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Abstract: The cubic structure, a captivating geometric structure, finds applications across various
areas of geometry through different models. In this paper, we explore the significant characteristics
of tangentials in cubic structures of ranks 0, 1, and 2. Specifically, in the cubic structure of rank 2, we
derive the Hessian configuration (123, 164) of points and lines. Finally, we introduce and investigate
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Keywords: cubic structure; rank of cubic structure; tangential; corresponding points; Hesse
configuration; de Vries configuration

MSC: 20N05

1. Introduction

The close connection between the cubic structure and algebraic structures on cubic
curves was studied in [1–3], and this correlation was further examined in [4]. The cubic
structure was defined in [4]. Let Q be a nonempty set whose elements are called points,
and let [ ] ⊆ Q3 be a ternary relation on Q. Such a relation and the ordered pair (Q, [ ])
will be called a cubic relation and a cubic structure, respectively, if the following properties
are satisfied:

C1. For any two points a, b ∈ Q, there is a unique point c ∈ Q such that [a, b, c] (i.e.,
(a, b, c) ∈ [ ]).

C2. The relation [ ] is totally symmetric (i.e., [a, b, c] implies [a, c, b], [b, a, c], [b, c, a], [c, a, b],
and [c, b, a]).

C3. [a, b, c], [d, e, f ], [g, h, i], [a, d, g], and [b, e, h] imply [c, f , i], which can be clearly written
in the form of the following table:

a b c
d e f
g h i

.

In [4], numerous examples of cubic structures are presented, with one notable example
in which Q is the set of all non-singular points of a cubic curve in the plane. In this context,
the notation [a, b, c] signifies that points a, b, and c ∈ Q are collinear. Therefore, in a general
cubic structure (Q, [ ]), if [a, b, c] holds true, then we will also say that points a, b, and c
form a line. If this statement is not valid, then we say that (a, b, c) is a triangle.

The concept of tangentials of points was introduced in [5]. The point a′ is said to
be the tangential of the point a if [a, a, a′] holds true. If a′ is the tangential of the point a,
then we will also say that the point a is an antecedent of the point a′. It is obvious that
every point has one and only one tangential a′. The tangential a′′ of the tangential a′ of a
point a is called its second tangential. We will always denote the tangential and the second
tangential of any point x as x′ and x′′. The validity of [a, b, c] implies the validity of [a′, b′, c′].
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Two distinct points having the same tangential are called corresponding points. All points
such that any two of them are corresponding points (i.e., have the same tangential) are
said to be associated. The maximal number of associated points always equals 2m for some
m ∈ N ∪ {0}, and the number m is called the rank of the observed cubic structure. In the
case of a cubic structure where collinear triples of non-singular points are observed on a
cubic curve in the complex plane, ranks 0, 1, or 2 appear, depending on whether the cubic
has a spike, an ordinary double point, or is without singular points. We will mention here
some of the results from [5] in the form of several lemmas.

Lemma 1. Let a1 and a2 be corresponding points with the common tangential a′, let o be any point,
and let b1 and b2 be points such that [o, a1, b1] and [o, a2, b2]. Then, b1 and b2 are corresponding
points with the common tangential b′ such that [o′, a′, b′]. In addition, there is a point c such that
[a1, b2, c] and [a2, b1, c], and o and c are corresponding points.

Lemma 2. If [a, b, c]; [a, e, f ]; [b, f , d]; and [c, d, e], then a, d; b, e; and c, f are pairs of correspond-
ing points, and the tangentials a′, b′, and c′ satisfy [a′, b′, c′].

Lemma 3. If a1, a2, a3, and a4 are associated points with the common tangential a′, then there exist
points p, q, and r such that [a1, a2, p], [a3, a4, p], [a1, a3, q], [a2, a4, q], [a1, a4, r], and [a2, a3, r],
and points a′, p, q, and r are associated.

Lemma 4. Suppose [a′, b′, c′] holds, where a′, b′, and c′ are mutually different points. All different
antecedents of points a′, b′, and c′ in a cubic structure of rank 2 can be denoted by a1, a2, a3, and
a4; b1, b2, b3, and b4; and c1, c2, c3, and c4 such that the following hold:

[a1, b1, c1], [a1, b2, c2], [a1, b3, c3], [a1, b4, c4],

[a2, b1, c2], [a2, b2, c1], [a2, b3, c4], [a2, b4, c3],

[a3, b1, c3], [a3, b2, c4], [a3, b3, c1], [a3, b4, c2],

[a4, b1, c4], [a4, b2, c3], [a4, b3, c2], [a4, b4, c1].

Points a, b, c, d, e, and f are said to form a quadrilateral {a, d; b, e; c, f } if there exist lines
[a, b, c], [a, e, f ], [d, b, f ], and [d, e, c], and we say that the points from each pair of points
a, d; b, e; and c, f are opposite. Lemma 2 actually asserts that pairs of opposite vertices of a
quadrilateral are corresponding.

We will say that a, d; b, e; and c, f are pairs of opposite vertices of a complete quadrilateral
(a, d; b, e; c, f ) if there exist lines [a, b, c], [a, e, f ], [d, b, f ], and [d, e, c]. According to [5] (Theo-
rem 3.5), pairs of opposite vertices have common tangentials which are collinear points.

The motivation for this paper is drawn from classical books [6–9] which extensively
covered the properties of cubics. Additionally, a wealth of various research papers on this
subject exist, although we will not provide a detailed list.

2. Some Properties of Tangentials in a General Cubic Structure

The following theorem allows the construction of the tangential of a point when the
tangential of another given point is known:

Theorem 1. Let a point a and its tangential a′ be given. For each point p, let q, r, s, and t be points
such that [a, p, q], [a′, p, r], [q, r, s], and [a, s, t] hold. Then, point t is the tangential of point p.

Proof. This statement follows from the table

a′ r p
a q p
a s t

.
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Theorem 2. Let q and r be fixed points, and let a1, a2, b1, and b2 be points such that [r, a1, a2],
[q, a1, b1], and [q, a2, b2]. Then, point s such that [s, b1, b2] is also a fixed point.

Proof. Let q′ be the tangential of q. From the table

q q q′

a1 a2 r
b1 b2 s

we obtain [q′, r, s]. Let c1, c2, d1, and d2 be points such that [r, c1, c2], [q, c1, d1], and [q, c2, d2].

Then, the statement [s, d1, d2], which should be proven, follows from the table

q c1 d1
q c2 d2
q′ r s

.

Theorem 3. If p, q, r, and s are points such that [a, p, q], and [a, r, s] hold, and u and v are points
such that [p, r, u] and [q, s, v] hold, then for the tangential a′ of point a, the statement [u, v, a′] holds.

Proof. This statement follows from the table

p r u
q s v
a a a′

.

Theorem 4. Let a1, b1, c1, and d1 be points such that there is a point e1 which satisfies [a1, b1, e1]
and [c1, d1, e1], and let t be any point. If points a2, b2, c2, and d2 satisfy [t, a1, a2], [t, b1, b2],
[t, c1, c2], and [t, d1, d2], then there is a point e2 satisfying [a2, b2, e2] and [c2, d2, e2].

Proof. If t′ is the tangential of point t, and e2 is the point such that [t′, e1, e2], then from
the tables

t a1 a2
t b1 b2
t′ e1 e2

t c1 c2
t d1 d2
t′ e1 e2

we obtain [a2, b2, e2] and [c2, d2, e2].

Theorem 5. Let points a1 and a2 have the common tangential a′, and let b be any point. If c
and d are points such that [a1, b, c] and [a2, b, d] hold, then there is a point e satisfying [a1, d, e] and
[a2, c, e].

Proof. Let point e be such that [a1, d, e]. Then, [a2, c, e] follows from the table

a′ a2 a2
a1 b c
a1 d e

.

Theorem 6. In a cubic structure, there are as many triangles with vertices a, b, and c whose sides
pass through the three given points d, e, and f of this cubic structure as there are antecedents of
each point (i.e., in a structure of rank m, there are 2m such triangles).

Proof. Let g be the point such that [e, f , g], and let h be the point satisfying [d, g, h]. If a is
some antecedent point of the point h (i.e., if h is the tangential a′ of the point a), then a is
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one of the required points. Indeed, if b and c are points such that [a, f , b] and [a, e, c], then
we obtain [b, c, d] from the table

a f b
a e c
h g d

.

The number of solutions is equal to the number of antecedents of point h.

Theorem 7. If [a1, a2, a3], [b1, b2, b3], and [ai, bi, ci], where i = 1, 2, 3, then the table

a1 b1 c1
a2 b2 c2
a3 b3 c3

implies [c1, c2, c3]. If points a1, b2, and c3 have the common tangential, then points a2, b3, and c1
have the common tangential, as do points a3, b1, and c2.

Proof. Here, [b1, a1, c1] and [c2, b2, a2] imply [b′1, a′1, c′1] and [c′2, b′2, a′2], and since [b2, b2, a′1]
and [c3, c3, b′2] also hold true, the tables

b′1 a′1 c′1
b1 b2 b3
b1 b2 b3

c′2 b′2 a′2
c2 c3 c1
c2 c3 c′1

imply [b3, b3, c′1] and [c1, c1, a′2] (i.e., b′3 = c′1 and c′1 = a′2, respectively). In the same

way, the second claim follows from the first statement by cyclically replacing the indices
1 → 2 → 3 → 1.

Theorem 8. Let points a′, b′, and c′ be tangentials of points a, b, and c. Then, [a′, b, c] and [a, b′, c]
imply [a, b, c′].

Proof. This statement follows from the table

a′ a a
b b′ b
c c c′

.

The next theorem is the converse of Lemma 2.

Theorem 9. If [a, b, c] and [c, d, e] hold, and if points a and b have the common tangential a′, then
there is a point f satisfying [a, e, f ] and [b, d, f ] (i.e., there exists the quadrilateral {a, d; b, e; c, f }).

Proof. Let f be a point such that [a, e, f ]. From the table

a c b
a′ d d
a e f

we obtain [b, d, f ].

Theorem 10. Let a, b, c, d, e, and f be points such that [b, c, d], [c, a, e], and [a, b, f ]. The following
four statements are equivalent: a′ = d′, b′ = e′, c′ = f ′, and [d, e, f ].
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Proof. Because of the symmetry of our ternary relation, it suffices to prove that a′ = d′ if
and only if [d, e, f ]. If a′ = d′, then [d, e, f ] follows from the table

a′ d d
a c e
a b f

.

Conversely, if [d, e, f ], then a′ = d′ follows from the table

c b d
e f d
a a a′

.

The following theorem is the converse of Lemma 3.

Theorem 11. If there exist lines [a, b, p], [c, d, p], [a, c, q], [b, d, q], [a, d, r], and [b, c, r], then points
a, b, c, and d have the common tangential t, and points p, q, r, and t have the common tangential.

Proof. If t is the tangential of point a, then the fact that point t is the common tangential of
points b, c, and d follows from the tables

q d b
c r b
a a t

,
p d c
b r c
a a t

,
p c d
b q d
a a t

.

According to the table
a b p
a b p
t t t′

,

the point t′ is the tangential of p. The proof for points q and r is similar.

Theorem 12. Let [b, c, d], [c, a, e], and [a, b, f ] hold. Points a, b, and c have the common tangential
if and only if there exists a point p such that [a, d, p], [b, e, p], and [c, f , p].

Proof. Let a′ = b′ = c′ = q, and let p be a point where [a, d, p]. Statements [b, e, p] and
[c, f , p] follow from the tables

q b b
a c e
a d p

q c c
a b f
a d p

.

Conversely, if there is a point p such that [a, d, p], [b, e, p], and [c, f , p], and if q is the
tangential of the point a, then from the tables

p e b
d c b
a a q

p f c
d b c
a a q

we find that q is also the tangential of b and c.

Theorem 13. If [b, c, d], [c, a, e], and [a, b, f ], then there exists a point p satisfying [a′, d, p] and
[e, f , p].
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Proof. The proof follows by applying the table

a a a′

c b d
e f p

.

Theorem 14. If [b, c, d], [c, a, e], and [a, b, f ], then [a′, b′, c′] and [d, e, f ] are equivalent statements.

Proof. Suppose [a′, b′, c′] holds. Since [b, c, d] implies [b′, c′, d′], we find that d′ = a′ (i.e.,
[d, d, a′]). Due to Theorem 13, there is a point p such that [a′, d, p] and [e, f , p], which imply
p = d (i.e., [e, f , d] holds true). Conversely, suppose [d, e, f ] holds. From the table

e f d
c b d
a a a′

,

we find that d′ = a′. As [b, c, d] implies [b′, c′, d′], we obtain [b′, c′, a′].

Following [10], a trio of points (a, b, c) is called a triad if for points d, e, and f such that
[b, c, d], [c, a, e], and [a, b, f ], the statement [d, e, f ] also holds true (i.e., there is a quadrilateral
{d, a; e, b; f , c} in which the triad (a, b, c) is a triangle). We will call this quadrilateral the
circumscribed quadrilateral and line [d, e, f ] the complementary line of the triad (a, b, c). Ob-
viously, the quadrilateral {d, a; e, b; f , c} is also circumscribed to three other triads (a, e, f ),
(b, d, f ), and (c, d, e), to which the lines [b, c, d], [c, a, e], and [a, b, f ] are complementary. Due
to Lemma 1, the pairs of points a, d; b, e; and c, f have the common tangentials a′, b′, and c′

belonging to one line.

Theorem 15. If {d, a; e, b; f , c} is the circumscribed quadrilateral of the triad (a, b, c), and if g, h,
and i are points such that [a, d, g], [b, e, h], and [c, f , i] hold, then these points also form the triad
(g, h, i) whose complementary line is the line (d′, e′, f ′), where d′, e′, and f ′ are the tangentials of
points d, e, and f .

Proof. We already have [b, c, d], [c, a, e], [a, b, f ], and [d, e, f ], and the last relation implies
[d′, e′, f ′]. From the tables

b e h
c f i
d d d′

,
a d g
c f i
e e e′

, and
a d g
b e h
f f f ′

,

we obtain [h, i, d′], [g, i, e′], and [g, h, f ′] which, together with [d′, e′, f ′], yields the statement

of the theorem.

Theorem 16. Let a1, a2, and a3 be given points, let (i, j, k) be any cyclic permutation of (1, 2, 3),
and let points bi and ci (i = 1, 2, 3) be defined in such a way that [ai, aj, bk] and [bi, bj, ck] hold.
Then, [bi, ci, a′i] holds for i = 1, 2, 3.

Proof. The statement follows using the table

ak aj bi
bj bk ci
ai ai a′i

.
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3. Properties of the Tangentials in the Cubic Structures of Ranks 0 and 1

Theorem 17. In a cubic structure of rank 0, the antecedents of three collinear points are also collinear.

Proof. Let a, b, and c be antecedents of points a′, b′, and c′, respectively, and let [a′, b′, c′]
hold true. Suppose that there is a point d such that [a, b, d]. This implies [a′, b′, d′], and thus
d′ = c′. Since each point has only one antecedent, we conclude that d = c.

Theorem 18. In a cubic structure of rank 1, let a1 and a2 be two different points having the common
tangential a, and let b be a point different from a which has the common tangential with a. Then,
[a1, a2, b] holds true.

Proof. Let c be a point such that [a1, a2, c], and let a′ be the tangential of a. From the table

a1 a2 c
a1 a2 c
a a a′

it follows that point c has the tangential a′. If c = a, then we would have [a1, a2, a] and

[a1, a1, a]. This would lead to the contradiction a1 = a2. Consequently, c = b.

Theorem 19. If points a and b have the tangentials a′ and b′, respectively, and if point c′ is such
that [a′, b′, c′], then there exists a point c to which point c′ is tangential and which satisfies [a, b, c].

Proof. Let c be a point such that [a, b, c]. This implies [a′, b′, c′], and the point c′ is uniquely
determined.

Theorem 20. In a cubic structure of rank 1, let [a′, b′, c′] hold true, and let a1, a2; b1, b2; and c1, c2
be pairs of different points with common tangentials a′, b′, and c′, respectively. Then, the indices
of these points can be chosen such that [a1, b1, c1], [a1, b2, c2], [a2, b1, c2], and [a2, b2, c1] (i.e., such
that {a1, a2; b1, b2; c1, c2} is a quadrilateral).

Proof. Let us choose arbitrary labeled points with tangentials a′ and b′. Due to Theorem 19,
one of the points with the tangential c′ lies on the same line with points a1 and b1. Let us label
this point with c1 and the other point with c2. We therefore have [a1, b1, c1]. Then, because of
axiom C1, [a1, b2, c1] and [a2, b1, c1] cannot be valid. According to Theorem 19, [a1, b2, c2] and
[a2, b1, c2] must hold. From any of these two statements, due to C1, it follows that [a2, b2, c2]
cannot be valid, and according to Theorem 19, [a2, b2, c1] must hold.

4. The Properties of Tangentials in Cubic Structures of Rank 2

Theorem 21. If non-collinear points a, b, and c in a cubic structure of rank 2 have collinear
tangentials a′, b′, and c′, respectively, then (a, b, c) is a triad.

Proof. Each of the points a′, b′, and c′ has four antecedents ai, bi, and ci (i = 0, 1, 2, 3).
According to Lemma 4, the indices of these points can be chosen such that, among others,
[a0, b0, c0], [a0, b1, c1], [a1, b0, c1], and [a1, b1, c0] hold, where points a1, b1, and c1 are the
original points a, b, and c.

Theorem 22. Let the triad (a, b, c) and the line [d, e, f ] be given. If g, h, and i are points such that
[a, d, g], [b, e, h], and [c, f , i], then (g, h, i) is also a triad.
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Proof. Here, [a′, b′, c′] holds, and the existence of four lines in the theorem implies the
existence of the lines [d′, e′, f ′], [a′, d′, g′], [b′, e′, h′], and [c′, f ′, i′]. From the table

a′ d′ g′

b′ e′ h′

c′ f ′ i′

we obtain [g′, h′, i′]. Points g, h, and i are not collinear, because otherwise [a, b, c] would

follow from the table
d g a
e h b
f i c

,

which is not true. Due to Theorem 20, (g, h, i) is a triad.

Theorem 23. Let a, b, and c be three non-collinear points in a cubic structure of rank 2. Then,
there are four triples of the form (d, e, f ) such that [e, f , a], [ f , d, b], and [d, e, c] hold true.

Proof. Let g be a point such that [b, c, g], and additionally, let h be a point such that [a, g, h].
If we assume that [e, f , a], [ f , d, b], and [d, e, c] hold, then from the table

f b d
e c d
a g h

it follows that point h is necessarily the tangential of d. Therefore, for point d, we have to

take one of the four antecedents of h. Let us take one such point d, and then let e and f be
points such that [c, d, e] and [b, d, f ] hold. Then [e, f , a] follows from the table

d c e
d b f
h g a

.

In the previous inference, if points a, b, and c are collinear, then g = a, and thus [a, a, h].
Therefore, point a is one of the antecedents of point h, and any of the other three can be
taken as point d. In case d = a, we obtain e = b and f = c. Theorem 16 solves the problem
of finding a triangle whose “sides” pass through the given points.

Theorem 24. If a1, a2, a3, and a4 are different points with the common tangential a′, then
[a1, a2, a3, a4, b, c] implies [b, c, a′′], where a′′ is the tangential of a′.

Proof. According to Lemma 2, there is a point p such that [a1, a2, p], [a3, a4, p], and points p
an a′ have the common tangential a′′. Let t be a point such that [b, c, t]. As [a1, a2, a3, a4, b, c],
[a1, a2, p], [a3, a4, p], and [b, c, t] imply [p, p, t], we obtain that t is the tangential of p (i.e.,
t = a′′).

Let a, b, c, and d be associated points with the common tangential p. According to
Lemma 3, there are points d, e, and f such that [a, b, e], [c, d, e], [a, c, f ], [b, d, f ], [a, d, g], and
[b, c, g]. Points p, e, f , and g are associated with the common tangential p′. According
to the same lemma, there are points e1, f1, and g1 such that [p, e, e1], [ f , g, e1], [p, f , f1],
[e, g, f1], [p, g, g1], and [e, f , g1]. Points p′, e1, f1, and g1 are associated with the common
tangential p′′.
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Theorem 25. Using the same labeling and the results from above, there exist points q, r, s, and t
such that [p′, a, q], [b, e1, q], [c, f1, q], [d, g1, q], [p′, b, r], [a, e1, r], [d, f1, r], [c, g1, r], [p′, c, s],
[d, e1, s], [a, f1, s], [b, g1, s], [p′, d, t], [c, e1, t], [b, f1, t], and [a, g1, t] hold true, and points q, r, s,
and t are associated.

Proof. Let point q be such that [p′, a, q]. Then, [b, e1, q], [c, f1, q], and [d, g1, q] follow from
the tables

f d b
f g e1
p′ a q

,
e d c
e g f1
p′ a q

, and
e c d
e f g1
p′ a q

.

Similarly, [p′, b, r] implies [a, e1, r], [d, f1, r], and [c, g1, r], and from [p′, c, s], we ob-
tain [d, e1, s], [a, f1, s], and [b, g1, s], and [p′, d, t] implies [c, e1, t], [b, f1, t], and [a, g1, t]. Fi-
nally, switching to the tangentials, from [p′, a, q], [p′, b, r], [p′, c, s], and [p′, d, t], we obtain
[p′′, p, q′], [p′′, p, r′], [p′′, p, s′], and [p′′, p, t′] (i.e., q′ = r′ = s′ = t′).

5. Hesse Configuration

The configuration (123, 164) of points and lines obtained in Lemma 4 is called the
Hesse configuration. In this configuration, we have the line [a1, b1, c1], nine lines of the forms
[a1, bi, ci], [ai, b1, ci], and [ai, bi, c1] (i = 2, 3, 4), and six lines of the form [ai, bj, ck], where
(i, j, k) is any permutation of (2, 3, 4). The lines of this configuration can be divided into
4 quadruplets of lines, each of which contains all 12 points of the configuration:

[a1, b1, c1], [a2, b3, c4], [a3, b4, c2], [a4, b2, c3],
[a1, b2, c2], [a2, b4, c3], [a3, b3, c1], [a4, b1, c4],
[a1, b3, c3], [a2, b1, c2], [a3, b2, c4], [a4, b4, c1],
[a1, b4, c4], [a2, b2, c1], [a3, b1, c3], [a4, b3, c2].

Moreover, because of the following two theorems, the points of the Hesse configuration
lie with some other points on some more lines.

Theorem 26. Using the notation from Lemma 4, there are points xi, yi, and zi (i = 2, 3, 4) such
that there are 18 lines [a1, ai, xi], [aj, ak, xi], [b1, bi, yi], [bj, bk, yi], [c1, ci, zi], and [cj, ck, zi], where
i = 2, 3, 4, j, k ̸= i, and j < k.

Proof. Let xi, yi, and zi (i = 2, 3, 4) be points such that [a1, ai, xi], [b1, bi, yi], and [c1, ci, zi]
hold. From the table

b1 cj aj
c1 bk ak
a1 ai xi

we obtain [aj, ak, xi]. Cyclically permuting letters a, b, and c in the previous table proves

[bj, bk, yi], and repeating it proves [cj, ck, zi].

Theorem 27. For each permutation (i, j, k) of (2, 3, 4), for the points from Theorem 22 there is a
line [xi, yj, zk].

Proof. The proof follows by applying the table

a1 ai xi
b1 bj yj
c1 ck zk

.
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Theorem 28. Let a′ be the common tangential of mutually different points a1, a2, a3, and a4
in a cubic structure of rank 2. If o is any point, and if b1, b2, b3, and b4 are points such that
[o, ai, bi] (i = 1, 2, 3, 4), then b1, b2, b3, and b4 are mutually different points with the common
tangential b′ such that [o′, a′, b′], where o′ is the tangential of point o. In addition, there are
mutually different points c, d, and e which are different from point o such that points c, d, e, and o
have the common tangential o′ and [a1, b2, c], [a2, b1, c], [a3, b4, c], [a4, b3, c], [a1, b3, d], [a3, b1, d],
[a2, b4, d], [a4, b2, d], [a1, b4, e], [a4, b1, e], [a2, b3, e], and [a3, b2, e] hold true.

Proof. Let a1 and a2 be different points with the common tangential a′, let o be any point,
and let b1 and b2 be points such that [o, a1, b1] and [o, a2, b2]. Then, according to Lemma 1,
points b1 and b2 are different and have the common tangential b′ such that [o′, a′, b′],
where o′ is the tangential of o. Aside from that, there is a point c such that [a1, b2, c] and
[a2, b1, c], and points o and c have the common tangential o′. Points o and c are different
because otherwise, we would have [a1, b1, o] and [a1, b2, o], where bi ̸= b2. In a cubic
structure of rank 2, each point has four different antecedent points. Let a1, a2, a3, and a4
be different points with the common tangential a′. If o is any point, and b1, b2, b3, and
b4 are points such that [o, ai, bi] (i = 1, 2, 3, 4), then points b1, b2, b3, and b4 are mutually
different. Due to the previous facts, points b1, b2, b3, and b4 have the common tangential b′

such that [o′, a′, b′], and there are points c, d, and e such that [a1, b2, c], [a2, b1, c], [a1, b3, d],
[a3, b1, d], [a1, b4, e], and [a4, b1, e] and which have the tangential o′. Points c, d, and e are
mutually different because, for example, c = d would imply [a1, b3, c], which contradicts
[a1, b2, c], where b2 ̸= b3, and they are also different from point o. There is also point f
with tangential o′ and different from o such that [a2, b3, f ] and [a3, b2, f ]. It must coincide
with one of points c, d, or e. Due to [a2, b1, c] and [a1, b3, d], it can be neither c nor d, and
thus f = e (i.e., [a2, b3, e] and [a3, b2, e] hold true). Similarly, one can show that [a2, b4, d],
[a4, b2, d], [a3, b4, c], and [a4, b3, c].

If we now rename points o, c, d, and e as c0, c1, c2, and c3, respectively, then we have
16 lines of the form [ai, bj, ck], where the indices i, j, k ∈ {0, 1, 2, 3} are such that either all
three are different or all three are equal to zero. Otherwise, one index is equal to zero, and
the other two are equal and different from zero. We find the Table 1 from which one can see
which point ck lies on the same line with some point ai and some point bj. We once again
obtain the Hesse configuration (124, 163) from Lemma 4.

Table 1. Hesse configuration (124, 163) (of points ai, bi, ci (i = 0, 1, 2, 3)).

b0 b1 b2 b3

a0 c0 c1 c2 c3

a1 c1 c0 c3 c2

a2 c2 c3 c0 c1

a3 c3 c2 c1 c0

Theorem 29. The following quadrilaterals exist in the Hesse configuration shown in the previous
table:

{a0, a1; b0, b1; c0, c1}, {a0, a1; b2, b3; c2, c3}, {a2, a3; b0, b1; c2, c3}, {a2, a3; b2, b3; c0, c1},

{a0, a2; b0, b2; c0, c2}, {a0, a2; b1, b3; c1, c3}, {a1, a3; b0, b2; c1, c3}, {a1, a3; b1, b3; c0, c2},

{a0, a3; b0, b3; c0, c3}, {a0, a3; b1, b2; c1, c2}, {a1, a2; b0, b3; c1, c2}, {a1, a2; b1, b2; c0, c3}.

Proof. The proof is obvious when referring to the above table. For example, the last
statement is a consequence of the existence of lines [a1, b1, c0], [a1, b2, c3], [a2, b1, c3], and
[a2, b2, c0].
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6. The de Vries Configuration

In [11,12], it is claimed (and in [13], it is proven) that for an elliptic cubic, there are only
two non-isomorphic configurations (124, 163) in which there are three disjoint quadruples
of points such that no two points from a particular quadruple are on one of the 16 lines of the
configuration. One of these configurations is the Hesse configuration, and the other can be
called the de Vries configuration. Both configurations were also observed in [14–16]. All five
authors used the properties of the ambient space (i.e., the properties of the projective plane
in which the cube is embedded). In this paper, we will observe the de Vries configuration
in any cubic structure by means of that structure (i.e., using only axioms C1– C3). The
observed cubic structure should be of at least rank 1.

We start from three non-collinear points a0, a1, and b0. Let c0 and a01 be points such
that [a0, b0, c0] and [a0, a1, a01], and let a2 and a3 be two different points with the common
tangential a01. Let b2, b3, c2, and c3 be points such that [c0, a2, b3], [c0, a3, b2], [b0, a2, c2], and
[b0, a3, c3] hold, and let b1 be the point such that [a2, c3, b1]. Then, by using the tables

a01 a0 a1
a2 c0 b3
a2 b0 c2

,
a01 a0 a1
a3 c0 b2
a3 b0 c3

,
a01 a3 a3
a2 b0 c2
a2 c3 b1

.

we obtain [a1, b3, c2], [a1, b2, c3], and [a3, c2, b1]. If b1 and c1 are points such that [a1, c0, b1]

and [a1, b0, c1], then from the tables

b1 c3 a2
c0 a3 b2
a1 b0 c1

,
b1 c2 a3
c0 a2 b3
a1 b0 c1

we have [a2, b2, c1] and [a3, b3, c1]. Finally, from the tables

c0 b0 a0
a3 c2 b1
b2 a2 c1

,
c0 b0 a0
a2 c1 b2
b3 a1 c2

,
c0 b0 a0
a1 c2 b3
b1 a2 c3

.

we obtain [a0, b1, c1], [a0, b2, c2], and [a0, b3, c3]. Therefore, we proved the following theorem:

Theorem 30. There exists a configuration (124, 163) of points ai, bi, and ci, where i = 0, 1, 2, 3,
with the corresponding Table 2.

Table 2. The de Vries configuration (124, 163) (of points ai, bi, ci (i = 0, 1, 2, 3)).

b0 b1 b2 b3

a0 c0 c1 c2 c3

a1 c1 c0 c3 c2

a2 c2 c3 c1 c0

a3 c3 c2 c0 c1

The configuration from Theorem 30 is the de Vries configuration. To create it, we begin
such that points a2 and a3 have the common tangential a01 satisfying [a0, a1, a01]. How-
ever, such a property appears several times more in the configuration (i.e., the following
holds true):
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Theorem 31. In the configuration from Theorem 30, pairs of points a0, a1; a2, a3; b0, b1; b2, b3;
c0, c1; and c2, c3 have common tangentials a23, a01, b23, b01, c23, and c01, respectively, such that
[a2, a3, a23], [a0, a1, a01], [b2, b3, b23], [b0, b1, b01], [c2, c3, c23], and [c0, c1, c01] hold true.

Proof. We will prove all statements using only Table 2 and statements [a2, a3, a23], [a0, a1, a01],
[b2, b3, b23], [b0, b1, b01], [c2, c3, c23], and [c0, c1, c01] (i.e., independent from the construction
method of the observed configuration). Statements [a0, a0, a23], [a1, a1, a23], [a2, a2, a01], and
[a3, a3, a01] can be derived from the tables

b0 c0 a0
c2 b2 a0
a2 a3 a23

,
b0 c1 a1
c2 b3 a1
a2 a3 a23

,
b0 c2 a2
c0 b3 a2
a0 a1 a01

,
b0 c3 a3
c0 b2 a3
a0 a1 a01

.

We obtain [b0, b0, b23], [b1, b1, b23], [b2, b2, b01], and [b3, b3, b01] from the tables

c0 a0 b0
a3 c3 b0
b2 b3 b23

,
c0 a1 b1
a3 c2 b1
b2 b3 b23

,
c0 a3 b2
a0 c2 b2
b0 b1 b01

,
c0 a2 b3
a0 c3 b3
b0 b1 b01

.

Then, [c0, c0, c23], [c1, c1, c23], [c2, c2, c01], and [c3, c3, c01] follow from the tables

a0 b0 c0
b2 a3 c0
c2 c3 c23

,
a0 b1 c1
b2 a2 c1
c2 c3 c23

,
a0 b2 c2
b0 a2 c2
c0 c1 c01

,
a0 b3 c3
b0 a3 c3
c0 c1 c01

.

Theorem 32. Under the conditions of Theorem 30, there exist complete quadrilaterals (a0, a1; b0,
b1; c0, c1), (a2, a3; b2, b3; c1, c0), (a2, a3; b0, b1; c2, c3), and (a0, a1; b2, b3; c2, c3).

Proof. Using Table 2, it is easy to check the existence of quadruples of the required lines.
For instance, for the last quadrilateral, we have the lines [a0, b2, c2], [a0, b3, c3], [a1, b2, c3],
and [a1, b3, c2].

From Table 2, we see that the lines

[a0, b0, c0], [a2, c0, b3], [a0, b3, c3], [a2, c3, b1], [a0, b1, c1], [a2, c1, b2], [a0, b2, c2], [a2, c2, b0]

pass alternately through points a0 and a2, while the lines

[a1, b0, c1], [a3, c1, b3], [a1, b3, c2], [a3, c2, b1], [a1, b1, c0], [a3, c0, b2], [a1, b2, c3], [a3, c3, b0]

pass alternately through points a1 and a3. In fact, we find two Steiner octagons with
fundamental points a0, a2 and a1, a3, and all 16 lines of the configuration were used.
However, it is also possible to form two Steiner octagons from all 16 lines of configuration
with fundamental points a0, a3 and a1, a2, 2 with fundamental points b0, b2 and b1 , b3, 2
with fundamental points b0, b3 and b1, b2, 2 with fundamental points c0, c2 and c1, c3, and 2
with fundamental points c0, c3 and c1, c2. In the two observed octagons, opposing vertices
have the common tangential, and the same holds for the other Steiner octagons.

Using the following theorems, we will show how to associate yet another de Vries
configuration to the one from Theorem 30.

Theorem 33. There exists a complete quadrilateral (a23, a01; b23, b01; c23, c01).
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Proof. From the tables

a3 a2 a23
b3 b2 b23
c1 c1 c23

,
a3 a2 a23
b1 b0 b01
c2 c2 c01

,
b3 b2 b23
c1 c0 c01
a3 a3 a01

,
c3 c2 c23
a1 a0 a01
b2 b2 b01

we obtain the lines [a23, b23, c23], [a23, b01, c01], [a01, b23, c01], and [a01, b01, c23], which proves

the statement.

Since the opposite vertices of the quadrilaterals have common tangentials, we have
the following:

Corollary 1. The pairs of points a23, a01; b23, b01; and c23, c01 have common tangentials.

Theorem 34. There exist points x2, x3, y2, y3, z2, and z3 such that there exist lines [a0, a2, x2],
[a1, a3, x2], [a0, a3, x3], [a1, a2, x3], [b0, b2, y2], [b1, b3, y2], [b0, b3, y3], [b1, b2, y3], [c0, c2, z2],
[c1, c3, z2], [c0, c3, z3], and [c1, c2, z3]. Furthermore, there exist quadrilaterals (a0, a1; a2, a3; x2, x3),
(b0, b1; b2, b3; y2, y3), and (c0, c1; c2, c3; z2, z3). Finally, the pairs of points x2, x3; y2, y3; and z2,
z3 have common tangentials.

Proof. Let x2, x3, y2, y3, z2, and z3 be such that there are lines [a0, a2, x2], [a0, a3, x3],
[b0, b2, y2], [b0, b3, y3], [c0, c2, z2], and [c0, c3, z3]. The existence of the remaining six lines
can be inferred from the following tables:

c0 b1 a1
b0 c3 a3
a0 a2 x2

,
b0 c1 a1
c0 b3 a2
a0 a3 x3

,
a0 c1 b1
c0 a2 b3
b0 b2 y2

,

a0 c1 b1
c0 a3 b2
b0 b3 y3

,
a0 b1 c1
b0 a3 c3
c0 c2 z2

,
a0 b1 c1
b0 a2 c2
c0 c3 z3

.

The existence of these 12 lines proves the existence of the three mentioned quadrilater-
als, and the last statement is an immediate consequence of [5] (Theorem 3.4).

Theorem 35. There exists a de Vries configuration (124, 163) of points a01, a23, x2, x3, b01, b23,
y2 , y3, c01, c23, z2, and z3 with the corresponding Table 3.

Table 3. The de Vries configuration (124, 163) (of points a01, a23, x2, x3, b01, b23, y2, y3, c01, c23, z2, z3).

b01 b23 y2 y3

a01 c23 c01 z3 z2

a23 c01 c23 z2 z3

x2 z3 z2 c01 c23

x3 z2 z3 c23 c01

Proof. Except for the lines from Theorem 33, one should prove the existence of yet another
12 lines. But this follows from the following tables:

a0 a1 a01
b0 b2 y2
c0 c3 z3

,
a0 a1 a01
b0 b3 y3
c0 c2 z2

,
a2 a3 a23
b0 b2 y2
c2 c0 z2

,
a2 a3 a23
b0 b3 y3
c2 c1 z3

,
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a0 a2 x2
b0 b1 b01
c0 c3 z3

,
a0 a2 x2
b2 b3 b23
c2 c0 z2

,
a0 a3 x3
b0 b1 b01
c0 c2 z2

,
a0 a3 x3
b2 b3 b23
c2 c1 z3

,

a0 a2 x2
b0 b2 y2
c0 c1 c01

,
a0 a2 x2
b2 b1 y3
c2 c3 c23

,
a0 a3 x3
b2 b0 y2
c2 c3 c23

,
a0 a3 x3
b0 b3 y3
c0 c1 c01

.

Comparing Table 3 in the text of this theorem with Table 2 in Theorem 30 reveals that
they represent the same configuration.

Using Table 2, we proved Theorems 31 and 32 concerning the existence of some
common tangentials and quadrilaterals. Similarly, by employing Table 3, we can prove
analogous theorems about the existence of common tangentials and quadrilaterals in this
second de Vries configuration.

7. Conclusions

The concept of a tangential in a general cubic structure was introduced and studied
in [5]. In this paper, we explored the noteworthy properties of tangentials in cubic structures
of ranks 0, 1, and 2. We investigated the relationships between tangentials and various
other concepts in cubic structures of specific ranks. Additionally, we constructed the Hesse
configuration of points and lines in a cubic structure of rank 2. We obtained and explored
the de Vries configuration of points and lines in a cubic structure. The authors’ future
research aims to conduct a more detailed investigation into admissible and non-admissible
configurations in cubic structures. However, in order to accomplish this, it is important
to first dig up some additional significant properties of the tangentials in cubic structures
beyond those already discovered in [5]. This paper used the cubic structure to demonstrate
how the results can be reached with this quite simple structure. These findings were
expressed in the language of models in the most well-known cubic structure: the geometry
on cubic curves. However, certain additional cubic structure models were considered in [4],
and therefore the findings achieved using a cubic structure were also readily obtained in
these models.
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5. Volenec, V.; Kolar-Begović, Z.; Kolar-Šuper, R. Tangentials in cubic structures. Glas. Mat. Ser. III 2020, 55, 337–349. [CrossRef]
6. Cremona, L. Einleitung in Eine Geometrische Theorie der Ebenen Kurven; Hansebooks: Greifswald, Germany, 1865.
7. Durège, H. Die Ebenen Curven Dritter Ordnung; Teubner: Leipzig, Germany, 1871.
8. Schroeter, H. Die Theorie der Ebenen Kurven Dritter Ordnung. Auf Synthetisch-Geometrischem Wege; Teubner: Leipzig, Germany, 1888.

http://doi.org/10.1017/S001309150000897X
http://dx.doi.org/10.33232/BIMS.0060.67.89
http://dx.doi.org/10.3336/gm.52.2.05
http://dx.doi.org/10.3336/gm.55.2.10


Axioms 2024, 13, 122 15 of 15

9. Smogorzhevski, A.S.; Stolova, E.S. Handbook in the theory of plane curves of the third order; State Publishing House of Physical and
Mathematical Literature: Moscow, Russia, 1961. (In Russian)

10. Green, H.G.; Prior, L.E. Systems of triadic points on a cubic. Amer. Math. Mon. 1934, 41, 253–255. [CrossRef]
11. de Vries, J. Über gewisse Configurationen auf ebenen kubischen Curven. Sitzungsber. Akad. Wiss. Wien 1889, 98, 1290–1298.
12. de Vries, J. Over vlakke configurations. Versl. Kon. Akad. Wetensch. 1889, 5, 105–120.
13. Schroeter, H. Die Hessesche Configuration (124, 163). J. Reine Angew. Math. 1891, 108, 269–312. [CrossRef]
14. Bydžovský, B. Poznámky k theorii konfigurace (124, 163). Čas. Pěst. Mat. Fys. 1949, 74, 249–251.
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