vertices u and v. We use Pn, Cn, and K1,n−1
to represent the path, cycle, and star graph with n vertices, respectively.

A clique is a subset V′ ∈ V(G) that makes G[V′] to a complete graph. The order of the
largest complete subgraph in graph G is called the clique number ψ(G) of G. The chromatic
number χ(G) of the graph G is the minimum number of colors needed to stain each vertex
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on a graph so that the two adjacent vertices are different colors. See reference [25] for some
notations and terms that we have not mentioned here.

Let Cn,k be a class of graphs having n vertices and k cut edges. Denote E′ = {e1, e2, · · · , ek}.
It can be divided into two classes, namely, pendent edges with size k′, and non-pendent
edges with size k− k′. We know the resulting graph G− E′ are either 2-edge-connected
graphs or isolated vertices. The maximum number of cut edges in a connected graph with
n vertices and at least one cycle is limited to n− 3; therefore, we assume that the graph G
with cut edges and k (k ≥ 1) is less than or equal to n− 3.

In this paper, we determine the Sombor index of the graph with a given number of cut
edges and determine the types of the graphs with the largest and second largest Sombor
indexes. At the same time, we use clique number to determine the upper and lower sharp
bounds for the Sombor index in Cn,k. We will introduce some graph transformations.

2. The Extremal Graph of the Sombor Index with Cut Edges

If any graphs G1 and G2 with V(G1) ∩V(G2) = {v}, then label the graph as G1vG2.
If the graphs G1, G2, · · · , Gt (t ≥ 2) share a common vertex v, then the graph is labeled as
G1vG2v · · · vGt. In the same way, if there is a cut edge uv between any graphs G1 and G2
with u ∈ V(G1) and v ∈ V(G2), in the same way, we label this graph as G1uvG2. According
to the definition and direct computation, we can obtain the following results.

Lemma 1. Let G = (V, E) be a graph and u, v ∈ V(G). If uv is not an edge in E(G), we have
SO(G) < SO(G + uv). If uv is an edge in E(G), then we have SO(G) > SO(G− uv).

Proof. Since the increase (or decrease) in a new edge in the graph increases (or decreases)
by some vertex degree, the lemma obviously holds.

Here, we explain the graph transformation I on graph G ∈ Cn,k. Denote that G =
G1uvG2 is a graph that does not contain cut edge uv, where G1 and G2 are both 2-edge-
connected graphs (Figure 1a). Let G∗ = G − {uv} + {u(v)w} (Figure 1b). Then, the
resulting graph G∗ is obtained from G via the graph transformation I. Since the graph G∗

posses k cut edges, the number of pendent vertices increases by 1.

u vG1 G2

(a)

u(v)

w

G1 G2

(b)

Figure 1. The graph transformation I: G → G∗. (a) G. (b) G∗.

Lemma 2. Suppose that G∗ is the graph derived by G ∈ Cn,k using the graph transformation I, as
described in Figure 1. Then, SO(G∗) > SO(G).

Proof. Set NG(u) − {v} = {u1, u2, · · · , ur} and NG(v) − {u} = {v1, v2, · · · , vs} with
r, s ≥ 2. Then, dG(u) = r + 1, dG(v) = s + 1, and dG∗(u(v)) = r + s + 1. It is clear
that the vertices u1, u2, · · · , ur are in V(G1); and v1, v2, · · · , vs are in V(G2) by assumption.
Further,

SO(G∗)− SO(G) =
√

∑
x∈NG∗ (u)

d2
G∗(x) + d2

G∗(u)−
√

∑
x∈NG(u)\v

d2
G(x) + d2

G(u)

−
√

∑
x∈NG(v)\u

d2
G(x) + d2

G(v) =
√

1 + (r + s + 1)2
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+
√

∑
x∈NG(u)\v

d2
G(x) + (r + s + 1)2 +

√
∑

x∈NG(v)\u
d2

G(x) + (r + s + 1)2

−
√

∑
x∈NG(u)\v

d2
G(x) + (r + 1)2 −

√
∑

x∈NG(v)\u
d2

G(x) + (s + 1)2

−
√
(r + 1)2 + (s + 1)2 =

√
1 + (r + s + 1)2

+

√
r

∑
i=1

d2
G(ui) + (r + s + 1)2 +

√√√√ s

∑
j=1

d2
G(vj) + (r + s + 1)2

−
√

r

∑
i=1

d2
G(ui) + (r + 1)2 −

√√√√ s

∑
j=1

d2
G(vj) + (s + 1)2 −

√
(r + 1)2 + (s + 1)2

=
(√

1 + (r + s + 1)2 −
√
(r + 1)2 + (s + 1)2

)
+
(√ r

∑
i=1

d2
G(ui) + (r + s + 1)2 −

√
r

∑
i=1

d2
G(ui) + (r + 1)2

)

+
(√√√√ s

∑
j=1

d2
G(vj) + (r + s + 1)2 −

√√√√ s

∑
j=1

d2
G(vj) + (s + 1)2

)
.

Note that √
1 + (r + s + 1)2 −

√
(r + 1)2 + (s + 1)2 > 0.√

r

∑
i=1

d2
G(ui) + (r + s + 1)2 −

√
r

∑
i=1

d2
G(ui) + (r + 1)2 > 0.√√√√ s

∑
j=1

d2
G(vj) + (r + s + 1)2 −

√√√√ s

∑
j=1

d2
G(vj) + (s + 1)2 > 0.

where dG(ui), dG(vj) ≥ 1 and SO(G∗)− SO(G) > 0. We have finished.

Here, we explain the graph transformation II on a graph G ∈ Cn,k. Set uv as not a
pendent cut edge in G = G1uvK1,r, Figure 2a. Let G∗∗ = G1uK1,r+1 (Figure 2b). In this way,
the graph G∗∗ is attained at G by applying graph transformation II.

u vG1

v1

vr

(a)

u
v

v1

vr

G1

(b)

Figure 2. The graph transformation II: G → G∗∗. (a) G. (b) G∗∗.

Based on the graph transformation II, we obtain:

Lemma 3. Let G1 be a 2-edge-connected graph and uv be a non-pendent cut edge of G = G1uvK1,r;
G∗∗ will be the resulting graph from G by applying the graph transformation II (Figure 2). Then,
we have SO(G∗∗) > SO(G).

Either a cut edge or a non-pendent edge can be transformed into a pendent edge via
graph transformations I and II, as shown in Figure 3.
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vi

vk vk−1

v1

S1

Si

Sm

Figure 3. The graph G∗
k′′

.

Here, we explain the graph transformation III on graph G ∈ Cn,k. Assume that
u, v ∈ V(G) and the vertices u1, u2, · · · , us are pendent vertices adjacent to vertex u; the
vertices v1, v2, · · · , vt are pendent vertices adjacent to vertex v, as shown in Figure 4a. Let
G′ = G− {uu1, uu2, · · · , uus}+ {vu1, vu2, · · · , vus}, as shown in Figure 4b. Then, G′ is the
resulting graph from G through graph transformation III.

Lemma 4. Let G′ be a graph obtained from G by applying the graph transformation III (Figure 3).
Then, SO(G′) > SO(G).

By repeating this transformation in the graph, all pendent edges are connected to the
same vertex.

u vG0

u1

u2

us

v1

v2

vt

(a)

u v
v1
vt

ut
us

G0

(b)

Figure 4. The graph transformation III: G → G′. (a) G. (b) G′.

We will discuss the graph of Cn,k with the largest Sombor index in the following.
Let Kn be a complete graph with n vertices, and Qk

n be a graph obtained by connecting k
independent vertices to one of the vertices of Kn−k.

Theorem 1. In all connected graphs in Cn,k, the Sombor index takes the maximum value on Qk
n,

i.e., the graph obtained by connecting k independent vertices to one of the vertex of the graph Kn−k.

Proof. According to above lemmas, we provide the Sombor index for graphs in Cn,k that
achieve the upper bound.

Claim 1. If a graph G ∈ Cn,k , then SO(G) ≤ SO(G∗).
Let G ∈ Cn,k and G � G∗, then based on the above lemmas, we know SO(G) <

SO(G∗). Obviously, the equality holds when G ∼= G∗.
Claim 2. For two graphs G∗ and H in Figure 4, SO(G∗) ≤ SO(H), the equality holds

when G∗ ∼= H.
Assume G ∈ Cn,k is a graph with cut edges {e1, e2, · · · ek} . Then, via Lemma 1,

we have SO(G + e) > SO(G), where e /∈ E(G). Recall that by adding some edges to
2-edge-connected graphs Si for i ∈ {1, 2, · · · , m}, it is converted to the complete subgraphs
Kni+1 f or(i ∈ {1, 2, · · · , m}; therefore, the graph G∗ is converted to the graph H, which
has k cut edges, so that H ⊂ G ∈ Cn,k. According to Lemma 1, if G∗ ⊂ H, then we have
SO(G∗) < SO(H) and the equality holds when G∗ ∼= H.
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Claim 3. For two graphs H and Qk
n in Figure 5, we have SO(H) ≤ SO(Qk

n), and the
equality holds when H ∼= Qk

n, i.e., m = 1.

v1 v2 vk−1 vk

S1

S2

Sm

(a)

Kn1+1

Kn2+1

Knm+1

v1 v2 vk−1 vk

(b)

Kn−k

v1 v2 vk−1 vk

(c)

Figure 5. Simple graphs G∗, H and Qk
n with k cut edges. (a) G∗. (b) H. (c) Qk

n.

The graph H becomes the graph Qk
n if we connect every pair of vertices in the complete

subgraphs Kni+1(i ∈ {1, 2, · · · , m}) of H and it has k cut edges. Obviously, Qk
n ∈ Cn,k and

H ⊂ Qk
n. Therefore, using Lemma 1, we obtain SO(H) < SO(Qk

n), and the equality holds
when H ∼= Qk

n, i.e., m = 1.
With the above three claims, the theorem holds.

In the following, we characterize the graph with the second largest Sombor index
in Cn,k.

Theorem 2. In all graphs G ∈ Cn,k and G � Qk
n, it holds that SO(G) ≤ SO(G2); the equality

holds when G ∼= G2.

Proof of Theorem 2. For all graphs G ∈ Cn,k, if G achieves the maximum SO(G), then it
must be one of the graphs shown in Figure 6, namely G1, G2, or G3.

Recall that either a cut edge or a non-pendent cut edge can eventually be transformed
into a pendent edge by repeating the graph transformation I or II. We denote the resulting
graph as G∗

k′′
in Figure 3, where Si for 1 ≤ i ≤ m represents the 2-edge-connected graphs.

Then, we have SO(G∗
k′′
) ≥ SO(G). In Figure 3, k

′′
represents the number of non-pendent

vertices attached to cut edges. In the following, we will discuss two cases according to
parameters m and k

′′
.

vk vk+1

vnKn−k

vn−1

v1

vk−1

vk+2

vk+1

vn−1

vn
Kn−k − e

v1

vk

(a) (b)

v1

vk

vk+1

vn

vn−1

vk+2

Kn−k − e

(c)

Figure 6. Simple graphs G1, G2, and G3 with cut edges. (a) G1. (b) G2. (c) G3.

Case 1. If m = 1.
If k

′′
= 1, additional edges are added to the vertices of the subgraph S1 which is

2-edge-connected; via transformation, S1 turns into G2 or G3 (see Figure 7). By adding an
additional edge to either G2 or G3, then it becomes the graph Qk

n. Therefore, based on the
Lemma 1, it holds that

SO(G) ≤ SO(G∗
k′′
) ≤ SO(G2) ≤ SO(Qk

n) or SO(G) ≤ SO(G∗
k′′
) ≤ SO(G3) ≤ SO(Qk

n).

If k
′′ ≥ 2, edges are initially added to the vertices of the S1 which is a 2-edge-connected

subgraph, and it is converted to Kn−k, denoting the graph as H1 (See Figure 8). By applying
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Lemma 1, we obtain SO(H) ≥ SO(G∗k′′). Next, repeating the graph transformation III on
graph H, at last we obtain G1. If we move only one edge from G1, it becomes Qk

n. By
repeating this transformation in the graph, each pendent edge is attached to the same
vertex. Via Lemma 4, we have SO(G) ≤ SO(H1) ≤ SO(G1) ≤ SO(Qk

n).

S1

v1

vk

(a)

Kn−k − e

e
v1

vk

or

(b)

Kn−k − e

e
v1

vk

(c)

Figure 7. The graphs with m = 1, k
′′
= 1. (a) G∗

k′′
. (b) G2. (c) G3.

vk

v1

vi

S1

(a)

v1

vi

vk

Kn−k

(b)

Kn−k

v1

vk

vk−1

(c)
Figure 8. The graph transformation with m = 1, k

′′ ≥ 2. (a) G∗
k′′

. (b) H1. (c) G1.

Case 2. If m ≥ 2, we consider the same way in Case 1.
If k

′′
= 1, the complete graphs Ki+1(i = 1, 2, · · · , m) are constructed by adding

edges to the 2-edge-connected subgraphs Si(i = 1, 2, · · · , m) in G∗
k′′

, forming the graph H2

(Figure 9). Then, we have SO(H2) ≥ SO(G∗
k′′
) via Lemma 1. Add some edges between

Kni+1(i = 1, 2, · · · , m), composing the graph G2 (Figure 9). If adding another edge to G2, it
becomes Qk

n. Via Lemma 1, it holds that SO(G∗
k′′
) ≤ SO(H2) ≤ SO(G2) ≤ SO(Qk

n).

If k
′′ ≥ 2, add some edges to Si(i = 1, 2, · · · , m) of G∗

k′′
to obtain the complete graph

Kni+1(i = 1, 2, · · · , m); by adding edges among Kni+1(i = 1, 2, · · · , m), we can obtain the
graph H3. Finally, we can obtain the graph G1 by applying the graph transformation III on
H3, and we can obtain the graph Qk

n by adding an edge to G1 (Figure 10). Then, according
to the above lemmas, it holds that SO(G∗

k′′
) ≤ SO(H3) ≤ SO(G1) ≤ SO(Qk

n).

v1 v2 vk−1 vk

S1

S2

Sl

(a)

Kn1+1

Kn2+1

Knm+1

v1 v2 vk−1 vk

e

(b)

Kn−k − e

v1 v2 vk−1 vk

(c)

Figure 9. The graph transformation with m ≥ 2, k
′′
= 1. (a) G∗

k′′
. (b) H2. (c) G2.

From the above cases, we know that the second largest value of the Sombor index is
taken by one of the graphs G1, G2, and G3. In our next work, we only need to compare the
Sombor index of G1, G2, and G3. Therefore,
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SO(G1) = (k− 1)
√
(n− 2)2 + 1 +

√
(n− 2)2 + (n− k)2 +

√
(n− k)2 + 1

+
√
(n− 2)2 + (n− k− 1)2(n− k− 2) +

√
(n− k)2 + (n− k− 1)2

+
√

2(n− k− 1)2(n− k− 3).

SO(G2) = k
√
(n− 1)2 + 1 +

√
(n− 1)2 + (n− k− 2)2 +

√
(n− 1)2 + (n− k− 1)2(n− k)

+
√

2(n− k− 1)2(n− k− 4) +
√
(n− k− 2)2 + (n− k− 1)2(2n− 2k− 5).

SO(G3) = k
√
(n− 2)2 + 1 + (n− k− 2)

(√
(n− k− 2)2 + (n− k− 1)2

+
√
(n− 2)2 + (n− k− 1)2

)
+
√

2(n− k− 1)2(n− k− 3).

Therefore, we compare the graph G2 with the graph G1, where n ≥ k + 3 and k ≥ 1, then,
through direct calculation, we have SO(G2)− SO(G1) > 0.

S1

Si

Sl

vk vk−1

vi

G∗
k′′

v1

vk

vi

Kn−k

H3

Kn−k

v1 vk−1

vk

G1

Figure 10. The graph transformation with m ≥ 2, k
′′ ≥ 2.

Next, we compare the graph G2 with the graph G1 using easy calculation, where
n ≥ k + 3 and k ≥ 1, then SO(G2)− SO(G3) > 0. Therefore, the Sombor index attained the
maximum value on G2. The theorem is proven.

3. Extremal Sombor Index of Graphs with a Clique Number

Let χn,k and ψn,k be a class of graphs with n vertices, and chromatic number k and
clique number k, respectively.

Let Qn(k) be a complete k-partite graph with a partition set differing in size by no
more than 1. Let Tk((n− k)1) be the graph in which a vertex of a a complete graph Kk
is connected to a path graph Pn−k+1 (see Figure 11). Next, we will prove that the graph
Qn(k) and the tadpole graph Tk((n− k)1) has a maximal and minimal Sombor index in
ψn,k, respectively.

Kn−k
v1v2 vk−1 vk

Figure 11. The tadpole graph Tk((n− k)1).

In order to obtain our main result, we first provide some necessary lemmas. From the
definition of the Sombor index of the graph, these lemmas are obvious and fundamental.

Assume that
k
∑

i=1
ni = n. Set Qn1,n2,··· ,nk as the complete k-partite graph with n vertices,

and the number of the partition set as n1, n2, · · · , nk, respectively.



Axioms 2024, 13, 66 8 of 12

Lemma 5. SO(Qn1,n2,··· ,nk ) =
k
∑

s=1

k
∑

t=s+1
nsnt

√
(n− ns)2 + (n− nt)2.

Proof. In a partition set of size nj of Qn1,n2,··· ,nk for j ∈ {1, 2, · · · , k}, the degree of each
vertex is n− nj between two partition sets of sizes ni, nj , where 1 ≤ i < j ≤ k, respectively.
In Qn1,n2,··· ,nk , there are ninj edges connected to two sets. In addition, the degrees of the
two vertices incident with each of these edges are n− ni and n− nj, respectively. Then, we

have SO(Qn1,n2,··· ,nk ) =
k
∑

s=1

k
∑

t=s+1
nsnt

√
(n− ns)2 + (n− nt)2, and we complete the proof

of the lemma.

In the next, we consider the maximal Sombor index of graphs from χn,k. The set χn,k
contains connected graph K1 when k = 1, and the only graph in χn,k is the complete graph
Kn when k = n.

Lemma 6. Let G ∈ χn,k be the graph with a maximal Sombor index. Then, G ∼= Qn1,n2,··· ,nk .

Proof. The lemma holds immediately based on Lemma 1, and by the definition of the set
χn,k.

Further, we will introduce some notations. If u, v ∈ V(G) are not the same vertices
in graph G for p, q > 0, we denote by Gu,v(p, q) the graph from G by attaching a path of
length p and q at the vertex u and v of G, respectively. For v ∈ V(G), let Gv(l) be the graph
attaining at v a path of length l. Let 1 ≤ k ≤ n− 2, and through the graph transformations,
we get the following Lemma:

Lemma 7. Let G be a connected graph with G 6= K1; v is a vertex in G. Gv(k, n − 1− k) is
the graph resulting from attaching at v two paths of lengths k and n− 1− k, respectively. Then,
SO(Gv(k, n− 1− k)) > SO(Gv(n− 1)).

By repeating the above lemma, it is easy to obtain the following result.

Remark 1 ([6]). When the tree T with t vertices on the graph G is replaced by the path Pt+1, then
SO(G) of the graph decreases.

Remark 2 ([6]). Assume s, t > 0, and two vertices u, v ∈ V(G) so that d(u) ≥ d(v) > 1. Then,
SO(Gu,v(s, t)) > SO(Gv(s + t)).

Now, we first consider the maximal Sombor index for a graph from χn,k. In the
discussion in this part, we assume that the graph G has k chromatic numbers for 1 < k < n
and n = kq + r, (0 ≤ r < k), where q = b n

k c.

Lemma 8. Let G ∈ χn,k, then

SO(G) ≤ SO(Qn(k))

=

(
k− r

2

)⌊n
k

⌋2
√

2(n− bn
k
c)2

+ r(k− r)
⌊n

k

⌋⌈n
k

⌉√
(n− bn

k
c)2 + (n− dn

k
e)2

+

(
r
2

)⌈n
k

⌉2
√

2(n− dn
k
e2),

where the first equality holds when G ∼= Qn(k).
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Proof. For any graph G ∈ χn,k, there are k color classes, and each color class is an indepen-
dent set. If the order of k classes is n1, n2, · · · , nk, according to Lemma 6 and by χn,k, it takes
the maximal Sombor index, which is the complete k-partite graph Qn1,n2,··· ,nk . Suppose
that a graph G ∈ χn,k takes the maximal Sombor index. We claim that G is Qn(k). On the
contrary, suppose that np and nq represent the size of vertices of two classes, 1 ≤ p < q ≤ k,

such that nq − np ≥ 2. Let
j

∑
i

ni = 0 if j < i for convenience. Thus, using Lemma 5,

we obtain:

SO(Qn1,n2,··· ,np ,··· ,nq ,··· ,nk ) =
p−1

∑
i=1

k

∑
j=i+1

ninj

√
(n− ni)2 + (n− nj)2

+
q−1

∑
i=p+1

k

∑
j=i+1

j 6=q

ninj

√
(n− ni)2 + (n− nj)2

+
k

∑
i=q+1

k

∑
j=i+1

ninj

√
(n− ni)2 + (n− nj)2

+ np(n− np)
( p−1

∑
i=1

√
(n− ni)2 + (n− nj)2

+
k

∑
j=p+1

√
(nj)2 + (n− nj)2

)

+ nq(n− nq)
( p−1

∑
i=1

√
n2

i + (n− nj)2

+
q−1

∑
j=p+1

√
n2

j + (n− nj)2 +
k

∑
j=q+1

√
n2

j + (n− nj)2
)

.

Let

A1 =
p−1

∑
i=1

k

∑
j=i+1

ninj

√
(n− ni)2 + (n− nj)2, A2 =

q−1

∑
i=p+1

k

∑
j=i+1

j 6=q

ninj

√
(n− ni)2 + (n− nj)2,

A3 =
k

∑
i=q+1

k

∑
j=i+1

ninj

√
(n− ni)2 + (n− nj)2, and

B =
p−1

∑
i=1

√
n2

i + (n− ni)2 +
q−1

∑
i=q+1

√
n2

i + (n− ni)2 +
k

∑
j=q+1

√
n2

i + (n− ni)2.

Then, we have

SO(Qn1,n2,··· ,np ,··· ,nq ,··· ,nk ) = A1 + A2 + A3 +
(

n(np + nq)− (n2
p + n2

q)
) p−1

∑
i=1

√
n2

i + (n− ni)2

+
(

nnp(1− p) + nq(n− nq)
) q−1

∑
i=p+1

√
n2

i + (n− ni)2

+
(

np(n− np) + nq(n− nq)
) k

∑
j=q+1

√
n2

i + (n− ni)2

+ npnq(n− np)(n− nq) = A1 + A2 + A3

+
(

n(np + nq)− (n2
p + n2

q)
)

B + nnpnq(1− p)(n− nq),



Axioms 2024, 13, 66 10 of 12

SO(Qn1,n2,··· ,np+1,··· ,nq−1,··· ,nk ) = A1 + A2 + A3

+
(
(np + 1)(n− np − 1) + (nq − 1)(n− nq + 1)

)
B

+ (np + 1)(nq − 1)(n− np − 1)(n− nq + 1).

Therefore,

SO(Qn1,n2,··· ,np+1,··· ,nq−1,··· ,nk )− SO(Qn1,n2,··· ,np ,··· ,nq ,··· ,nk ) = 2(nq − np − 1)B

+ (npnq + nq − np − 1)(n− np − 1)(n− nq + 1)

− npnq(n− np)(n− nq)

≥ npnq

(
(n− np)− (n− nq)− 1

)
> nq − np − 1 > 0.

This contradicts the maximality of the Sombor index of G. We know that n =
r + kb n

k c = rd n
k e + (k − r)b n

k c. Combining with Lemma 5, the values of Sombor index
SO(Qn(k)) can be obtained immediately.

Lemma 9 ([26]). Assume that G1 = (V, E1) is the graph, ψ(G) ≤ k. Then, there is a k-partite
graph G2 = (V, E2), and it holds that dG1(v) ≤ dG2(v) for v ∈ V.

According to the above lemmas, we obtain:

Theorem 3. Let G ∈ ψn,k. Then,

SO(G) ≤
(

k− r
2

)⌊n
k

⌋2
√

2(n− bn
k
c)2

+ r(k− r)
⌊ n

k

⌋⌈n
k

⌉√
(n− bn

k
c)2 + (n− dn

k
e)2

+

(
r
2

)⌈n
k

⌉2
√

2(n− dn
k
e2),

the equality holds when G ∼= Qn(k).

Proof. It is trivial that when k = n, then we assume that k < n. Assume that G from
ψn,k has the maximum Sombor index. Let G ∈ χn,k. If not, from the case ψ(G) = k
of Lemma 9, we obtain the k-partite graph G2 with the same set of vertices as G makes
v ∈ V(G) = V(G2), dG(v) ≤ dG2(v). Clearly, G2 ∈ ψn,k. According to the definition, we
obtain SO(G2) ≥ SO(G). According to Lemma 8, this theorem holds immediately due to
the uniqueness of extremal graphs in χn,k.

Theorem 4. Let G ∈ ψn,k, then SO(G) ≥
((k

2

)
− (k− 1)

)√
2(k− 1)2 + (k− 1)√

k2 + (k− 1)2 +
√

k2 + 4 + 2
√

2(n− k− 2) +
√

5, where equality holds when G ∼= Tk
((n− k)1).

Proof. Assume that the graph G1 ∈ ψn,k has the smallest Sombor index. Using the defini-
tion of ψn,k, G1 has a subgraph Qk, which is a complete graph. Let V(Qk) = {v1, v2, · · · , vk}.
Via Lemma 1, G1 is a graph obtained via Qk by connecting some trees rooted in some ver-
tices of Qk. From G1, let V0 = {vi|i ∈ {1, 2, · · · , k}, dG1(vi) > k − 1 (i.e., there is a tree
connected to vi for any vertex vi ∈ V0, and vertices in V0 are labeled as v1, v2, · · · , vt, with
k ≥ t.

From Lemma 9, all trees connected to some vertices of Qk must be paths in G1, i.e., all
vertices of V0 of G1 have degree k. Suppose that |V0| = 1. Contrary to assumption, we can
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find two vertices at least, such that vi, vj ∈ V0. The graph Gvi ,vj(pi, pj) is denoted by G1.
However, from the graph transformation, G1

∼= Gvi ,vj(pi, pj) is converted into Gvi (pi + pj)

or Gvj(pi + pj) with a smaller Sombor index. In this way, it contradicts the choice of G1.
Hence, G1

∼= Tk((n− k)1), and through simple calculation, we have SO
(
Tk((n− k)1)

)
=((k

2

)
− (k− 1)

)√
2(k− 1)2 + (k− 1)

√
k2 + (k− 1)2 +

√
k2 + 4 + 2

√
2(n− k− 2) +

√
5.

This theorem is proven.

4. Conclusions

In this paper, firstly, we determine the Sombor index of the graph with a given number
of cut edges and we determine the types of graphs with the largest and second largest
Sombor indexes through the graph transformations I, II, and III. Secondly, we use the clique
number to characterize the extremal graphs for the Sombor index, and we provide the
upper and lower bounds for the index. As a result, we provide the following results in
Table 1.

Table 1. Main results.

Class of Graph Extremal Graph Maximum or Minimum

Cn,k Qk
n maximum

χn,k Qn(k) maximum

ψn,k Tk((n− k)1) minimum

5. Notations

We provide some symbols in Table 2 in the following.

Table 2. Notations.

Symbol Definition

Cn,k The set of graphs having n vertices and k cut edges

Qk
n

The graph obtained by connecting k independent vertices to one of the
vertices of Kn−k

χn,k The set of chromatic number k of connected graphs with n vertices

ψn,k The set of clique number k of connected graphs with n vertices

Qn(k)
The complete k-partite graph and its partition sets differ in size by no more

than 1

Tk((n− k)1)
The graph in which a vertex on a complete graph Kk is connected to a

pendent vertex on a path graph Pn−k+1

Qn1,n2,··· ,nk

The complete k-partite graph with n vertices; the number of the partition set
is n1, n2, · · · , nk, respectively

Gu,v(p, q) The graph attained from G by attaching at u a path of length p and at v a
path of length q

Gv(l) The graph attained at v a path of length l
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