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Abstract: In this paper, we investigate an application of the statistical concept of causality, based
on Granger’s definition of causality, on raw increasing processes as well as on optional and pre-
dictable measures. A raw increasing process is optional (predictable) if the bounded (left-continuous)
process X, associated with the measure µA(X), is self-caused. Also, the measure µA(X) is optional
(predictable) if an associated process X is self-caused with some additional assumptions. Some of
the obtained results, in terms of self-causality, can be directly applied to defining conditions for an
optional stopping time to become predictable.
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1. Introduction

In the past few decades, scientists have been interested in investigating probabilistic
concepts of causality regarding which causes should involve and induce their effects, or,
to make be more clear, to raise the probability of their effects. This problem has taken a
central role in philosophy and it has great applications in many different sciences.

The processes that we investigate took place under different conditions, but scientists
discovered that within the changes, there are connections that remain constant. For example,
objects released in mid-air under various conditions will usually fall to the ground. But if
the object is a piece of paper, and if there is a strong breeze blowing, the piece of paper will
almost certainly rise. Hence, we can understand the laws of nature as conditional, because
they can be applied only when unusual or rarely occurring circumstances are neglected.
This example is not alone; plenty of different, yet similar phenomena can be observed.
Obviously, based on this type of behaviour, we can think about the possibility that during
these processes, some of relationships are consistent and the resulting changes are no
coincidence. This kind of consistent relationship can lead us to interpret this constancy
as necessary; in other words, it could not be otherwise, because it is an essential part
of an observed stochastic process. The necessary relationships between objects, events,
conditions, or other things at a given time and those at later times are referred to as
causal laws.

The causal laws in a specific problem are usually not known a priori; they can be
discovered later in nature. The existence of a common relationship that holds between two
objects regardless of the conditions is the first sign of potential causal laws. When we notice
such conditions, we suppose that they are causal relationships instead of rejecting them
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as a result of arbitrary connections. The next step in finding regularities which we want
to prove are a result of causality is to create a hypothesis about any observed connections,
which can help us explain and understand their origin.

The first problem that was considered was to further investigate the relationship
between causality and a realisation of events through time. For example, before winter,
the leaves fall off the trees. Of course, the loss of the leaves by the trees is not the cause
of winter, but is instead the effect of the process of lowering of the temperature, which
first leads to the loss of leaves by the trees and, later, to the coming of winter. Clearly, the
concept of causal relations implies more than just regular realisation of events, in which
the preceding events represent the cause, while an event that is realised later is merely an
effect. Obviously, in this case, the event of the trees losing their leaves has happened before
the coming of winter, but this is not the cause of winter. In this case, it is easy to see what is
the cause and what is the effect, but there are phenomena for which this conclusion is not
so simple. This is the reason why some causes can be considered spurious.

But now, if we consider the idea that each occurrence and event has many causes, we
have some new problems. First of all, we can say that all events and objects may have
some connections, even if those connections are very tiny. On the other side, someone
could say that everything is connected and there are numerous causes of some problem of
interest. But usually, most of these events have insignificant effects. This is the reason why
we define the “significant causes” as those occurrences which have a significant influence
on the considered effects [1,2].

Sometimes, causes and effects can be observed by conducting an experiment, but
this is not always possible. A very well-known example of a science in which controlled
experiments cannot be applied, and in which the conditions of the problem cannot be
outlined very well, is geology. “What could have caused these present structures to be
what they are?” For example, consider a set of layers of rock, placed diagonally. Obviously,
the layers were placed horizontally at first, when the surface was at the bottom of a sea or
a lake. Then, the layers were probably pushed up and modified because of earthquakes
or some other earth movements. Although this explanation seems very reasonable and
credible, there is no way to prove it by controlled experiments or observations carried out
under prescribed conditions, because all these processes have happened a long time ago,
and that were tectonic movements that are not easy to verify.

In this paper, we consider the concept of causality, which is established based on
Granger causality, where the probability change was understood as a comparison of con-
ditional probabilities. The Granger causality pays particular attention to discrete time
stochastic processes (time series). But, in many cases—for example, in physics—it is very
difficult to consider relations of causality in discrete-time models, and such relations may
depend on the length of interval between each sampling. The continuous time framework
is fruitful for the statistical approach to causality analysis between stochastic processes that
rapidly evolve (see [3]). So, continuous-time models are seeing increasing use in a range of
applications (see, for example, [4–6]). This is the reason why we investigate the concept
of statistical causality in continuous time. Here, the concept of causality is analysed by
implementing conditional independence among the σ-fields, which is a foundation for a
general probabilistic theory of causality.

The paper is organised as follows. After the Introduction, in Section 2, we present
a generalisation of the concept of causality. “E is a cause of G within F”, which involves
prediction in any horizon in continuous time. The foundation of this concept is Granger’s
definition of causality (see [4,5]), but its generalisation, in terms of Hilbert spaces, is
formulated in [7,8]. The concept of causality in continuous time associated with stopping
times with some basic properties is introduced in [9]. The given concept of causality is
related to separable processes [10] and extremal measures [11].

Section 3 contains our main results. In this section, we relate the given concept of
causality in continuous time with the optionality and predictability of the raw increasing
process associated with measure. We also give the conditions for a stopping time to be
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predictable, in terms of causality, which has great applications in mathematical finance,
especially in risk theory. The relation between the concept of causality and optional and
predictable measures is considered, too. Section 4 provides an application of obtained
results on the theory of risk. We end the article with some concluding remarks.

2. Preliminaries and Notation

Causality is clearly a forecast property, and the main question is as follows: is it
possible to lessen accessible information in direction to predict a given filtration?

A probabilistic model for a time-dependent system is represented by (Ω,A, F, P)
where (Ω,A, P) is a probability space and F = {Ft, t ∈ I, I ⊆ R+} is a “framework”
filtration that satisfies the usual conditions of right continuity and completeness. The
F∞ =

∨
t∈I Ft is the smallest σ-algebra which contains all the {Ft}. An equivalent notation

will be used for filtrations H = {Ht}, G = {Gt} and E = {Et}. Let us mention that the
filtration E is a subfiltration of G and marked as E ⊆ G, if Et ⊆ Gt for each t. For a
stochastic process X by {FX

t } is marked the smallest σ-algebra, for which all Xs with s ≤ t,
are measurable and FX = {FX

t , t ∈ I} is the natural filtration of the process X. The natural
filtration FX is the smallest filtration that allows X to be adapted.

The definition of causality uses the conditional independence of σ-algebras, and the
initial step was to construct the “smallest” sub-σ-algebra of a σ-algebra M2 conditionally,
on which M2 becomes independent of another given σ-algebra M1.

Definition 1 (compare with [12,13]). Let (Ω,A, P) be a probability space and M1, M2 and
M arbitrary sub-σ-algebras from A. It is said that M is splitting for M1 and M2 or that M1
and M2 are conditionally independent given M (and written as M1 ⊥ M2 | M) if

E[X1X2 | M] = E[X1 | M]E[X2 | M].

where X1, X2 denote positive random variables measurable with respect to the corresponding σ-
algebras M1 and M2, respectively.

Some elementary properties of this concept are introduced in [14].
Now, we give a definition of causality between σ-algebras using the concept of condi-

tional independence.

Definition 2 (see [5]). Let M1 ⊂ F∞ be a σ-algebra. A σ-algebra M2 is a sufficient cause of M1
at time t (relative to (Ω,A,Ft, P)), or within F = {Ft} (and written as M1 |< M2 | F) if and
only if

M2 ⊂ Ft (1)

and
M1 ⊥ Ft | M2. (2)

The intuitive notion of causality in continuous time, formulated in terms of Hilbert
spaces, is investigated in [8]. Now, we consider the corresponding notion of causality for
filtrations based on the conditional independence between sub-σ-algebras of F (see [12,14]).

Definition 3 (See [7,8]). It is said that H is a cause of E within F relative to P (and written as
E |< G; F; P) if E∞ ⊆ F∞, G ⊆ F and if E∞ is conditionally independent of {Ft} given {Gt} for
each t, i.e., E∞ ⊥ Ft|Gt (i.e., Eu ⊥ Ft|Gt holds for each t and each u), or

(∀A ∈ E∞) P(A|Ft) = P(A|Gt). (3)

Intuitively, E |< G; F; P means that all information about E∞ that gives {Ft} is
contained in {Gt} for arbitrary t; equivalently, {Gt} holds all the information from the
{Ft} needed for predicting E∞. We can consider subfiltration G ⊆ F as a reduction
in information.
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The definition of causality introduced in [5] is of the following form: “It is said that G
entirely causes E within F relative to P (and written as E |< G; F;P) if E ⊆ F, G ⊆ F and if
E∞ ⊥ Ft|Gt for each t”. This definition is similar to the definition described in Definition 3,
because instead of E∞ ⊆ F∞, this definition contains the condition E ⊆ F, or identical
Et ⊆ Ft for each t, without natural reasoning. Clearly, the Definition 3 is more general than
the definition given in [5], so all results related to causality in the sense of the Definition 3
hold for the concept of causality introduced in the definition from [5] (p. 3), when we add
the condition E ⊆ F.

If E and G are equal filtrations, such that E |< E; F; P, we tell that E is self-caused
(or, its own cause) within F (compared with [5]). It should be noted that the statement
“E is self-caused” can sometimes be applied to the theory of martingales and stochastic
integration (see [15]). The hypothesis (H) introduced in [15] is equivalent to the concept of
being “self-caused”. Also, let us mention that the notion of being "self-caused", as defined
here, is equivalent to the notion of subordination (as introduced in [13]).

If E and F are such that E |< E; E
∨

F (where E
∨

F is a σ-algebra defined by (E
∨

F)t =
Et

∨
Ft), we say that F does not cause E. Clearly, the interpretation of Granger causality

is that F does not cause E if E |< E; E
∨

F holds (see [5]). It can be shown that the term “F
does not anticipate E” (as introduced in [13]) and this term are equivalent.

The given concept of causality can be applied to stochastic processes. In that manner,
instead of stochastic processes we consider the corresponding induced filtrations, i.e.,
natural filtrations. For example, {Ft}-adapted stochastic process Xt is self-caused if {FX

t }
is self-caused within {Ft}, i.e., if

FX |< FX ; F; P.

Process X, which is self-caused, is entirely determined by its way of behaving with
respect to its natural filtration FX (see [6]). For example, process X = {Xt, t ∈ I} is a
Markov process relative to the filtration F = {Ft, t ∈ I} on a filtered probability space
(Ω,A, F, P) if and only if X is a Markov process with respect to FX and if it is self-caused
within F relative to P. Obviously, the same holds for Brownian motion W = {Wt, t ∈ I}.
Namely, W is a Brownian motion with respect to the filtration F = {Ft, t ∈ I} on a filtered
probability space (Ω,A, F, P) if and only if it is self-caused within F = {Ft, t ∈ I} relative
to probability P, i.e., FW |< FW ; F; P (see [6]).

In many situations, we observe certain systems up to some random time, for example,
up to the time when something happens for the first time.

Definition 4 ([16,17]). A R+ random variable T defined on (Ω,A) is called a F-stopping time, if
for each t ≥ 0 {T ≤ t} ∈ Ft.

Let us remind ourselves of some elementary properties of stopping times and σ-
algebras. For a given {Ft}-stopping time T, the associated σ-algebra is defined by
FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft}. Intuitively, FT is information available at time
T. For a process X, we set XT(ω) = XT(ω)(ω), whenever T(ω) < +∞. We define the
stopped process XT = {Xt∧T , t ∈ I} with

XT
t (ω) = Xt∧T(ω)(ω) = Xtχ{t<T} + XTχ{t≥T}.

Note that if X is adapted and cadlag and if T is a stopping time, then stopped process
XT is adapted, too.

So, it is natural to consider causality in continuous time which involves stopping times,
a class of random variables that plays an essential role in the theory of martingales (for
details, see [18,19]).

The generalisation of the Definition 3 from fixed to stopping time is introduced in [9].
Compared to the definition in (3), in the definition from [9], we have reduced the

amount of information needed to predict some other filtration.
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Definition 5 ([19,20]). A stopping time T is predictable if there exists a sequence of stopping times
{Tn}n≥1 such that Tn is increasing, Tn < T on {T > 0} for all n and limn→∞ Tn = T a.s. Such a
sequence {Tn} is said to announce T.

Let us mention that because of the right continuity of the filtration {Ft} and Theo-
rem 3.27 in [16], we can use the definition of predictable time in the sense of Definition 3.25
from [16], too.

3. Causality, Increasing Processes, Optional and Predictable Measures

Increasing processes are very important in the general theory of stochastic processes,
and sometimes an increasing process can be considered as a random measure on R+.

Definition 6 ([12,21]). An increasing process is any process (At) which is non-negative, {Ft}
adapted, and whose paths are increasing and cadlag.

Therefore, every increasing process is optional.

Remark 1 ([12,21]). A stochastic process which is non-negative, and whose paths are increasing
and cadlag, but which is not {Ft} adapted, is called a raw increasing process.

Raw increasing processes are not “more general” objects than increasing processes:
they are the increasing processes for the family of σ-fields Ft = F , and hence there is no
need for any special theory for them. Let us mention those processes that are not necessarily
adapted but whose paths have this property.

The increasing process A is called integrable if E[A∞] < ∞. A process which can be rep-
resented as the difference of two increasing processes (resp. integrable increasing processes)
is called a process of finite variation (resp. a process of integrable variation). An increasing
process A is said to be natural, if it is integrable and such that E(

∫ ∞
0 (∆Mt)dAt) = 0 for any

bounded martingale (Mt).
In many situations, it is of interest to investigate processes which are not measurable

through time, but which have some continuity properties. The left continuous and adapted
processes are predictable (for example, consider the cadlag Feller process). For example,
in mathematical finance, the consumption plan of an investor, when he is choosing a
trading strategy, is usually described by non-negative optional process (see [22]). The
right continuous and adapted processes are optional (for example, the process of Brownian
motion). Let us mention that, in general, the integrands of stochastic integrals should be
predictable processes. For example, in mathematical finance, the risk premiums associated
with the risky Brownian motion are described by a predictable process, which considers
the risky asset price evolution which satisfies NFLVR (no free lunch with vanishing risk
(see [22])).

The connection between the concept of causality and optional and predictable pro-
cesses is considered in [23]. Now, we investigate optional and predictable measures in the
sense of Definition 3.

By oX, we denote optional projection of the process X, while pX represents predictable
projection of the process X (in [23], we are given applications of the concept of causality
on optional and predictable projections). According to Remark 45 in [12], if H is ran-
dom variable and (Ht) denotes a cadlag version of martingale E(H | Ft), the optional
projection of the process (Ht) which is constant through time is the process (Ht) and its
predictable projection is (Ht−). Let us mention that a self-caused process X admits a right-
continuous modification, and therefore, for optional and predictable projection, we have
oXt = Xt, pXt = Xt−.

For a given raw process A and bounded {Ft}-measurable process X, we set

µA(X) = E(
∫
[0,∞)

XsdAs).
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Every measure can be obtained this way and according to Theorem 65 in [12], the
converse statement holds, too.

Theorem 1. Let (Ω,A, P) be a probability space. A raw integrable increasing process (At) associ-
ated with measure µA(X) is optional if the bounded process (Xt) is self-caused, i.e., FX |< FX ; F;
P holds.

Proof. Suppose that (At) is a raw integrable increasing process. Because of causality
FX |< FX; F; P and Theorem 3 in [23], bounded process (Xt) is optional. Then, for the
optional projection of (Xt), we have E(Xt | Ft) = Xt = oXt. Due to Theorem 59 in [12]
(p. 124), for integrable, increasing process (At) we have

E(
∫
[0,∞)

XsdAs) = E(
∫
[0,∞)

oXsdAs).

Therefore, (At) is optional process.

Example 1. We can take Xt = a(t)Ht, where a is a positive Borel function on R+, and let (Ht)
be a cadlag version of the martingale E(Ht | Ft). According to Theorem 3.1 in [6], (Ht) is a
self-caused process. According to Theorem 1, increasing process (At) is optional. Indeed, we have

µA(X) = E(
∫
[0,∞)

XsdAs) = E(
∫
[0,∞)

Hsa(s)dAs).

According to Theorem 3 in [23], (Ht) is an optional process and therefore Ht = o Ht, and
we have

µA(X) = E(
∫
[0,∞)

Hsa(s)dAs) = E(
∫
[0,∞)

o Hsa(s)dAs).

According to Theorem 65 in [12], At is an optional process.

Theorem 2. Let (Ω,A, P) be a probability space. A raw integrable increasing process (At)
associated with measure µA(X) is predictable if the bounded, left continuous process (Xt) is
self-caused, i.e., FX |< FX ; F; P holds.

Proof. Suppose that (At) is a raw integrable increasing process. Because of causality
FX |< FX ; F; P and Remark 2 in [23], the bounded, left-continuous process Xt is predictable.
Then, for the predictable projection of (Xt), we have E(Xt | Ft−) = Xt− = pXt, and
because of left-continuity, we have Xt = Xt−. Due to Theorem 59 in [12] (p. 124), for
integrable, increasing process (At), we have

E(
∫
[0,∞)

XsdAs) = E(
∫
[0,∞)

pXsdAs).

Therefore, (At) is predictable process.

Example 2. We can take (Ht), to be a cadlag version of the left-continuous, martingale E(Ht | Ft).
According to Theorem 3.1 in [6], (Ht) is a self-caused process. According to Theorem 2, increasing
process (At) is predictable. Indeed, we have

µA(H) = E(
∫
[0,∞)

HsdAs).

According to Remark 2 in [23], (Ht) is a predictable process and therefore Ht = p Ht, and
we have

µA(X) = E(
∫
[0,∞)

HsdAs) = E(
∫
[0,∞)

p HsdAs).

According to Theorem 65 in [12], (At) is a predictable process.
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Suppose that X is a measurable process. Then, based on the predictable projection
denoted by pX, we present a predictable process which can be understood as a process
‘near’ to X. This feature means that for every predictable stopping time T, the expected
values of the stopped variables XT and pXT are equal. If X is the gain process of some game
and T is an exit strategy, then the stopped variable XT is the value of the game if one plays
the exit strategy T. If a stopping time is ‘predictable’ then it means that we can forecast and
predict it. As XT and pXT have the same expected value for predictable exit rules, it will be
irrelevant, on average, whether we play the game X or the predictable game pX.

Next, Lemma is a consequence of the previous Theorem and has conditions in terms
of causality for a stopping time to be predictable.

Lemma 1. Let (Ω,A, P) be a probability space and T be a stopping time. T is predictable time if
every bounded, left-continuous process (Xt) is self-caused, i.e., FX |< FX ; F; P holds.

Proof. The proof directly follows the previous Theorem 2 if an optional increasing process
(At) is of the form At = I{T≤t}. Then, because of Remark 2 in [23], process (Xt) is
predictable, so we have

E(
∫
[0,∞)

XsdAs) = E(
∫
[0,∞)

Xs I{T≤s}ds) = E(
∫
[0,∞)

pXs I{T≤s}ds)

= E(
∫
[0,∞)

pXsdAs).

According to Theorem 2, (At) is a predictable process. Therefore, the set {T ≤ t}
for t = ∞ is predictable. According to definition 3.25 in [16], T is a predictable stopping
time.

Corollary 1. Let T be a stopping time and set A ∈ FT−. The restriction TA is a predictable
stopping time if every bounded, left-continuous process (Xt) is self-caused.

Proof. Let T be a stopping time and (Xt) be a left-continuous, bounded and self-caused
process. Due to Lemma 1, T is a predictable stopping time. According to Corollary 10.15
in [24] the restriction TA is predictable, too.

Theorem 3. Let T be an optional time. Stopping time T is predictable if and only if bounded;
process (Xt) with E(∆XT) = 0 is self-caused, i.e., FX |< FX ; F; P.

Proof. Let T be a predictable stopping time. Due to Lemma 10.3 in [24], the process
KT = 1{T≤t} is predictable. According to Theorem 10.12 in [24], X is a natural process, and
by definition, (Xt) is martingale. Causality is then proved by Theorem 4.1 in [6], where
every martingale is a self-caused process FX |< FX , F; P.

Conversely, suppose that (Xt) is a bounded, self-caused process with E(∆XT) = 0.
Because of causality, (Xt) is {Ft} - martingale. Due to Theorem 10.14 in [24], T is a
predictable stopping time.

Assume that K is a local martingale. The jumps ∆K of K clearly represent an ‘unpre-
dictable’ part of K. The majority of examples of the predictable projection are the laws
pK = K− and p(∆K) = 0. The previous equality shows that we cannot ‘foresee’ the size of
the jumps of a local martingale.

It is very natural to ask how someone can forecast the jumps in stock prices. In mathe-
matical finance, stock prices are usually driven by some local martingale, and obviously no
one can predict the jumps in the price processes. Thus, the modest connection p(∆K) = 0
just mentioned has remarkably significant theoretical and applied inference.

We use M to denote the σ-field of all measurable sets augmented with all the P-
evanescent sets.
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Definition 7 ([12,16]). Let µ be a measure on A×B(R)+ without changing any evanescent set.
Measure µ is called optional (predictable) if, for every non-negative, bounded, measurable process X

µ(X) = µ(oX) (µ(X) = µ(pX)),

where µ(x) =
∫

Xdµ = Eµ(X).

Obviously, for a bounded, measurable process X, we have oX = Eµ(X | O) where µ is
an optional measure. Respectively, for predictable measure µ, we have pX = Eµ(X | P).

Theorem 4. Let (Ω,A, P) be a probability space. Then, for self-caused, bounded process X and a
positive P measure µ on M, there is a raw increasing process A and the associated measure µA(X)
is an optional measure.

Proof. Let (Ω,A, P) be a probability space and µ a positive P measure. According to
Theorem 65 in [12], there exists a raw integrable increasing process A, which is unique
within an evanescent process. Then, for every bounded measurable process X, the measure
µA(X) associated with process A is defined by

µA(X) = E(
∫
[0,∞)

XsdAs).

Let FX |< FX ; F; P hold. Then, according to Theorem 3 in [23], process (Xt) is an {Ft}
optional process. Therefore, oXt = E(Xt | Ft) = Xt so

µA(X) = E(
∫
[0,∞)

XsdAs) = E(
∫
[0,∞)

oXsdAs) = µA(
oX),

Due to definition 5.12 in [16] (p. 141), µA(X) is an optional measure.

Example 3. Let λ be a P measure on O. We can define a P measure µ on M by setting
µ(X) = λ(oX) =

∫
XdAs for every self-caused, bounded measurable process X. Then, according

to Theorem 4, measure µA(X) is optional.
Indeed, according to Theorem 3 in [23], a process is optional if it is self-caused; therefore, X is

optional process, so µA(X) = λ(oX) = λ(X). Thus, λ(X) is an optional measure, so µA(X) is
optional, too.

Theorem 5. Let (Ω,A, P) be a probability space. Then, for self-caused, left-continuous, bounded
process X and a positive P measure µ on M, there exists a raw process of integrable variation A
and the associated measure µA(X) is a predictable measure.

Proof. Let (Ω,A, P) be a probability space and µ be a positive P measure. According to
Theorem 65 in [12], there exists a raw process of integrable variation A, which is unique to
within an evanescent process. Then, for every bounded measurable process X, the measure
µA(X) associated with process A is defined by

µA(X) = E(
∫
[0,∞)

XsdAs).

Let FX |< FX; F; P holds. Then, according to Remark 2 in [23], the self-caused, left-
continuous process (Xt) is an {Ft}-predictable process. Therefore, pXt = E(Xt | Ft−) =
Xt− = Xt, so

µA(X) = E(
∫
[0,∞)

XsdAs) = E(
∫
[0,∞)

pXsdAs) = µA(
pX).

Due to definition 5.12 in [16], µA(X) is a predictable measure.
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4. Application

Let (Ω,A,Ft, P) be a filtered probability space. Mathematical risk theory investigates
stochastic models of risk in finance and insurance. The basic risk model consider the value
of a risk portfolio which is the sum of premium payments that increase the value of the
portfolio and claim payouts that decrease the value of the portfolio. Premium payments are
received to cover liabilities—expected losses from claim payouts and other costs. Claims
are a result of risk events that occur at random times. Very often, claims’ payouts are
modelled by point processes. An important problem in risk theory is the calculation of the
probability of ruin and time to ruin, which is the likelihood that the value of a risk portfolio
will ever become negative.

A risk process can be represented with Rt = u + Bt + Nt + Dt + Lt, with initial
conditions u > 0 B0 = W0 = D0 = L0 = 0. The process B is a continuous predictable
process of finite variation which represents the stable income payments together with
premiums, N is a continuous local martingale which models a random perturbation, D is a
right-continuous jump process and represents accumulated claims and may also contain
jumps made by non-anticipated falls or rises in returns on investment. L is a left-continuous
jump process, which models gains or losses in returns on investment. All these processes
are optional and are adapted to the filtration (Ft).

Measures µr and µg are random measures that describe jumps in the processes Dt and
Lt, while the measures νr and νg are unique predictable measures of the form ν(ω, dt, dx) =
dAt(ω)K(ω, dt, dx), where A is an increasing, predictable, right-continuous process (see
Lemma in [25]). Based on Doob–Meyer decomposition of optional semimartingales, R is a
special optional semimartingale adapted to (Ft).

For risk process R, we introduce optional cumulant function Gt(x). Let Rt be a self-
caused optional process, with ∆RT = 0. Then, E(∆RT) = 0, and based on Theorem 3,
T is a predictable stopping time. Then, according to Lemma 5.2.4 in [25], for optional
cumulant process G, ∆G =

∫
(e−zx − 1)νr({t}, dx) = 0 if ∆RT = 0, which in the risk theory

means that claims of payout cannot be predicted beforehand. In other words, if optional
semimartingale X is self-caused, then claims cannot be predicted beforehand.

Thus, we have the following proposition.

Proposition 1. Let Rt be a self-caused process with ∆RT = 0. Then, claims cannot be predicted
beforehand.

5. Conclusions

In this paper, we presented several new results considering optional and predictable
measures, increasing processes and predictable times. The predictable measures are very
important, particularly for statistical analysis of financial data.

An open question is to consider enlargements of filtration in the context of its applica-
tion in mathematical finance and its connection to the predictable and optional measures,
as well as the preservation of these properties of measures. Also, it would be of inter-
est to include the stopping time and consider what will happen when we have some
finite horizon.
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