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Abstract: For derivative function estimation, conventional research only focuses on the derivative
estimation of one-dimensional functions. This paper considers partial derivatives estimation of a
multivariate variance function in a heteroscedastic model. A wavelet estimator of partial derivatives
of a multivariate variance function is proposed. The convergence rates of a wavelet estimator
under different estimation errors are discussed. It turns out that the strong convergence rate of the
wavelet estimator is the same as the optimal uniform almost sure convergence rate of nonparametric
function problems.
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1. Introduction

This paper considers the following heteroscedastic model:

Yi = g(Xi) + f (Xi)Ui, i ∈ {1, · · ·, n}. (1)

In this model, (X1, Y1), · · ·, (Xn, Yn) are independent and identically distributed random
vectors. The functions g(x) and f (x) all are defined on [a, b]d. U1, . . ., Un are identically
distributed random variables, which satisfy E[Ui] = 0 and Var[Ui] = 1. Furthermore,
the random vector Xi and random variable Ui are uncorrelated for any i ∈ {1, · · ·, n}. This
paper is devoted to estimating the partial derivatives (∂mr)(x) of the variance function
r(x)(r(x) := f 2(x)) from the observed data (X1, Y1), · · ·, (Xn, Yn). The partial derivative
(∂mr)(x) is defined by

(∂mr)(x) =

(
∂mr

∂xm1
1 · · ·∂xmd

d

)
(x1, · · ·, xd),

with m = (m1, · · ·, md) ∈ Nd, and |m| =
d
∑

i=1
mi.

In practical applications, the heteroscedastic model is widely used for monitoring the
signal-to-noise ratios in quality control [1,2], measuring the reliability of time series predic-
tion [3], evaluating the volatility or risk in financial markets [4] and so on. Hence, many
significant results have been obtained by [5–8] and others. For this heteroscedastic model,
Fan and Yao [9] propose a residual-based estimator of the variance function, and study
the asymptotic normality properties of an estimator. A class of difference-based kernel
estimators of a variance function are constructed by [10]. Moreover, the asymptotic rates of
convergence and the optimal bandwidth of kernel estimators are discussed. Wang et al. [11]
consider the minimax convergence rates of a kernel estimator over pointwise squared
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error and global integrated mean squared error, respectively. The optimal estimation of a
variance function with random design is discussed by [12]. Zaoui [13] studies the variance
function estimation with model selection aggregation and convex aggregation.

Derivative estimation plays a crucial role in nonparametric statistics estimation, big
data processing, and other practical applications. For example, some companies predict
the profit growth rate when the research and development investment increases. Many
financial and fund institutions evaluate the volatility of stock market prices and so on.
Many important and interesting results of derivative estimation are obtained using different
methods. Zhou and Wolfe [14] propose a spline derivative estimator, and discuss the
asymptotic normality and variance property. A spatially adaptive derivative estimator is
constructed by [15]. Chaubey et al. [16] consider the upper bound over Lp-loss for wavelet
estimators of density derivative functions. A convergence rate over the mean integrated
error of a derivative estimator for mixing sequences is proved by [17]. For the estimation
problem (1), the derivatives estimation of the variance function via the wavelet method
is proved by [18]. However, it should be pointed out that those above results all focus
on the estimation of the derivatives of a one-dimensional function. There is a lack of
partial derivatives estimation of a multivariate variance function. Hence, in this paper,
we construct a partial derivatives estimator using the wavelet method, and discuss the
convergence rates of the wavelet estimator under different mild conditions.

The structure of this paper is given as follows. Section 2 specifies some mild hypotheses
for the estimation model (1), and constructs a wavelet estimator of the partial derivative
function. Two important auxiliary results of the wavelet estimator are proved in Section 3.
The estimation errors of the wavelet estimator under different assumptions are discussed
in Section 4.

2. Wavelet Estimator

In this section, we will give some hypotheses of the estimation problem (1), and con-
struct a partial derivatives estimator using the wavelet method. For the estimation model
(1), the following mild assumptions are proposed, which are used in the later discussion.

A1: For the partial derivative (∂mr)(x) with m = (m1, · · ·, md) ∈ Nd, if any θ =
(θ1, · · ·, θd) ∈ Nd and θi ≤ mi, the partial derivative function satisfies (∂θr)(x) = 0 when
xi ≡ a or b.

A2: The function g(x) is known and bounded, i.e., there exists a positive constant c1
such that |g(x)| ≤ c1.

A3: The density function h(x) of the random vector X satisfies that c2 ≤ h(x) ≤ c3,
where x ∈ [a, b]d, c2 and c3 are two positive constants.

A4: The random variables Y1, Y2, . . ., Yn are defined on [c4, c5], where c4 and c5 are
two constants.

In order to construct a wavelet estimator, some basic theories of wavelets are given in
the following [19,20]. Let Φ be a scaling function and Ψ be a wavelet function such that{

Φτ,k, Ψj,k,u; j ≥ τ, u ∈ {1, · · ·, 2d − 1}, k ∈ Zd
}

constitutes an orthonormal basis of L2(Rd), where τ is a positive integer,

Φj,k(x) = 2
jd
2 Φ(2jx1 − k1, · · ·, 2jxd − kd),

Ψj,k,u(x) = 2
jd
2 Ψu(2jx1 − k1, · · ·, 2jxd − kd).

Then, for any integer j0 such that j0 ≥ τ, a function f (x) ∈ L2([a, b]d) can be expanded into
a wavelet series as:

f (x) = ∑
k∈Λj0

αj0,kΦj0 ,k(x) +
∞

∑
j=j0

2d−1

∑
u=1

∑
k∈Λj

β j,k,uΨj,k,u(x), (2)



Axioms 2024, 13, 69 3 of 11

where αj0,k =
∫
[a,b]d f (x) · Φj0 ,k(x)dx, β j,k,u =

∫
[a,b]d f (x) · Ψj,k,u(x)dx and the cardinality of

Λj satisfies |Λj| ≍ 2jd. In this paper, we choose some compactly supported wavelets, such
as the Daubechies wavelet [21]. In addition, this paper adopts the following symbol: A ≲ B
denotes A ≤ cB for some constant c > 0; A ≳ B means B ≲ A; and A ≍ B stand for both

A ≲ B and B ≲ A. For any x ∈ Rd, ∥x∥ :=
d
∑

i=1
|xi|.

Now we define a wavelet estimator of partial derivatives function (∂mr)(x) by

(̂∂mr)(x) := ∑
k∈Λj∗

α̂j∗ ,kΦj∗ ,k(x). (3)

In this definition,

α̂j∗ ,k :=
(−1)|m|

n

n

∑
i=1

Y2
i

h(Xi)
(∂mΦj∗ ,k)(Xi)− (−1)|m|

∫
[a,b]d

g2(x)(∂mΦj∗ ,k)(x)dx (4)

and

(∂mΦj∗ ,k)(x) =

(
∂mΦj∗ ,k

∂xm1
1 · · ·∂xmd

d

)
(x1, · · ·, xd)

= 2
j∗d
2 · 2j∗ |m|(∂mΦ)(2j∗x1 − k1, · · ·, 2j∗xd − kd).

3. Two Lemmas

This section will provide two important lemmas, which are used to prove the main
theorem in a later section. According to the following lemma, it is easy to see that our

wavelet estimator (̂∂mr)(x) is unbiased.

Lemma 1. For the model (1) with A1,

E[α̂j∗ ,k] = αj∗ ,k.

Proof. By the definition of α̂j∗ ,k and the properties of random vectors (Xi, Yi),

E[α̂j∗ ,k] = E
[
(−1)|m|

n

n

∑
i=1

Y2
i

h(Xi)
(∂mΦj∗ ,k)(Xi)− (−1)|m|

∫
[a,b]d

g2(x)(∂mΦj∗ ,k)(x)dx

]

= E
[
(−1)|m| Y2

1
h(X1)

(∂mΦj∗ ,k)(X1)

]
− (−1)|m|

∫
[a,b]d

g2(x)(∂mΦj∗ ,k)(x)dx.

Then, it follows from (1) that

E[α̂j∗ ,k]

= E
[
(−1)|m| r(X1)

h(X1)
U2

1(∂
mΦj∗ ,k)(X1)

]
+ 2E

[
(−1)|m| f (X1)g(X1)

h(X1)
U1(∂

mΦj∗ ,k)(X1)

]
+E

[
(−1)|m| g2(X1)

h(X1)
(∂mΦj∗ ,k)(X1)

]
− (−1)|m|

∫
[a,b]d

g2(x)(∂mΦj∗ ,k)(x)dx.

Note that the conditions E[U1] = 0 and Var[U1] = 1 imply E[U2
1 ] = 1. Furthermore,

using the assumption of no correlation between Ui and Xi , one gets

E
[
(−1)|m| r(X1)

h(X1)
U2

1(∂
mΦj∗ ,k)(X1)

]
= E

[
(−1)|m| r(X1)

h(X1)
(∂mΦj∗ ,k)(X1)

]
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and

E
[
(−1)|m| f (X1)g(X1)

h(X1)
U1(∂

mΦj∗ ,k)(X1)

]
= 0.

In addition, because the density function of the random vector X is h(x), the following
equation can be obtained easily:

E
[
(−1)|m| g2(X1)

h(X1)
(∂mΦj∗ ,k)(X1)

]
= (−1)|m|

∫
[a,b]d

g2(x)(∂mΦj∗ ,k)(x)dx.

According to the above results, one has

E[α̂j∗ ,k] = E
[
(−1)|m| r(X1)

h(X1)
(∂mΦj∗ ,k)(X1).

]
Then, it is easy to see from A1 that

E[α̂j∗ ,k] = (−1)|m|
∫
[a,b]d

r(x)(∂mΦj∗ ,k)(x)dx

=
∫
[a,b]d

(∂mr)(x)Φj∗ ,k(x)dx = αj∗ ,k.

For nonparametric estimation, wavelet estimators can be viewed as generalized kernel
estimators. For any u, v ∈ Rd, we introduce the kernel K(u, v) by K(u, v) = ∑

k∈Zd
Φ(u −

k)Φ(v − k). Now, we give some important properties of this kernel function, which will be
used in the later discussion. Furthermore, we define

K(m)(u, v) := ∑
k∈Zd

Φ(u − k)(∂m
v Φ)(v − k),

where K(m)(u, v) := (∂m
v K)(u, v) denotes the mth partial derivative of K(u, v) with respect

to v.
Let the scaling function Φ be λ-regular [20,22,23], i.e., Φ ∈ Cλ and |DαΦ(x)| ≤

cl(1 + ∥x∥)−l for any integer l ≥ 1, α = (α1, · · ·, αd) ∈ Nd with |α| =
d
∑

i=1
αi ≤ λ and x ∈ Rd.

Then, there exists a positive constant Cd such that

|K(m)(u, v)| ≤ Cd

(1 + ∥u − v∥)d+1 . (5)

Meanwhile, one can obtain that

|K(m)(u, y)− K(m)(v, y)| ≲ ∥u − v∥. (6)

For more properties and details of kernel functions, one can see [24,25].

Lemma 2. For the model (1) with conditions A3 and A4, the wavelet estimator (̂∂mr)(x) is defined
by (3) and 2j∗ ≲ ( n

ln n )
1/d, there exists a constant κ > 0 such that

P
[∣∣∣(̂∂mr)(x)−E[(̂∂mr)(x)]

∣∣∣ ≥ κηn

]
≲ n−z(κ),

where z(κ) = κ2

2(1+κ/3) and ηn ≍ 2j∗( d
2 +|m|)

√
ln n

n .
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Proof. According to the definition of (̂∂mr)(x) by (3),∣∣∣(̂∂mr)(x)−E[(̂∂mr)(x)]
∣∣∣

=

∣∣∣∣∣∣ ∑
k∈Λj∗

(α̂j∗ ,k −E[α̂j∗ ,k])Φj∗ ,k(x)

∣∣∣∣∣∣
=

1
n

∣∣∣∣∣∣ ∑
k∈Λj∗

(
n

∑
i=1

Y2
i

h(Xi)
(∂mΦj∗ ,k)(Xi)−E

[
n

∑
i=1

Y2
i

h(Xi)
(∂mΦj∗ ,k)(Xi)

])
Φj∗ ,k(x)

∣∣∣∣∣∣
=

1
n

∣∣∣∣∣ n

∑
i=1

(
Y2

i
h(Xi)

K(m)
j∗ (x, Xi)−E

[
Y2

i
h(Xi)

K(m)
j∗ (x, Xi)

])∣∣∣∣∣ = 1
n

∣∣∣∣∣ n

∑
i=1

Bi

∣∣∣∣∣,
where Bi := Y2

i
h(Xi)

K(m)
j∗ (x, Xi)−E

[
Y2

i
h(Xi)

K(m)
j∗ (x, Xi)

]
and

K(m)
j∗ (x, Xi) := ∑

k∈Λj∗

Φj∗ ,k(x)(∂mΦj∗ ,k)(Xi)

= ∑
k∈Λj∗

2
j∗d
2 Φ(2j∗x1 − k1, · · ·, 2j∗xd − kd)·

2j∗( d
2 +|m|)(∂mΦ)(2j∗Xi1 − k1, · · ·, 2j∗Xid − kd)

= 2j∗(d+|m|)K(m)(2j∗x, 2j∗Xi).

Then we can obtain that

P
[∣∣∣(̂∂mr)(x)−E[(̂∂mr)(x)]

∣∣∣ ≥ κηn

]
= P

[
1
n

∣∣∣∣∣ n

∑
i=1

Bi

∣∣∣∣∣ ≥ κηn

]
. (7)

By the definition of Bi, E[Bi] = 0. Meanwhile, note that |K(m)
j∗ (x, Xi)| ≲ 2j∗(d+|m|) by

(5). Now, it follows from A3 and A4 that

|Bi| ≲
∣∣∣∣∣ Y2

i
h(Xi)

K(m)
j∗ (x, Xi)

∣∣∣∣∣+
∣∣∣∣∣E
[

Y2
i

h(Xi)
K(m)

j∗ (x, Xi)

]∣∣∣∣∣ ≲ 2j∗(d+|m|).

Using the property of the kernel function in (5),∫
[a,b]d

(
K(m)

j∗ (u, v)
)2

dv = 22j∗(d+|m|)
∫
[a,b]d

(
K(m)(2j∗u, 2j∗v)

)2
dv

= 22j∗(d+|m|)2−j∗d
∫
[a,b]d

(
K(m)(2j∗u, 2j∗v)

)2
d(2j∗v)

≲ 2j∗(d+2|m|).

Then, by A3 and A4, one gets

E[B2
i ] = Var

[
Y2

i
h(Xi)

K(m)
j∗ (x, Xi)

]
≤ E

[
Y4

i
h2(Xi)

(
K(m)

j∗ (x, Xi)
)2
]

≲ E
[(

K(m)
j∗ (x, Xi)

)2
]
≲
∫
[a,b]d

(
K(m)

j∗ (x, v)
)2

dv ≲ 2j∗(d+2|m|).
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According to the Bernstein’s inequality [26] and the above results, one can obtain that

P
[

1
n

∣∣∣∣∣ n

∑
i=1

Bi

∣∣∣∣∣ ≥ κηn

]
≲ exp

− nκ2η2
n

2
(

2j∗(d+2|m|) + κηn2j∗(d+|m|)

3

)
. (8)

The conditions ηn ≍ ( ln n
n )

1
2 · 2j∗( d

2 +|m|) and 2j∗ ≲ ( n
ln n )

1/d imply that ηn ≲ 2j∗ |m|. Mean-
while, one can easily obtain that

− nκ2η2
n

2
(

2j∗(d+2|m|) + κηn2j∗(d+|m|)

3

) = − κ2

2
(

1 + κηn
3·2j∗|m|

) · nη2
n

2j∗(d+2|m|) ≲ −z(κ) · ln n,

with z(κ) = κ2

2(1+κ/3) . Then, this result with (7) and (8) implies that

P
[∣∣∣(̂∂mr)(x)−E[(̂∂mr)(x)]

∣∣∣ ≥ κηn

]
≲ n−z(κ).

4. Main Theorem

In this section, we will state the convergence rates of the wavelet estimator under
different estimation error and mild conditions.

Theorem 1. For the problem (1), the wavelet estimator (̂∂mr)(x) is defined by (3), and the following
results under different conditions are obtained.

(i) Let the model (1) satisfy the assumptions A1–A4,

sup
x∈[a,b]d

|(̂∂mr)(x)−E[(̂∂mr)(x)]| = Oa.s.

((
ln n

n

) 1
2
2j∗( d

2 +|m|)
)

. (9)

(ii) Assume that the model (1) satisfies the assumptions A1–A4, and the partial derivatives
functions (∂mr)(x) belong to Hölder space Hs(Rd)(s > 0), one gets

sup
x∈[a,b]d

|(̂∂mr)(x)− (∂mr)(x)| = Oa.s.

((
ln n

n

) 1
2
2j∗( d

2 +|m|) + 2−j∗s

)
. (10)

(iii) Suppose that in the model (1) with conditions A3 and A4, the random vector X1, . . ., Xn is
independent. Then, one has

Var
[
(̂∂mr)(x)

]
≲

2j∗(d+2|m|)

n
. (11)

Remark 1. If one takes 2j∗ ≍ ( n
ln n )

1/(d+2|m|+2s), then the result of (ii) reduces to

sup
x∈[a,b]d

|(̂∂mr)(x)− (∂mr)(x)| = Oa.s.

((
ln n

n

) s
d+2|m|+2s

)
.

Then, when m = 0, this strong convergence rate of the wavelet estimator is the same as the optimal
uniform almost sure convergence rate of nonparametric function problems [27].

Remark 2. According to Lemma 1, it is easy to know that the wavelet estimator (̂∂mr)(x) is an
unbiased estimator. Hence, the estimation error of this wavelet estimator in the deviation sense is
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given by (i). In addition, the result (iii) considers the estimation error of the wavelet estimator in the
variance sense.

Proof. Proof of (i). Note that [a, b]d is a compact set, then it can be covered by a finite num-
ber Ln of cubes Iℓ. Meanwhile, one defines that the centre of Iℓ is xℓ := (xℓ1 , xℓ2 , · · ·, xℓd

),
and the radius length is ln := c

Ln
1/d with a positive constant c. The parametric Ln will be

taken in the following discussions. Using the triangle inequality, one gets

sup
x∈[a,b]d

|(̂∂mr)(x)−E[(̂∂mr)(x)]| ≤ Q1 + Q2 + Q3, (12)

where

Q1 := max
1≤ℓ≤Ln

sup
x∈Iℓ

|(̂∂mr)(x)− (̂∂mr)(xℓ)|,

Q2 := max
1≤ℓ≤Ln

sup
x∈Iℓ

|E[(̂∂mr)(xℓ)]−E[(̂∂mr)(x)]|,

Q3 := max
1≤ℓ≤Ln

|(̂∂mr)(xℓ)−E[(̂∂mr)(xℓ)]|.

For Q1. By the definitions of (̂∂mr)(x) and α̂j∗ ,k in (3) and (4), for any x ∈ [a, b]d, one
can easily obtain

|(̂∂mr)(x)− (̂∂mr)(xℓ)|

=

∣∣∣∣∣∣ ∑
k∈Λj∗

α̂j∗ ,k(Φj∗ ,k(x)− Φj∗ ,k(xℓ))

∣∣∣∣∣∣
≤ 1

n

∣∣∣∣∣ n

∑
i=1

Y2
i

h(Xi)

[
K(m)

j∗ (x, Xi)− K(m)
j∗ (xℓ, Xi)

]∣∣∣∣∣ (13)

+ ∑
k∈Λj∗

∣∣∣∣∫
[a,b]d

g2(x)(∂mΦj∗ ,k)(x)dx · (Φj∗ ,k(x)− Φj∗ ,k(xℓ))
∣∣∣∣

=: Q11 + Q12.

Using A3, A4 and (6),

Q11 ≲
1
n

∣∣∣∣∣ n

∑
i=1

[
K(m)

j∗ (x, Xi)− K(m)
j∗ (xℓ, Xi)

]∣∣∣∣∣ ≲ 2j∗(d+1+|m|)∥x − xℓ∥. (14)

In addition, by the boundedness assumption of function g(x) in A2, the following inequali-
ties are true: ∣∣∣∣∫

[a,b]d
g2(x)(∂mΦj∗ ,k)(x)dx

∣∣∣∣
≲

∣∣∣∣∫
[a,b]d

(∂mΦj∗ ,k)(x)dx
∣∣∣∣

= 2j∗( d
2 +|m|)

∣∣∣∣∫
[a,b]d

(∂mΦ)(2j∗x1 − k1, · · ·, 2j∗xd − kd)dx
∣∣∣∣

≤ 2j∗(− d
2 +|m|)

∫
[a,b]d

∣∣∣(∂mΦ)(2j∗x1 − k1, · · ·, 2j∗xd − kd)
∣∣∣d(2j∗x − k)

≲ 2j∗(− d
2 +|m|).
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Furthermore, it follows from the property of wavelet scaling function Φ that

Q12 ≲ 2j∗(− d
2 +|m|) ∑

k∈Λj∗

∣∣Φj∗ ,k(x)− Φj∗ ,k(xℓ)
∣∣

= 2j∗(− d
2 +|m|) · 2

j∗d
2 ∑

k∈Λj∗

∣∣∣Φ(2j∗x − k)− Φ(2j∗xℓ − k)
∣∣∣

= 2j∗ |m| ∑
k∈Λj∗

∣∣∣▽Φ(2j∗x − k) · (2j∗x1 − 2j∗xℓ1 , · · ·, 2j∗xd − 2j∗xℓd
)T
∣∣∣

≲ 2j∗(1+|m|) ∑
k∈Λj∗

∥x − xℓ∥ ≲ 2j∗(d+1+|m|)∥x − xℓ∥. (15)

Combining (13), (14) and (15), one can get

|(̂∂mr)(x)− (̂∂mr)(xℓ)| ≲ 2j∗(d+1+|m|)∥x − xℓ∥.

Because the centre of Iℓ is xℓ, ∥x − xℓ∥ ≲ ln. Then, by the definition of ln,

Q1 ≲ 2j∗(d+1+|m|)ln ≲
2j∗(d+1+|m|)

Ln
1/d .

Now, one takes

Ln ≍
(

2j∗(d+2)n
ln n

) d
2

.

Then, the following conclusion is true,

Q1 ≲
(

ln n
n

) 1
2
2j∗( d

2 +|m|). (16)

For Q2. Using the above discussions of Q1, one knows

Q2 ≤ max
1≤ℓ≤Ln

sup
x∈Iℓ

E[|(̂∂mr)(xℓ)− (̂∂mr)(x)|] ≲
(

ln n
n

) 1
2
2j∗( d

2 +|m|). (17)

For Q3. Note that

P[Q3 ≥ κηn] = P
[

max
1≤ℓ≤Ln

|(̂∂mr)(xℓ)−E[(̂∂mr)(xℓ)]| ≥ κηn

]
≤

Ln

∑
ℓ=1

P
[
|(̂∂mr)(xℓ)−E[(̂∂mr)(xℓ)]| ≥ κηn

]
≤ Ln sup

x∈[a,b]d
P
[
|(̂∂mr)(x)−E[(̂∂mr)(x)]| ≥ κηn

]
.

By Lemma 2 and 2j∗ ≲ ( n
ln n )

1/d, one can choose a large enough constant κ such that

n

∑
i=1

P[Q3 ≥ κηn] ≲
n

∑
i=1

Lnn−z(κ) < ∞.

Furthermore, this result with the Borel–Cantelli lemma implies

Q3 = Oa.s.

((
ln n

n

) 1
2
· 2j∗( d

2 +|m|)
)

. (18)
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Finally, together with (12), (16), (17), and (18), one gets

sup
x∈[a,b]d

|(̂∂mr)(x)−E[(̂∂mr)(x)]| = Oa.s.

((
ln n

n

) 1
2
2j∗( d

2 +|m|)
)

. (19)

Proof of (ii). Using Lemma 1 and the property (2) of wavelets,

∣∣∣(̂∂mr)(x)− (∂mr)(x)
∣∣∣ ≤ ∣∣∣(̂∂mr)(x)−E[(̂∂mr)(x)]

∣∣∣+
∣∣∣∣∣∣

∞

∑
j=j∗

2d−1

∑
u=1

∑
k∈Λj

β j,k,uΨj,k,u(x)

∣∣∣∣∣∣.
Hence,

sup
x∈[a,b]d

∣∣∣(̂∂mr)(x)− (∂mr)(x)
∣∣∣ ≤ I1 + I2, (20)

where

I1 := sup
x∈[a,b]d

∣∣∣(̂∂mr)(x)−E[(̂∂mr)(x)]
∣∣∣,

I2 := sup
x∈[a,b]d

∣∣∣∣∣∣
∞

∑
j=j∗

2d−1

∑
u=1

∑
k∈Λj

β j,k,uΨj,k,u(x)

∣∣∣∣∣∣.
For I1. According to the conclusion of (i),

I1 = Oa.s.

((
ln n

n

) 1
2
2j∗( d

2 +|m|)
)

. (21)

For I2. Let a function f (x) belong to Hölder space Hs(Rd), and let Ψj,k,u be a wavelet

function, then one can prove that

∣∣∣∣∣ ∞
∑

j=j∗

2d−1
∑

u=1
∑

k∈Λj

β j,k,uΨj,k,u(x)

∣∣∣∣∣ ≲ 2−j∗s. More details and

proofs of this above conclusion can be found in [28–30]. Furthermore, because the partial
derivatives functions (∂mr)(x) belong to Hölder space Hs(Rd), one can easily obtain that

I2 ≲ 2−j∗s.

Now, this conclusion with (20) and (21) shows that

sup
x∈[a,b]d

|(̂∂mr)(x)− (∂mr)(x)| = Oa.s.

((
ln n

n

) 1
2
2j∗( d

2 +|m|) + 2−j∗s

)
.

Proof of (iii). By the definition of (̂∂mr)(x) and the properties of the variance function,
one has

Var
[
(̂∂mr)(x)

]
= Var

 ∑
k∈Λj∗

(
(−1)|m|

n

n

∑
i=1

Y2
i

h(Xi)
(∂mΦj∗ ,k)(Xi)

)
Φj∗ ,k(x)


= Var

[
(−1)|m|

n

n

∑
i=1

Y2
i

h(Xi)
K(m)

j∗ (x, Xi)

]
.

Moreover, the assumptions of random vector X, A3 and A4 imply that

Var
[
(̂∂mr)(x)

]
≲

1
n

Var
[
K(m)

j∗ (x, X1)
]
.
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Using the property of the kernel function in (5) and condition A3,

Var
[
K(m)

j∗ (x, X1)
]
≤ E

[
(K(m)

j∗ (x, X1))
2
]

≲
∫
[a,b]d

(K(m)
j∗ (x, v))2dv ≲ 2j∗(d+2|m|).

Hence,

Var
[
(̂∂mr)(x)

]
≲

2j∗(d+2|m|)

n
.

5. Conclusions

For nonparametric derivative estimation, classical research results pay more attention
to the derivative estimation of one-dimensional functions. However, this paper studies
the nonparametric estimation of partial derivatives of a multivariate function. Firstly,
a wavelet estimator of the partial derivatives of the multivariate variance function in a
heteroscedastic model is given. More importantly, this wavelet estimator is an unbiased
estimator. Secondly, two important lemma are proved, which discuss the key properties of
the wavelet estimator. Finally, the convergence rates over different estimation errors of the
wavelet estimator are considered. According to the main theorem, it is easy to see that the
strong convergence rate of the wavelet estimator is the same as the optimal uniform almost
sure convergence rate of nonparametric function estimations.

Because the local analysis characteristics in the time and frequency domains of the
wavelet, the wavelet estimator can choose an appropriate wavelet scaling parameter to get
the optimal convergence rate. Hence, this paper considers partial derivatives estimation
based on the wavelet method. The theoretical results of asymptotic property of the wavelet
estimator are discussed in this paper. In addition, it is difficult to present the corresponding
practical illustration of the wavelet estimator, which needs more investigations and some
new skills. We will consider this in future work.
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