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Abstract: In this article, we study the fractional form of a well-known dynamical system from mathematical
biology, namely, the Lotka–Volterra model. This mathematical model describes the dynamics of a predator
and prey, and we consider here the fractional form using the Rabotnov fractional-exponential (RFE) kernel.
In this work, we derive an approximate formula of the fractional derivative of a power function ζp in terms
of the RFE kernel. Next, by using the spectral collocation method (SCM) based on the shifted Vieta–Lucas
polynomials (VLPs), the fractional differential system is reduced to a set of algebraic equations. We provide
a theoretical convergence analysis for the numerical approach, and the accuracy is verified by evaluating
the residual error function through some concrete examples. The results are then contrasted with those
derived using the fourth-order Runge-Kutta (RK4) method.

Keywords: Lotka–Volterra model; Rabotnov fractional-exponential; Vieta–Lucas spectral collocation
method; Residual error function; RK4

MSC: 41A30; 65L05; 65N20

1. Introduction

Fractional calculus has been a topic of interest for researchers who have found interest-
ing applications in biology, physics, engineering, fluid mechanics, and viscoelasticity [1,2].
To that end, the usefulness of the different types of fractional derivatives has been examined.
Some of those derivatives are the Caputo and the Riemann–Liouville operators, which are
fractional operators with a power kernel. In the present work, we will employ a different
fractional operator, namely, the so-called Yang–Aty–Cattani (YAC) operator (see, e.g, [3,4]).
This fractional derivative is also called the Prabhakar operator or generalized Mittag–Leffler
operator. Among those fractional operators, we will employ the YAC derivative based on
the Rabotnov function, which is a generalized Mittag–Leffler function. The derivative with
an exponential kernel is called the Caputo–Fabrizio derivative, and the Atangana–Baleanu
derivative if the kernel is the Mittag–Leffler function. These types of non-singular deriva-
tives have applications to groundwater flow [5], medical sciences [6], chaos theory [7] and
other areas [8].
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In the context of approximating fractional derivatives numerically, we will employ a
spectral collocation technique that relies on specific polynomials. One noteworthy char-
acteristic of these approaches is their capacity to yield precise outcomes with minimal
errors. These methods heavily leverage the significance of polynomials, and the orthogo-
nality characteristics of these polynomials are harnessed for the approximation of periodic
functions within a closed and bounded interval on the real number line [9,10].

Certainly, this holds true for VLPs. The objective of this work is to assess the precision
of the numerical approach when employing the fractional derivative with the RFE kernel.
We provide an estimated formula for the fractional-order derivative of the power function
ζ p using the RFE kernel. Furthermore, we utilize this approximative formula along with
the characteristics of VLPs to calculate the numerical solution for the proposed system.

It is shown that this method is efficient and that there is an excellent agreement with the
currently available exact solutions. Finally, we will conclude that the non-singular operator
is better suited for numerical simulations of the mathematical model. This conclusion is
drawn from a comparison with the RK4 method.

The predator–prey equations, a well-known set of nonlinear first-order differential
equations, are employed as a basis for illustrating the dynamics of specific biological
systems characterized by the interaction between two species one functioning as a predator
and the other as prey. Samardzija [11] extended this model by incorporating the concept of
solitary prey being targeted by predators within the Lotka–Volterra system. Our work in
this paper centers on the examination of this system.

The paper is organized as follows: In Section 2, we introduce some fundamental
concepts related to fractional-order integrals and derivatives, along with information about
Vieta–Lucas polynomials. Section 3 contains the numerical results and convergence analysis
for the proposed model, with a particular focus on discussing the numerical simulation.
The concluding remarks, observations, and considerations for future work are presented in
Section 4.

2. Preliminaries
2.1. Definitions

We start this subsection by providing some remarks and recalling definitions of some
useful fractional derivatives. For further reading, we refer the reader to [12,13]. Throughout,
we let H1(0, b) be the classical Sobolev space. With this convention, the following definition
serves to recall the well-known Caputo derivative [14].

Definition 1. The Caputo fractional derivative CDν of order 0 < ν ≤ 1 for φ(ζ) ∈ H1(0, b) is
given by

CDν φ(ζ) =
1

Γ(1 − ν)

∫ ζ

0

φ
′
(τ)

(ζ − τ)ν
dτ, ζ > 0, (1)

where Γ(.) is the usual Gamma function.

It is evident from this definition that the integral depends on the singular kernel
(ζ − τ)ν. Here, it is worth mentioning that other fractional-order operators have been
designed to avoid the singularity of the kernel. For example, the following definition
redefines the Caputo derivative using the well-known Rabotnov kernel.

Definition 2. The Caputo fractional derivative of order ν on the interval [0, 1] for a function Θ(ζ)
using the Rabotnov kernel is defined by

RFEDνΘ(ζ) =
∫ ζ

0
Θ(n)(τ)Rν[−Ω(ζ − τ)ν]dτ, n − 1 < ν ≤ n. (2)
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Here, Ω ∈ R+, and the RFE function Rν is defined as

Rν[−Ω(ζ)ν] =
∞

∑
κ=0

(−Ω)κζ(κ+1)(ν+1)−1

Γ[(κ + 1)(ν + 1)]
. (3)

For more detail on the RFE-operator derivative, we refer to [3,4].

As we mentioned above, the fractional derivative (2) is based on a Rabotnov kernel,
and it will be used in this manuscript to study a predator–prey model. However, the
derivation of an approximate solution for the fractional dynamical system will require
approximating the fractional derivative (2). Obviously, the analytical calculation of that
derivative is, in general, a difficult task. For that reason, we concentrate only on the
numerical approximation of derivatives of powers. In fact, the approximate formula of the
fractional derivative concerning the RFE-fractional is provided in the next theorem. The
proof is based on the use of the Simpson integration scheme.

Theorem 1 (Yang et al. [4]). The RFE derivative of order ν of ζ p with p ≥ n, (n = ⌈ν⌉) is

RFEDνζ p =
Γ(p + 1)

Γ(p + 1 − ⌈ν⌉) ×
h
3

[
Ψν,p(ζ, ℓ0) + Ψν,p(ζ, ℓm)

+ 2
m−2

∑
κ=1

Ψν,p(ζ, ℓ2κ) + 4
m−1

∑
κ=1

Ψν,p(ζ, ℓ2κ+1)
]
.

(4)

The interval [0, 1] is divided into m equal subintervals with length h, ⌈·⌉ is the smallest integer
function, ℓκ = κ

m , for each κ = 0, 1, . . . , m, and

Ψν,p(ζ, ℓ) = ℓp−⌈ν⌉Rν[−Ω(ζ − ℓ)ν]. (5)

2.2. Vieta–Lucas Polynomials

To use a spectral method for solving the fractional dynamical system of interest,
we need to express the unknown functions through series in terms of some orthogonal
functions. In this work, we will use Vieta–Lucas polynomials [15]. In this stage, we will
recall now some important properties of the shifted Vieta–Lucas polynomials (see [15] for
more properties).

The VLPs of degree κ ∈ N0 is denoted by VLκ(z), and is defined as

VLκ(z) = 2 cos(κψ), ψ = arccos(0.5z). (6)

It is obvious that ψ ∈ [0, π] and |z| ≤ 2. Moreover, it is easy to prove that the
polynomials VLk(z) satisfy VL0(z) = 2 and VL1(z) = z. Moreover, the following recurrence
relation is satisfied, for each κ = 2, 3, . . .

VLk(z) = zVLk−1(z)− VLk−2(z). (7)

Notice that if z = 4ζ − 2, we obtain a new class of orthogonal polynomials on [0, 1].
We will denote these polynomials using the notation VLs

m(ζ), and they satisfy the following
relation:

VLs
κ+1(ζ) = (4ζ − 2)VLs

κ−1(ζ)− VLs
κ−2(ζ), κ = 2, 3, . . . ,

where VLs
0(ζ) = 2 and VLs

1(ζ) = 4ζ − 2. Moreover, notice that VLs
κ(0) = 2(−1)κ and

VLs
κ(1) = 2, for each κ = 0, 1, 2, . . .
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These polynomials can be written also in an analytic form. More precisely, let vκ(ζ)
represent VLs

κ(ζ). Under this convention, the following equation is satisfied:

vκ(ζ) = 2κ
κ

∑
j=0

(−1)j 4κ−jΓ(2κ − j)
Γ(j + 1)Γ(2κ − 2j + 1)

ζκ−j, κ = 2, 3, . . . (8)

Notice that vκ(ζ) are orthogonal polynomials on [0, 1] with respect to the weight
function 1√

ζ−ζ2
. As a consequence,

〈
vi(ζ), vj(ζ)

〉
=
∫ 1

0

vi(ζ)vj(ζ)√
ζ − ζ2

dζ =


0, i ̸= j ̸= 0,
4π, i = j = 0,
2π, i = j ̸= 0.

(9)

These polynomials form a basis for the Euclidean space L2([0, 1]). It follows that, for
each ψ(ζ) ∈ L2[0, 1], the following identity is satisfied for suitable constants cj:

ψ(ζ) =
∞

∑
j=0

cjvj(ζ). (10)

The constants cj must be evaluated to express ψ(ζ) in terms of the series on vj(ζ).
By considering only the first m + 1 terms in the series of (10), an approximation for the
function ψ(ζ) is given by

ψm(ζ) =
m

∑
j=0

cjvj(ζ), (11)

where the coefficients cj, for j = 0, 2, . . . , m, can be evaluated using the integrals

cj =
1
δj

∫ 1

0

ψ(ζ)vj(ζ)√
ζ − ζ2

dζ, (12)

and

δj =

{
4π, j = 0,
2π, j = 1, 2, . . . , m.

(13)

3. Numerical Results
3.1. Convergence Analysis

The present subsection is devoted to providing the convergence analysis of our nu-
merical approach. We begin this subsection by recalling a useful result from the literature.

Lemma 1 (Yang et al. [4]). Assume that ψ(ζ) ∈ L2
w̃([0, 1]) with respect to the weight function

w̃(ζ) = 1√
ζ−ζ2

, and that |ψ′′(ζ)| ≤ ε, for some constant ε. Then the partial sum (11) of the series

(10) is uniformly convergent to ψ(ζ) as m → ∞. In addition, the following estimates are satisfied:

1. The coefficients in the series (10) are bounded, more precisely,∣∣cj
∣∣ ≤ ε

4j(j2 − 1)
, ∀ j > 2. (14)

2. An error estimate in the L2
w̃([0, 1])-norm is given by

∥ψ(ζ)− ψm(ζ)∥w̃ <
ε

12
√

m3
. (15)
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Theorem 2. Let the function ψ(ζ) ∈ [0, 1] have continuous derivatives up to (m + 1)-times and
let ψm(ζ) be the best approximation of the function ψ(ζ) defined in Equation (10). Then we have
the following:

∥ψ(ζ)− ψm(ζ)∥ ≤ α βm+1 √π

(m + 1)!
, (16)

where
α = max

0≤ ζ≤1
ψ(m+1)(ζ), β = max{ζ0, 1 − ζ0}.

Proof. The Taylor series approximation of the function ψ(ζ) in the neighborhood of a point
ζ = ζ0 is given by

ψ(ζ) = ψ(ζ0) +
(ζ − ζ0)

1!
ψ(1)(ζ0) +

(ζ − ζ0)
2

2!
ψ(2)(ζ0) + ... +

(ζ − ζ0)
m

m!
ψ(m)(ζ0)

+
(ζ − ζ0)

m+1

(m + 1)!
ψ(m+1)(τ),

(17)

where ζ0 ∈ [0, 1], τ ∈ (ζ0, ζ). Assume

ψ̃(ζ) = ψ(ζ0) +
(ζ − ζ0)

1!
ψ(1)(ζ0) +

(ζ − ζ0)
2

2!
ψ(2)(ζ0) + ... +

(ζ − ζ0)
m

m!
ψ(m)(ζ0), (18)

then

|ψ(ζ)− ψ̃m(ζ)| =
∣∣∣∣ (ζ − ζ0)

m+1

(m + 1)!
ψ(m+1)(τ)

∣∣∣∣. (19)

If ψm(ζ) is the best approximation of ψ(ζ), then

∥ψ(ζ)− ψm(ζ)∥2 ≤ ∥ψ(ζ)− ψ̃m(ζ)∥2
=
∫ 1

0
w(ζ) |ψ(ζ)− ψ̃m(ζ)|2dζ

≤
∫ 1

0
w(ζ)

∣∣∣∣ (ζ − ζ0)
m+1

(m + 1)!
ψ(m+1)(τ)

∣∣∣∣2dζ.
(20)

It is assumed that ψ(ζ) has continuous derivatives up to (m + 1)-times. Therefore,
there exists a constant α such that

α = max
0≤ ζ≤1

ψ(m+1)(ζ). (21)

Now we have

∥ψ(ζ)− ψm(ζ)∥2 ≤
∫ 1

0
w(ζ)

∣∣∣∣ α

(m + 1)!
(ζ − ζ0)

m+1
∣∣∣∣2dζ. (22)

Considering β = max{ζ0, 1 − ζ0}, then Equation (22) becomes

∥ψ(ζ)− ψm(ζ)∥2 ≤ α2 β2(m+1)

[(m + 1)!]2

∫ 1

0
w(ζ) dζ. (23)

Since w(ζ) = 1√
ζ−ζ2

, so with some simple computation for the integral, we get:

∥ψ(ζ)− ψm(ζ)∥ ≤ α βm+1 √π

(m + 1)!
. (24)

The proof is completed.
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Readers may refer to [16] for more information on the convergence analysis of the VLPs
approximation (11). Now, we are in a position to compute the RFE-fractional derivative of
the VLPs approximation (11).

Theorem 3. The RFE fractional derivative of order β for the function ψi(ζ) defined in (11) can be
calculated as follows:

RFEDβψi(ζ) =
i

∑
j=⌈β⌉

χi,j,β

[
Ψβ,p(ζ, ℓ0) + Ψβ,p(ζ, ℓm) + 2

m−2

∑
κ=1

Ψβ,p(ζ, ℓ2κ)

+ 4
m−1

∑
κ=1

Ψβ,p(ζ, ℓ2κ+1)
]
,

(25)

where

χi,j,β =
(−1)j(2i)4i−jΓ(2i − j)
Γ(j + 1)Γ(2i − 2j + 1)

× hΓ(i − j + 1)
3Γ(i − j + 1 − ⌈β⌉) , (26)

and Ψβ,p(ζ, ℓ) = ℓp−⌈β⌉Rβ[−Ω(ζ − ℓ)β]p=i−j.

Proof. Using Theorem 1, we obtain that

RFEDβζ i−j =
Γ(i − j + 1)

Γ(i − j − ⌈β⌉+ 1)
× h

3

[
Gβ,p(ζ, ℓ0) + Ψβ,p(ζ, ℓm)

+ 4
m−1

∑
κ=1

Ψβ,p(ζ, ℓ2κ+1) + 2
m−2

∑
κ=1

Ψβ,p(ζ, ℓ2κ)
]
.

(27)

The interval [0, 1] is divided into m equal subintervals with length h, which means that
h = 1

m . Let ℓκ = κ
m , for each κ = 0, 1, . . . , m, and let

Ψβ,p(ζ, ℓ) = ℓp−⌈β⌉Rβ[−Ω(ζ − ℓ)β]p=i−j. (28)

Now, using Equations (8) and (27), we can readily evaluate the RFE derivative of the
i-th degree ψi(ζ) as follows:

RFEDβψi(ζ) =
i

∑
j=0

(−1)j(2i)4i−jΓ(2i − j)
Γ(j + 1)Γ(2i − 2j + 1)

RFEDβζ i−j

=
i

∑
j=⌈β⌉

Γ(i − j + 1)
Γ(i − j + 1 − ⌈β⌉) ×

(−1)j(2i)4i−jΓ(2i − j)
Γ(j + 1)Γ(2i − 2j + 1)

× h
3

[
Ψβ,p(ζ, ℓ0) + Ψβ,p(ζ, ℓm) + 4

m−1

∑
κ=1

Ψβ,p(ζ, ℓ2κ+1)

+ 2
m−2

∑
κ=1

Ψβ,p(ζ, ℓ2k)
]
.

(29)

From this result, we can easily get the Equation (25), as desired.

3.2. Computer Simulations

We start this subsection by describing the computer implementation of our model.
The goal is to solve predator–prey equations that are used to describe the dynamics in
some biological systems [17]. Our system has two species interacting with each other, one
predator and the other prey. Recently, Samardzija [11] proposed an extension of this model,
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considering two predators and single a prey via the Lotka–Volterra system. Using the
fractional operators of this work, the system reads as follows:

RFEDνΦ1(ζ) = σ1 Φ1(ζ)− σ2 Φ1(ζ)Φ2(ζ) + σ3 Φ2
1(ζ)− σ4 Φ3(ζ)Φ2

1(ζ), (30)
RFEDνΦ2(ζ) = −σ5 Φ2(ζ) + σ6 Φ1(ζ)Φ2(ζ), (31)
RFEDνΦ3(ζ) = −σ7 Φ3(ζ) + σ4 Φ3(ζ)Φ2

1(ζ), (32)

with initial conditions

Φ1(0) = Φ10 , Φ2(0) = Φ20 , Φ3(0) = Φ30 . (33)

Here, population sizes of predators are Φ1(ζ) and Φ2(ζ) at the time ζ, and the pop-
ulation size of prey is Φ3(ζ). Moreover, σ1, σ2, σ3, σ4, σ5, σ6, and σ7 are parameters that
describe the interaction between the three species [11].

Let us approximate the unknown functions Φ1(ζ), Φ2(ζ), and Φ3(ζ) through the
shifted Vieta–Lucas polynomials Φ1,N(ζ), Φ2,N(ζ) and Φ3,N(ζ), respectively. To that end,
we let

Φ1,N(ζ) =
N

∑
i=0

ai vi(ζ),

Φ2,N(ζ) =
N

∑
i=0

bi vi(ζ),

Φ3,N(ζ) =
N

∑
i=0

ci vi(ζ).

(34)

Then, substituting Equations (25) and (34) into the system (30)–(32), we obtain:

N

∑
j=⌈ν⌉

ai χN,j,ν

[
Ψν,p(ζ, ℓ0) + Ψν,p(ζ, ℓm) + 4

m−1

∑
k=1

Ψν,p(ζ, ℓ2k+1) + 2
m−2

∑
k=1

Ψν,p(ζ, ℓ2k)
]

= σ1

(
N

∑
i=0

aivi(ζ)

)
− σ2

(
N

∑
i=0

aivi(ζ)

)(
N

∑
i=0

bivi(ζ)

)

+ σ3

(
N

∑
i=0

aivi(ζ)

)2

− σ4

(
N

∑
i=0

civi(ζ)

)(
N

∑
i=0

aivi(ζ)

)2

,

(35)

N

∑
j=⌈ν⌉

bi χN,j,ν

[
Ψν,p(ζ, ℓ0) + Ψν,p(ζ, ℓm) + 4

m−1

∑
k=1

Ψν,p(ζ, ℓ2k+1) + 2
m−2

∑
k=1

Ψν,p(ζ, ℓ2k)
]

= −σ5

(
N

∑
i=0

bivi(ζ)

)
+ σ6

(
N

∑
i=0

aivi(ζ)

)(
N

∑
i=0

bivi(ζ)

)
,

(36)

N

∑
j=⌈ν⌉

ci χN,j,ν

[
Ψν,p(ζ, ℓ0) + Ψν,p(ζ, ℓm) + 4

m−1

∑
k=1

Ψν,p(ζ, ℓ2k+1) + 2
m−2

∑
k=1

Ψν,p(ζ, ℓ2k)
]

= −σ7

(
N

∑
i=0

civi(ζ)

)
+ σ4

(
N

∑
i=0

civi(ζ)

)(
N

∑
i=0

aivi(ζ)

)2

.

(37)
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By collocation of these three equations at N points ζr, all of them being roots of vN(ζ)),
the equations will be reduced to

N

∑
j=⌈ν⌉

ai χN,j,ν

[
Ψν,p(ζr, ℓ0) + Ψν,p(ζr, ℓm) + 4

m−1

∑
k=1

Ψν,p(ζr, ℓ2k+1) + 2
m−2

∑
k=1

Ψν,p(ζr, ℓ2k)
]

= σ1

(
N

∑
i=0

aivi(ζr)

)
− σ2

(
N

∑
i=0

aivi(ζr)

)(
N

∑
i=0

bivi(ζr)

)

+ σ3

(
N

∑
i=0

aivi(ζr)

)2

− σ4

(
N

∑
i=0

civi(ζr)

)(
N

∑
i=0

aivi(ζr)

)2

,

(38)

N

∑
j=⌈ν⌉

bi χN,j,ν

[
Ψν,p(ζr, ℓ0) + Ψν,p(ζr, ℓm) + 4

m−1

∑
k=1

Ψν,p(ζr, ℓ2k+1) + 2
m−2

∑
k=2

Ψν,p(ζr, ℓ2k)
]

= −σ5

(
N

∑
i=0

bivi(ζr)

)
+ σ6

(
N

∑
i=0

aivi(ζr)

)(
N

∑
i=0

bivi(ζr)

)
,

(39)

N

∑
j=⌈ν⌉

ci χN,j,ν

[
Ψν,p(ζr, ℓ0) + Ψν,p(ζr, ℓm) + 4

m−1

∑
k=1

Ψν,p(ζr, ℓ2k+1) + 2
m−2

∑
k=1

Ψν,p(ζr, ℓ2k)
]

= −σ7

(
N

∑
i=0

civi(ζr)

)
+ σ4

(
N

∑
i=0

civi(ζr)

)(
N

∑
i=0

aivi(ζr)

)2

.

(40)

Substituting Equation (34) in (33), the initial conditions (33) will be transformed into
the following algebraic equations:

N

∑
i=0

2(−1)iai = Φ1,0,

N

∑
i=0

2(−1)ibi = Φ2,0,

N

∑
i=0

2(−1)ici = Φ3,0.

(41)

Notice that the system (38)–(41) can be expressed as a constrained optimization prob-
lem concerning the cost functions (CFs) defined by

CF1 =
N

∑
r=0

∣∣∣∣∣ N

∑
j=⌈ν⌉

ai χN,j,ν

[
Ψν,p(ζr, ℓ0) + Ψν,p(ζr, ℓm)

+ 4
m−1

∑
k=1,k−odd

Ψν,p(ζr, ℓk) + 2
m−2

∑
k=2,k−even

Ψν,p(ζr, ℓk)
]

− σ1

(
N

∑
i=0

aivi(ζr)

)
+ σ2

(
N

∑
i=0

aivi(ζr)

)(
N

∑
i=0

bivi(ζr)

)

− σ3

(
N

∑
i=0

aivi(ζr)

)2

+ σ4

(
N

∑
i=0

civi(ζr)

)(
N

∑
i=0

aivi(ζr)

)2∣∣∣∣∣,

(42)
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CF2 =
N

∑
r=0

∣∣∣∣∣ N

∑
j=⌈ν⌉

bi χN,j,ν

[
Ψν,p(ζr, ℓ0) + Ψν,p(ζr, ℓm)

+ 4
m−1

∑
k=1,k−odd

Ψν,p(ζr, ℓk) + 2
m−2

∑
k=2,k−even

Ψν,p(ζr, ℓk)
]

+ σ5

(
N

∑
i=0

bivi(ζr)

)
− σ6

(
N

∑
i=0

aivi(ζr)

)(
N

∑
i=0

bivi(ζr)

)∣∣∣∣∣,
(43)

CF3 =
N

∑
r=0

∣∣∣∣∣ N

∑
j=⌈ν⌉

ci χN,j,ν

[
Ψν,p(ζr, ℓ0) + Ψν,p(ζr, ℓm)

+ 4
m−1

∑
k=1,k−odd

Ψν,p(ζr, ℓk) + 2
m−2

∑
k=2,k−even

Ψν,p(ζr, ℓk)
]

+ σ7

(
N

∑
i=0

civi(ζr)

)
− σ4

(
N

∑
i=0

civi(ζr)

)(
N

∑
i=0

aivi(ζr)

)2∣∣∣∣∣,
(44)

with the constraints (Cons)

Cons =
∣∣∣ N

∑
i=0

2(−1)iai − Φ10

∣∣∣+ ∣∣∣ N

∑
i=0

2(−1)ibi − Φ20

∣∣∣+ ∣∣∣ N

∑
i=0

2(−1)ici − Φ30

∣∣∣. (45)

We implemented the Penalty Leap-Frog method [18] for solving the constrained
optimization problem (42)–(45), for the coefficients ai, bi and ci, for each i = 0, 1, . . . , N. In
turn, this leads us to formulate the approximate solution by substitution into Equation (34).
For more details concerning the Penalty Leap-Frog Method and Constrained Optimization
Problem, the reader can see [19–21]. Where the Leap-Frog algorithm for solving the
constrained optimization problem is given in [19], and the relationship between constrained
optimal points and asymptotically stable critical points has been discussed in [20]. Finally,
the convergence of the ODE method in constrained optimization is given in [21].

Hence, we define the residual error function (REF) with the help of the approximation
formula (25) as follows:

REF[Φ1(ζ)] =
RFEDνΦ1(ζ)− σ1

(
N

∑
i=0

aivi(ζr)

)
+ σ2

(
N

∑
i=0

aivi(ζr)

)(
N

∑
i=0

bivi(ζr)

)

− σ3

(
N

∑
i=0

aivi(ζr)

)2

+ σ4

(
N

∑
i=0

civi(ζr)

)(
N

∑
i=0

aivi(ζr)

)2

,

REF[Φ2(ζ)] =
RFEDνΦ2(ζ) + σ5

(
N

∑
i=0

bivi(ζr)

)
− σ6

(
N

∑
i=0

aivi(ζr)

)(
N

∑
i=0

bivi(ζr)

)
,

REF[Φ3(ζ)] =
RFEDνΦ3(ζ) + σ7

(
N

∑
i=0

civi(ζr)

)
− σ4

(
N

∑
i=0

civi(ζr)

)(
N

∑
i=0

aivi(ζr)

)2

.

The approximation solution is always in near alignment with the precise solution,
as indicated by a decreasing absolute relative error (REF(ζ) → 0). It is noteworthy to
emphasize that the original equation model is considered to be well-posed, and the residual
is a measure of how far the approximate solution deviates from the precise solution. We
use this kind of error measurement in the setting of fractional order with ν, where the exact
solution is unknown. It should be noted that REF takes on multiple forms; for a more
thorough explanation, see [22].
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Finally, we present some numerical results for the model (30)–(33). We study the effect
of the parameters ν and N, letting σ1 = σ2 = σ3 = σ4 = 1, σ5 = 2, σ6 = 3 and σ7 = 2.7. As
initial conditions, we choose Φ10 = 1, Φ20 = 1.4, Φ30 = 1. Figure 1 shows the numerical
solutions for different values of ν = 1.0, 0.95, 0.90, with N = 6. Meanwhile, Figure 2 shows
the results of our simulations using different values of N = 6, 8, 10 at ν = 0.93. To verify
the numerical results, we will examine now the residual error function, which is calculated
by replacing the approximate solutions in the form (30)–(33). Figure 3 shows the REF of the
numerical solution at ν = 0.94 with N = 10. A comparison of the results obtained using
the suggested technique and those obtained using the RK4 method at (ν = 1) with N = 7 is
shown in Figure 4.

Figure 1. Approximate solutions Φ1(ζ) (a), Φ2(ζ) (b), and Φ3(ζ) (c) for different values of ν.
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These findings elucidate that the present approach enhances both the efficiency and
outcomes of the method. Additionally, the results affirm that the suggested method is apt
for addressing the fractional-order representation of the proposed model. It is noteworthy
that the numerical solution’s behavior, generated by the proposed method, is contingent on
the values of N and ν, by the inherent characteristics of the model under investigation. In
conclusion, we can assert with assurance that all the theoretical investigations conducted
in this study have been successfully fulfilled.

Figure 2. Approximate solutions Φ1(ζ) (a), Φ2(ζ) (b), and Φ3(ζ) (c) for different values of N.
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Figure 3. REF of the solutions Φ1(ζ) (a), Φ2(ζ) (b), and Φ3(ζ) (c).
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Figure 4. REF of the solutions Φ1(ζ) (a), Φ2(ζ) (b), and Φ3(ζ) (c) by VLPs and RK4 (ν = 1).

4. Conclusions

In this work, we calculated a numerical solution for a predator–prey model of frac-
tional derivatives based on the RFE. The model considers two predators and one prey;
mathematically, it is a system of coupled ordinary differential equations of orders in the
interval (0, 1]. The approach followed in this work is based on the use of the shifted Vieta–
Lucas polynomials, and it allowed us to validate the effectiveness of the proposed method.
Furthermore, we noted that the precision of the error can be managed and diminished by
integrating extra terms from the series of the approximate solution. Moreover, we verified
that the RFE operator, devoid of singularity, proves to be more suitable for numerically
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simulating the model discussed in this article. The graphical results and those obtained
through the RK4 approach are comparable. Clearly, various types of polynomials can be
employed to examine the same system. Future endeavors aim to expand and generalize
the topics this study encompasses, such as

1. Employing the finite element method for addressing the identical issue: Conduct-
ing theoretical investigations into the depth that elucidates the suggested model,
incorporating optimal control of the results;

2. Adjusting the interpretation of the fractional derivative to alternatives such as the
Atangana–Baleanu–Caputo model or a variable-order model.
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