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Abstract: Multi-parameter families of Lax pairs for the modified Korteweg-de Vries (mKdV) equation
are defined by applying a direct method developed in the present study. The gauge transformations,
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1. Introduction

Integrability is a wide subject that comprises many deep ideas and can be applied
to very diverse physical systems. In the context of soliton theory, integrable systems of
nonlinear partial differential equations (PDEs) have been actively studied [1–5]. As a matter
of fact, the problem of solving nonlinear partial differential equations (PDE’s) is twofold:
(i) how to recognize an integrable PDE, and (ii) how to define its solutions. In the first aspect
of the problem, there are several alternative definitions of integrability of nonlinear PDEs:
existence of the Lax pair, existence of infinitely many generalized symmetries (or existence
of recursion operators), multi-soliton solutions, Bi-hamiltonian structure (infinitely many
conserved quantities), Bäcklund transformation, Painleve property, etc. (see, e.g., [5,6]
for reviews). Each of those properties may be applied to a given equation as a test for
integrability and, in the literature, there exist lists of integrable systems, i.e., systems which
came through certain integrability tests.

On the other hand, there is a second aspect of the problem: defining solutions of
nonlinear PDE’s, which is a fairly complex problem. In general, the above mentioned
characteristics of integrability can be exploited for finding solutions (see, e.g., [1–6]). How-
ever, the methods, based on those characteristics, as the rule, do not straightforwardly
lead to the solutions and applying them for finding solutions requires ingenuity. (For
example, the inverse scattering transform (IST), that is at the center of the solitons theory,
in principle, provides solvability of the equation but the solution of the corresponding
spectral problem can be particularly delicate.) A number of powerful methods of finding
solutions of nonlinear PDEs, independent of the methods used for testing integrability,
have been developed (an overview of such methods is presented in the Appendix A).

Different concepts of integrability are interwoven quite closely. In particular, the
concept of Lax pair, a possibility for an equation to be realized as the compatibility condition
of two linear eigenvalue equations, the Lax pair [7], appears in several approaches. The
notion of Lax pair has played a key role in the development of soliton theory, and in many
cases the identification of a corresponding Lax pair has been the first step to recognize the
integrable character of important nonlinear PDEs.

However, this feature, the Lax pair existence, is not easy to determine a priori from the
equation itself. Obtaining the Lax pair is a highly nontrivial operation and no systematic,
general approach exists for this. The methods developed for the construction of a Lax pair
(some of which are reviewed in [8]) involve nontrivial mathematical problems, making it
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impossible to algorithmically determine whether a given equation admits a Lax pair or
to determine, for which parameter values, a class of equations admits a Lax pair. Direct
methods, which are based straight on the Lax pair definition, may provide more perspective.
A direct method for identifying equations possessing Lax pairs has been developed and
applied to some types of equations in [8]. In particular, the method has been applied to the
modified Korteweg-de Vries equation (mKdV), which is one of the prototypical examples
of integrable equations. The equation has the form

ut + r1u2ux + u3x = 0 (1)

where r1 is an arbitrary parameter that can be changed by scaling and subscripts of the form “nx”
denote derivatives of the order n with respect to x. Applying the method of [8] to Equation (1)
yields two different branches of the Lax pairs, one of which is a single Lax pair and the second
represents a one-parameter (ϵ) family of Lax pairs. A particular case of the second branch
corresponding to ϵ = 0 coincides with the known Lax pair for the mKdV equation while other
Lax pairs, the first branch and those of the second branch corresponding to ϵ ̸= 0, seemed to be
new. Those results imply that a variety of the Lax pairs for the mKdV equation exists.

This paper reports the following results. First, by applying a direct method, that
discards the requirement of scaling invariance imbedded into the framework of the method
of [8] (see more details in Section 2), it is shown that the variety of the Lax pairs for the
mKdV equation can be even more extended. Instead of a single Lax pair of the first branch
of [8], the method of the present study yields a three-parameter family of Lax pairs while
the Lax pair of [8] becomes a degenerated case of that family. The reason for the extension
is that the method, which is free of the restriction of scaling invariance, allows terms of
different scaling weights to appear in the Lax pair.

Second, gauge transformations have been applied to separate from a variety of possible
Lax pairs those that can be identified as ‘fake’. At the early stages of the development
of soliton theory, the opinion was widespread that the discovery of a Lax pair associated
with a nonlinear evolution PDE implied that that PDE was integrable. However, after
the observation of the fake (weak) Lax pairs phenomenon [9], the fact that a Lax pair
can be associated to a nonlinear PDE cannot be considered as a proof of its integrability.
There is no formal definition of which Lax pairs should be classified as weak, but it is
implied that weak Lax pairs are useless for finding solutions by the IST and/or constructing
conservation laws. It is found by applying proper gauge transformations that only one
Lax pair (coinciding with the known one) from a variety of the defined Lax pairs can be
useful for finding solutions of Equation (1). The three-parameter family of the Lax pairs of
the first branch (including the first branch of [8] as a particular case) can be converted by
a gauge transformation into the form which, upon using Equation (1) and its differential
consequences, does not include u. Note, that in most cases reported in the literature, a Lax
pair is useless if it is gauge equivalent to a matrix without a spectral parameter since the
presence of the spectral parameter is crucial for finding solutions by the inverse scattering
transform. The present (more rare) case is when a spectral parameter is non-removable but
there exist gauge transformations allowing the removal of all dependent variables of the
associated nonlinear system from the Lax pair. Further, it is found that, for the Lax pairs
of the one-parameter (ϵ) family of the second branch (and so for the second branch of [8]
coinciding with it), there exists a gauge transformation eliminating the parameter ϵ, which
reduces it to the known Lax pair for the mKdV equation.

This paper is organized, as follows. In Section 2 following the Introduction, the direct
method is outlined and discussed. The Lax pairs for the mKdV equation, obtained by applying
the method, are listed in Section 3. The issue of gauge equivalence and the gauge transfor-
mations, converting the defined Lax pairs to simpler forms, are discussed in Section 4. Some
remarks on the results and possible applications of the method are furnished in Section 5.
In the Appendix A, an overview of the methods of finding solutions of nonlinear PDEs,
independent of the methods used for testing integrability, is presented.
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2. Direct Method

The Lax pair in an operator form

Lψ + λψ = 0;
∂ψ

∂t
+ Aψ = 0 (2)

admitted by a given PDE is determined from the condition of compatibility of (2) with the
PDE. The condition can be written, in the form convenient for calculations, as

(L f (x))t = L(A f (x))− A(L f (x)) (3)

where f (x) is an auxiliary function. It should only hold on solutions of the original PDE.
In the procedure of the method, the operators L and A are sought as linear differential

operators expressed in powers of Dx, as follows

L = Dm
x + U(1)(u, ux, u2x, . . .)Dm−1

x + · · ·+ U(m)(u, ux, u2x, . . .)I, (4)

A = Q(0)Dn
x + Q(1)(u, ux, u2x, . . .)Dn−1

x + · · ·+ Q(n)(u, ux, u2x, . . .)I (5)

where Dx is the total derivative operator for the space variable x, I is the identity operator,
n is the order of the original PDE, Q(0) is a constant and it is assumed that the functions
U(i)(u, ux, u2x, . . .) and Q(i)(u, ux, u2x, . . .) depend only on finitely many derivatives. The
initial assumptions include choosing the order m of the differential operator (4) and assign-
ing the functional forms of U(i)(u, ux, u2x, . . .) (making “ansatz”) as differential polynomials
in u and its derivatives with the coefficients to be determined.

After that, the “ansatz” is specified, the procedure of the method becomes completely
algorithmic. The functions Q(i) and the unknown coefficients of the differential polynomi-
als U(i) are determined from the relation obtained by introducing (4) and (5) into the Lax
Equation (3) expressing the condition of compatibility of the system (2) with the original
PDE. The resulting expression is a linear differential polynomial in f (x) and its derivatives
and, in view of arbitrariness of f (x), its coefficients dependent on U(i), Q(i) and their
derivatives should vanish. This provides n + 1 relations that are considered as differential
equations for the functions Q(i). Some of the equations can be solved even without specify-
ing the forms of the functions U(i). The remaining (usually two) equations contain time
derivatives of U(i) so that one needs to assign the forms of the differential polynomials
for U(i) and use the original PDE and its differential consequences for eliminating terms
with time derivatives of u. As the result, one has two equations for one function Q(n),
which are compatible if the coefficients of a differential polynomial in u and its derivatives
obtained by eliminating Q(n) vanish. After solving the algebraic equations expressing
this condition, a single differential equation for the last unknown function Q(n) remains.
Solving this equation completes the derivation, but to obtain the result in quadratures,
additional constraints on the coefficients need to be imposed.

A direct method for the Lax pairs calculations has been developed in [8]. The method
of [8] differs from the present one in two aspects. First, the scaling symmetry condition is
imposed which implies that all the terms in the operators L and A have uniform weight.
(In the case of Equation (1), if the weight of the x–derivative is assumed to be equal to one,
W(∂x) = 1, then W(u) = 1, W(ux) = 2 and so on, and, correspondingly, W(ut) = 4.) The
second difference, partially related to the scaling symmetry requirement, is that not only the
forms of the functions U(i) but also the forms of Q(i) are assigned. Using the scaling invari-
ance condition simplifies the equations that determine the Lax pair and allows to formalize
the procedure: the functional forms of both U(i)(u, ux, u2x, . . .) and Q(i)(u, ux, u2x, . . .) can
be algorithmically assigned and a finite system of algebraic equations for the unknown
coefficients arising at the final stage of the procedure (instead of a system of differential
equations for Q(i) of the present method) can be algorithmically solved by the Gröbner
basis methods. However, the scaling invariance condition reduces the generality of the
method: the Lax pairs that include terms of different scaling weights are out of its scope.
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In particular, this prevents application of the method of [8] to nonhomogeneous, mixed
scaling weight, equations, since the Lax pairs with the terms of lower and higher weights
originating respectively from the lower and higher scaling weight parts of the equation
inevitably arise for such equations. In general, the Lax pairs for both homogeneous and
non-homogeneous equations may include terms of different scaling weights, as a practice of
applying the method of the present study shows. In most cases, the method yields not just
single Lax pairs, but multi-parameter families of Lax pairs consisting of terms of different
scaling weights. An example of such a multi-parameter family of Lax pairs yielded by
applying the method to the mKdV Equation (1) is given in Section 3. Although, as it is
shown in Section 4, the Lax pairs of that family should be treated as weak, the appearance
of such terms is a sign that one should keep the functional forms for the operators L and A
as general as possible in order to avoid missing some variants. In this respect, the procedure
of the present method, in which the ansatzes for U(i) include terms of different scaling
weights and the forms of Q(i) are not assigned but determined in the course of calculations,
is preferable.

3. Lax Pairs for the mKdV Equation

For the mKdV Equation (1), two different families of the Lax pairs, with the operator L
of order 2, are available using the method of the present study. The first family is given by

L = D2
x + (µ2 + 2µ1u)Dx +

(
µ1µ2u + µ2

1u2 + µ1ux

)
I, (6)

A = q0D3
x + 3q0

(
µ1u +

µ2

2

)
D2

x + 3q0

(
µ2

1u2 + µ1µ2u +
µ2

2
8

+ µ1ux

)
Dx

+µ1

((
q0µ2

1 −
r1

3

)
u3 +

3
2

q0µ1µ2u2 +
3
8

q0µ2
2u

+

(
3
2

q0µ2 + 3q0µ1u
)

ux + (q0 − 1)u2x

)
I (7)

where µ1, µ2 and q0 are arbitrary constants (µ1 ̸= 0). Note that the scaling weight of the
terms multiplied by µ2 is different from that of other terms.

The second family is defined by

L = D2
x + 2ϵuDx +

1
6

((
r1 + 6ϵ2

)
u2 +

(
6ϵ ±

√
−6r1

)
ux

)
I, (8)

A = 4D3
x + 12ϵuD2

x +
((

r1 + 12ϵ2
)

u2 +
(

12ϵ ±
√
−6r1

)
ux

)
Dx

+

(
ϵ

(
2r1

3
+ 4ϵ2

)
u3 +

(
r1 ±

√
−6r1ϵ + 12ϵ2

)
uux +

(
3ϵ ± 1

2

√
−6r1

)
u2x

)
I (9)

where ϵ is an arbitrary constant.
Two branches of Lax pairs have been identified for the mKdV equation in [8]. Their

‘first branch’ is a degenerate case (q0 = 0, µ2 = 0, µ1 = 1) of the family defined by ((6), (7))
and their ‘second branch’ is ((8), (9)) (the notation coincides except for that their α should
be replaced by r1 and the sign of the operator A should be changed).

4. Gauge Equivalence

For Lax pairs in matrix form (zero-curvature representation [2–4,10,11]), scalar Equation (2)
is replaced by the matrix equations

DxΨ = XΨ, DtΨ = TΨ (10)
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where Ψ is a vector function on the jet space of u and X(λ, u, ux, . . .) and T(λ, u, ux, . . .) are,
in general, (n × n) matrices dependent on the spectral parameter λ. The Lax Equation (3)
is replaced by the equation expressing the compatibility condition for (10), as follows

(DtX − DxT + [X, T])Ψ = 0 (11)

where [X, T] = XT − TX is the matrix commutator. Equation (11) is called the matrix form
Lax equation or zero-curvature condition.

For any pair of matrices (X, T) that satisfy (11), an infinite number of equivalent pairs

DxΨ̃ = X̃Ψ̃, DtΨ̃ = T̃Ψ̃ (12)

may be found through a gauge transformation of the form

Ψ̃ = GΨ, X̃ = GXG−1 + Dx(G)G−1, T̃ = GTG−1 + Dt(G)G−1 (13)

where G is a nonsingular matrix.
The gauge transformations that convert the families of Lax pairs ((6), (7)) and ((8), (9))

into some equivalent forms can be found. Let us consider first the one-parameter (ϵ) family
((8), (9)). In what follows, it is set r1 = −6 to simplify the formulas. A family of matrices
(X, T) corresponding to the operators ((8), (9)) is given by

X =

(
0 1

−λ +
(
1 − ϵ2)u2 − (1 + ϵ)ux −2ϵu

)
(14)

T =


4ϵλu − 2(1 + ϵ)uux + (1 + ϵ)u2x 4λ + 2u2 − 2ux

−4λ2 +
(
2 − 4ϵ2)λu2 +

(
2 − 2ϵ2)u4 − 2λux −4ϵλu − 4ϵu3

−2
(
2 + ϵ − ϵ2)u2ux − 2(1 + ϵ)uu2x + (1 + ϵ)u3x +2(1 + ϵ)uux − (1 − ϵ)u2x

 (15)

Applying the gauge transformation (13) with the matrix

G =

(
e ϵ
∫

u(x,t)dx 0
ϵu(x, t) e ϵ

∫
u(x,t)dx e ϵ

∫
u(x,t)dx

)
(16)

to the family of matrices (14) and (15) yields the matrices (X̃, T̃) not containing the parame-
ter ϵ, as follows

X1 =

(
0 1

−λ + u2 − ux 0

)
(17)

T1 =

(
−2uux + u2x 4λ + 2u2 − 2ux

−4λ2 + 2λu2 + 2u4 − 2λux − 4u2ux − 2uu2x + u3x 2uux − u2x

)
(18)

The corresponding Lax pairs in an operator form are ((8), (9)) taken for ϵ = 0. The Lax
pair ((17), (18)) is the known Lax pair for the mKdV equation, which can be obtained from
the Lax pair

XKdV =

(
0 1

−λ − v 0

)
(19)

TKdV =

(
vx 4λ − 2v

−4λ2 − 2λv + 2v2 + v2x −vx

)
(20)

for the KdV equation
vt + 6vvx + v3x = 0 (21)

through Miura’s transformation
v = ux − u2 (22)



Axioms 2024, 13, 121 6 of 10

The Lax pair ((17), (18)) is equivalent to another known Lax pair for the mKdV
equation [3,12]

X2 =

(
−ik −u
−u ik

)
(23)

T2 =

(
−4ik3 − 2iku2 −4k2u − 2u3 − 2ikux + u2x

−4k2u − 2u3 + 2ikux + u2x 4ik3 + 2iku2

)
(24)

to which it is related by the gauge transformation

G =

(
6(ik − u) −6
6(ik + u) 6

)
(25)

Analyzing the matrix forms of the first family of Lax pairs ((6), (7)) reveals that it can
be converted by a gauge transformation into the form, which, upon using Equation (1) and
its differential consequences, does not include u. In order not to overload the presentation,
the matrix form of the Lax pair ((6), (7)) is not shown, only the transformation matrix is
given below. The Lax pairs ((6), (7)), being written in matrix forms, can be reduced by the
gauge transformation (13) with the matrix

G =

(
eµ1

∫
u(x,t)dx 0

µ1u(x, t) eµ1
∫

u(x,t)dx eµ1
∫

u(x,t)dx

)
(26)

to the constant matrices

X̃ =

(
0 1
−λ −µ2

)
, T̃ =

( 1
2 µ2q0λ 1

8 q0
(
8λ + µ2

2
)

− 1
8 q0λ

(
8λ + µ2

2
)

− 1
8 q0µ2

(
4λ + µ2

2
) ) (27)

Such a Lax pair not containing the dependent variable u is useless for finding solutions
by the IST and/or constructing conservation laws. Thus, the Lax pairs ((6), (7)) should be
treated as weak.

5. Concluding Comments

In the present paper, the results of application of the direct method to the mKdV
equation are considered. It is demonstrated that the method can produce multi-parameter
families of the Lax pairs. At the same time, by applying proper gauge transformations it is
found that, (at least) in the case of that specific equation, the defined Lax pairs can be either
reduced to a single Lax pair, which is known, or converted into the form not containing the
dependent variable, which is useless for applications. Thus, only the known Lax pair is
what remains from the variety of Lax pairs defined (and so from its particular case found
in [8]).

As a matter of fact, the direct method should be most useful for the problem of
classification of integrable equations of some specific type, but not as applied to a single
equation. Being applied to an equation or system with parameters, the method yields
conditions on the parameters for the Lax pair existence. Given that fake Lax pairs cannot be
avoided, a positive result in testing a PDE for the existence of a Lax pair does not warrant
placing the equation on the list of integrable equations. At the same time, a reliable negative
result of testing may be considered as a strong argument against its integrability since
it is commonly believed that a completely integrable nonlinear PDE can be associated
with a Lax pair. In the context of the problem of classification of integrable equations,
detecting equations that cannot be integrable should be as important as finding candidates
for integrable equations. It allows for a substantial reduction in the list of candidates for
integrable equations of that specific type. From a somewhat different perspective, it may
enable complete classification if applying the method yields only equations that have been
proved to be integrable.
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The method developed in the present study provides a reliable test for Lax pairs of a
quite general form. Practically, the freedoms in the choice of the “ansatz” for the differential
operator L do not result in a loss of generality. With the capabilities of computer algebra,
there are no principal obstacles to implementing calculations for any reasonable candidate.
Note in this connection that the Lax pairs presented in this paper have been separated
from substantially more complicated initial forms. With such general ansatzes, a negative
result of testing a PDE with respect to the Lax pairs existence is as close to a proof as is
possible using direct methods. Due to the fact that the requirement of scaling invariance is
not imposed, the method can be effective in application to both homogeneous and mixed
scaling weight equations.

Funding: This research received no external funding.
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Appendix A. Methods of Defining Solutions of Nonlinear PDEs Independent of the
Methods for Testing Integrability

The methods can be classified as belonging to two groups: (a) Symmetry (or symmetry-
based) methods and (b) Direct methods. In the first group, the classical Lie-group method
of infinitesimal transformations takes centre stage. In that method, the infinitesimal group
generators are defined as solutions of ‘determining equations’ obtained from the condition
of invariance of a PDE under the group transformations (see, for example, [13–15]). This
so-called ‘classical’ method enables the reduction of PDEs to ordinary differential equations
(ODEs), defining group-invariant solutions and finding transformations of the variables of a
PDE, by which new solutions can be generated from known ones. (Also numerical methods,
that make use of the symmetry in partial differential equations, have been developed as,
for example, the Lie-group shooting method for solving Stefan problems [16], see also [17].)

Bluman and Cole [18] proposed a generalization of Lie’s method for finding group
invariant solutions, which they named the ‘nonclassical’ method. In this approach, the con-
dition for the invariance of the PDE is replaced by weaker conditions for the invariance of
the combined system of differential equations consisting of the original differential equation
along with the ‘invariant surface condition’. The set of solutions, potentially available with
the help of this method, is larger than the set obtained by the classical method. However,
unlike the situation for ‘classical’ symmetries, the system of determining equations is, in
general, nonlinear and so the procedure of defining solutions with the nonclassical method
is not completely algorithmic. In particular, Bluman and Cole, applying their method to
the linear heat equation in [18], did not succeed in solving determining equations. For that
reason, the method did not attract much attention and practically had never been used till
1989 when it was established by Levi and Winternitz [19] that the solutions of the Boussi-
nesq equation, found by applying the direct method of Clarkson and Kruskal [20], can be
recovered as invariant solutions under the non-classical symmetry groups admitted by the
equation. This showed that, even though the nonclassical method appeared to be ineffective
in application to the linear heat equation, its application to nonlinear equations may be
much more fruitful. After that studies applying the nonclassical methods to nonlinear wave
equations have flourished. The renewed interest in the nonclassical method resulted in both
nonclassical and classical methods being used to generate many new symmetry reductions
for several physically significant equations (see reviews in [21,22]). Nevertheless, because
of the nonlinearity of the system of determining equations, nonclassical symmetries of
many PDEs in physics and mechanics have not been found. The ways of simplifying the
solution of the system of nonlinear determining equations of the nonclassical method,
based on the Groebner basis method and Wu’s method, are investigated in [23–25].
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The ideology of the nonclassical method gave rise to other efficient and elegant
methods of treating differential equations, which can be considered as generalizations
and extensions of the classical Lie group method and of the nonclassical method, such as
the weak symmetry method, the side condition method, the nonlocal symmetry method,
the iteration of the nonclassical method, partially nonclassical method, the conditional
Lie-Bäcklund symmetry, the differential constraint method and so on (e.g., [26–37], see
also [38]). In many cases, the methods are interrelated.

Considering the methods belonging to the group (b), direct methods, one should
start from the oldest, and, in a sense, classical, method of the solitons theory, Hirota’s
method [39]. The idea was to make a transformation of the equations into new variables,
in which the equations turned out to be quadratic in the dependent variables and all
derivatives appeared as Hirota’s bilinear derivatives (this is called “Hirota bilinear form”),
and then multisoliton solutions appear in a simple form of exponents with the travelling
wave argument. It is appropriate here to refer to the review of applications of Hirota’s
method for equations in the Korteweg-de Vries class in [40] where, in particular, use of
the existence of multisoliton solutions as an integrability condition is discussed. Note,
however, that application of Hirota’s method to a specific nonlinear equation requires some
ingenuity since constructing the bilinear form of the equation is not algorithmic. In [41], a
simplified form of the Hirota method, which circumvents the stage of creating the bilinear
form, has been created. The significant modification of Hirota’s method, applicable both
to the original and simplified versions, has been developed in [42]. In the method of [42],
the constant coefficients of exponents in the solution form are replaced by polinomial
functions of independent variables, which enables the algorithmic construction of solutions
describing interactions of different types of solitons. In particular, solutions describing
interactions of ‘static’ solitons with moving ones, are constructed in [42].

Reviewing other currently used direct methods, one has to start from the direct method
of Clarkson and Kruskal (CK) [20]. The basic idea is to seek the solution of an equation under
consideration in the form that could be considered as the most general form for similarity
solutions (see [43]). As a matter of fact, all the direct methods, developed after the CK method,
are based on the ideology of the CK method in a sense that their starting point is a quite
general ansatz for solutions, which are used for reducing the problems of solving PDEs to
solving ODEs. The difference with the CK method may be either in the form of the ansatz
or in the way of using it (for example, in the direct method of [44], the PDE is reduced to
an overdetermined system of ODEs). Next, establishing the relation between the CK method
and the nonclassical method in [19] resulted in the focus of much of the research becoming
finding the equivalent symmetry-based formulation for a specific direst method (and vice-
versa). The current state of the art is, in general, separating the methods into the groups of
symmetry-based methods and direct methods is somewhat conventional. Practically, for all
direct methods, stemming from the ideology of the CK method, a symmetry-based formulation
can be found (e.g., all the solutions, obtained by a direct method in [44], can be recovered as
invariant solutions of the symmetry-based method of [33]). Reviews of relationships between
the methods, developed as generalizations and extensions of classical or nonclassical methods,
and various direct methods can be found in [45–47]. Probably, the only exception from the
above statement about the possibility of finding a symmetry-based reformulation for a given
direct method is the method developed in [48] and further generalized in [42]. The particular
feature of that method resides in using the “potential”, space integral of the dependent variable,
as the independent variable, which is a suitable tool for identifying the solitary wave solutions.
The form of solutions in the original variables is not prescribed and even cannot be defined
in advance since the potential as a function of the original variables can be derived only upon
finding the solution. Therefore, the method does not belong to the variety of methods that,
like the CK method, start from the ansatz in the original variables and that feature makes it
impossible to find the equivalent symmetry-based formulation for the method of [48].

Finally, such methods, as the ‘sine–cosine method’, the ’sech–tanh’ method, the ‘har-
monic balance’ method and so on, should be mentioned. In these methods, the solution of
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a nonlinear PDE is represented by a combination of trigonometric or hyperbolic functions
with indefinite coefficients. These coefficients are determined by substituting this form
of solution into the equation. In general, such methods are of no interest in the context
of the soliton theory. The maximum of what can be defined using these methods is some
hump-like solutions. These solutions, applying such methods to a nonlinear PDE, are
usually declared to be solitons. However, the hump-like structures cannot be termed
‘solitons’ unless solutions describing their interactions as solitons are constructed.
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