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Abstract: In the present work, in order to approximate integrable vector-valued functions, we study
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1. Introduction

In the early 1900s, S. Bernstein [1] introduced a family of operators known in the
literature as Bernstein polynomials in order to approximate continuous functions, which
enabled us to give a constructive proof of Weierstrass’s fundamental approximation theo-
rem. In 1930, L. V. Kantorovich [2,3] gave a modification of the Bernstein polynomials to
approximate not only continuous functions but also integrable functions. Later, this idea
was applied to many well-known approximation operators. Such operators are known
in the literature as Kantorovich-type operators. There are numerous studies in the literature
related to Kantorovich operators. Especially in recent years, it has also been shown that
these operators have significant advantages in fields such as artificial neural networks,
signal and digital image processing, and sampling theory (see, for instance, [4–7]).

In this article, we study the Kantorovich version of the vector-valued Shepard opera-
tors that have been investigated in our recent study [8]. We should note that the classical
Shepard operators, which were first introduced by D. Shepard [9] in 1968, are quite effective
not only in classical approximation theory (see [10–15]) but also in some applied research
(see [16–18]).

Now, we first recall some notations and definitions about the vector-valued Shepard
operators examined in [8].

Let m, n ∈ N, K = [0, 1]m = [0, 1]× · · · × [0, 1], and define the following set:

Ωn := {k = (k1, k2, . . . , km) ∈ Nm : ki ∈ {0, 1, . . . , n}, i = 1, 2, . . . , m}.

Then, consider the following sample points of K :

xk,n =

(
k1

n
,

k2

n
, . . . ,

km

n

)
with k ∈ Ωn.
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Let f = ( f1, f2, . . . , fd) (d ∈ N) be a vector-valued function defined on K, where each
component fi : K → R (i = 1, 2, . . . , d). Then, for λ > 0, the vector-valued Shepard
operators are defined in [8] as follows:

Sn,λ(f; x) =
∑k∈Ωn |x − xk,n|−λ

m f(xk,n)

∑k∈Ωn |x − xk,n|−λ
m

, (1)

where |·|m represents the classical Euclidean distance on K. Note that the symbol ∑k∈Ωn
denotes the multi-index summation. We denote the space of all continuous vector-valued
functions from K into Rd by C(K,Rd). Then, in [8], we proved the following approxima-
tion result.

Theorem 1. (see Theorem 1 in [8]). For every f ∈ C(K,Rd) and λ ≥ m + 1, we have
Sn,λ(f) ⇒ f on K, where the symbol ⇒ denotes the uniform convergence.

This paper is organized as follows. In the second section, we first construct the
Kantorovich version of the vector-valued Shepard operators defined by (1) and give the
statements of our main theorems, including Lp-approximation, which improves Theorem 1.
In the third section, we prove the theorems by using some auxiliary results. In the final
section, we display some applications verifying our results and investigate the effects of
nonnegative regular matrix summability methods for Lp-approximation.

2. Construction of the Operators and Main Theorems

For a given vector-valued function f = ( f1, f2, . . . , fd), assume that each component
function fi : K → R (i = 1, 2, . . . , d) belongs to the space Lp(K) (p ≥ 1). Then, we denote

the space of all such vector-valued functions by Lp

(
K,Rd

)
. Then, we consider the following

Kantorovich version of the operators (1):

Ln,λ(f; x) = (n + 1)m ∑
k∈Ωn

sk,n(λ, x)
∫

Rk,n

f(y)dy, (2)

where x ∈ K, n, m, d ∈ N, λ > 0, f = ( f1, f2, . . . , fd) ∈ Lp

(
K,Rd

)
and

sk,n(λ, x) =
|x − xk,n|−λ

m

∑k∈Ωn |x − xk,n|−λ
m

for x ̸= xj,n (j ∈ Ωn), (3)

and sk,n(λ, xj,n) = δk,j with δk,j being the Kronecker delta. The set Rk,n in (2) denotes the
m-dimensional rectangle

Rk,n :=
[

k1

n + 1
,

k1 + 1
n + 1

]
× · · · ×

[
km

n + 1
,

km + 1
n + 1

]
and the multiple integral in (2) is actually a Bochner-type integral representation (see,
for instance, [19]) and reads as follows (with respect to the components of f) :∫

Rk,n

f(y)dy =

(∫
Rk,n

f1(y)dy, . . . ,
∫

Rk,n

fd(y)dy
)

.

Then, it is easy to check that Ln,λ(f) may be written as

Ln,λ(f; x) =
(
L̃n,λ( f1; x), L̃n,λ( f2; x), . . . , L̃n,λ( fd; x)

)
,
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where L̃n,λ is given by

L̃n,λ(g; x) := (n + 1)m ∑
k∈Ωn

sk,n(λ, x)
∫

Rk,n

g(y)dy (4)

for real-valued functions g defined on K. We say that L̃n,λ is the companion operator of
Ln,λ. In this case, L̃n,λ(g; x) given by (4) becomes real-valued.

Here is our main approximation result.

Theorem 2. For every f ∈ Lp

(
K,Rd

)
(p ≥ 1) and λ ≥ m + 1, we have

Ln,λ(f) → f in Lp

(
K,Rd

)
as n → ∞. (5)

We should note that by the convergence in (5), we mean componentwise convergence
in the space Lp(K); that is, for each i = 1, 2, . . . , d,

lim
n→∞

∥∥L̃n,λ( fi)− fi
∥∥

p = 0

holds, where the symbol ∥·∥p denotes the usual Lp-norm on K given by

∥g∥p =

(∫
K
|g(y)|pdy

)1/p
, p ≥ 1

for a real-valued function g ∈ Lp(K).
To prove Theorem 2, we should first show that (5) is valid for all f ∈ C(K,Rd). That is,

we also need the next result.

Theorem 3. For every f ∈ C(K,Rd) and λ ≥ m + 1, the convergence in (5) holds.

3. Auxiliary Results and Proofs of the Main Theorems

To prove Theorems 2 and 3, we need the following lemmas.

Lemma 1. (see [8]). Let n, m ∈ N and x ∈ K with x ̸= xk,n for k ∈ Ωn. Then, for every λ > 0,(
∑

k∈Ωn

|x − xk,m|−λ
m

)−1

= O
(

n−λ
)

holds.

For the function sk,n(λ, x) given by (3), we get the next result.

Lemma 2. For every x = (x1, x2, . . . , xm) ∈ K and λ > 1,

sk,n(λ, x) ≤ C

{
m

∑
i=1

|[(n + 1)xi]− ki|+ 1)2

}−λ/2

(6)

holds for k ∈ Ωn, where C is a positive constant depending at most on λ, m, and [α] is the greatest
integer not exceeding α.
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Proof. First, assume that x = xj,n (j ∈ Ωn). Since

sk,n(λ, xj,n) = δk,j =

{
1, if k = j
0, if k ̸= j,

the proof follows immediately. Assume now that x ̸= xj,n (j ∈ Ωn). Let [(n + 1)xi] = Ni
for each i = 1, 2, . . . , m. Then, we observe that

Ni
n + 1

≤ xi <
Ni + 1
n + 1

for i = 1, 2, . . . , m.

For each i = 1, 2, . . . , m, we have the following five possible cases:
ki < Ni − 1

or
k = Ni − 1, Ni, Ni + 1

or
ki > Ni + 1

Therefore, we have a total of 5m possible cases. After some simple computations, it is
possible to check that (6) is valid for all possible cases. Now we show some of them.
For example, let ki < Ni − 1 for all i = 1, 2, . . . , m. Lemma 1 implies that there exists a
positive constant C1 such that

sk,n(λ, x) ≤ C1n−λ|x − xk,n|−λ
m = C1

{
m

∑
i=1

(nxi − ki)
2

}−λ/2

.

Then, we get

sk,n(λ, x) ≤ C1

{
m

∑
i=1

(
nNi

n + 1
− ki

)2
}−λ/2

= C1

{
m

∑
i=1

(
n(Ni − ki)− ki

n + 1

)2
}−λ/2

≤ C1

{
m

∑
i=1

(Ni − ki − 1)2

}−λ/2

≤ C1

{
m

∑
i=1

(
Ni − ki + 1

4

)2
}−λ/2

= C

{
m

∑
i=1

(|[(n + 1)xi]− ki|+ 1)2

}−λ/2

,

where C := 4λC1. Now, for some m0 ∈ {1, 2, . . . , m − 1}, if ki < Ni − 1 for i = 1, 2, . . . , m0
and ki > Ni + 1 for i = m0 + 1, . . . , m, then using the same constants C1 and C, we see that
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sk,n(λ, x) ≤ C1

{
m

∑
i=1

(nxi − ki)
2

}−λ/2

≤ C1

{
m0

∑
i=1

(
nNi

n + 1
− ki

)2
+

m

∑
i=m0+1

(
ki −

n(Ni + 1)
n + 1

)2
}−λ/2

= C1

{
m0

∑
i=1

(
n(Ni − ki)− ki

n + 1

)2

+
m

∑
i=m0+1

(
n(ki − Ni − 1) + ki

n + 1

)2
}−λ/2

≤ C1

{
m0

∑
i=1

(Ni − ki − 1)2 +
m

∑
i=m0+1

(ki − Ni − 1)2

}−λ/2

≤ C1

{
m0

∑
i=1

(
Ni − ki + 1

4

)2
+

(
ki − Ni + 1

4

)2
}−λ/2

= C

{
m

∑
i=1

(|[(n + 1)xi]− ki|+ 1)2

}−λ/2

.

Now let ki = Ni − 1 for all i = 1, 2, . . . , m. Then we observe that

sk,n(λ, x) ≤ 1

= (4m)λ/2

{
m

∑
i=1

(1 + 1)2

}−λ/2

= (4m)λ/2

{
m

∑
i=1

(|Ni − (Ni − 1)|+ 1)2

}−λ/2

= (4m)λ/2

{
m

∑
i=1

(|[(n + 1)xi]− ki|+ 1)2

}−λ/2

.

Also, for a given m0 ∈ {1, 2, . . . , m − 1}, if ki = Ni for i = 1, 2, . . . , m0 and ki > Ni + 1 for
i = m0 + 1, . . . , n, we may then write that

sk,n(λ, x) ≤ C1

{
m

∑
i=m0+1

(nxi − ki)
2

}−λ/2

≤ C1

{
m

∑
i=m0+1

(
nNi

n + 1
− ki

)2
}−λ/2

≤ C1

{
m

∑
i=m0+1

(|[(n + 1)xi]− ki|+ 1)2

}−λ/2

≤
(

m
m − m0

)λ/2
C1

{
m0 +

m

∑
i=m0+1

(|[(n + 1)xi]− ki|+ 1)2

}−λ/2

=

(
m

m − m0

)λ/2
C1

{
m0

∑
i=1

(|Ni − Ni|+ 1)2 +
m

∑
i=m0+1

(|[(n + 1)xi]− ki|+ 1)2

}−λ/2

= C

{
m

∑
i=1

(|[(n + 1)xi]− ki|+ 1)2

}−λ/2

,

where C =
(

m
m−m0

)λ/2
C1. By making similar calculations, it can be shown that (6) holds

true in all other cases.
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Now for each fixed x ∈ K, define the function φx on K by

φx(y) := |y − x|m.

Then, we get the next lemma.

Lemma 3. For any x ∈ K, we have

L̃n,λ(φx; x) =
{

O(n−1), if λ > m + 1
O(n−1 log n), if λ = m + 1.

Proof. For a given n ∈ N and x = (x1, x2, . . . , xm) ∈ K, there exists u = (u1, u2, . . . , um) ∈
Ωn such that xi ∈

[
ui

n+1 , ui+1
n+1

]
for i = 1, 2, . . . , m. Hence, Lemma 2 implies that

sk,n(λ, x) ≤ C

{
m

∑
i=1

(|ui − ki|+ 1)2

}−λ/2

.

Then, we get

L̃n,λ(φx; x) = (n + 1)m ∑
k∈Ωn

sk,n(λ, x)
∫

Rk,n

|y − x|mdy

≤ (n + 1)m ∑
k∈Ωn

sk,n(λ, x)
(n + 1)m+1

{
m

∑
i=1

(|ui − ki|+ 1)2

}1/2

≤ C
n + 1 ∑

k∈Ωn

{
m

∑
i=1

(|ui − ki|+ 1)2

}(1−λ)/2

≤ C
n + 1

n

∑
k1,k2,...,km=1

1(
k2

1 + k2
2 + · · ·+ km2

)(λ−1)/2
.

We know from Lemma 2.2 in [8] and its conclusion that

n

∑
k1,k2,...,km=1

1(
k2

1 + k2
2 + · · ·+ km2

)(λ−1)/2
=

{
O(1), if λ > m + 1
O(log n), if λ = m + 1.

Therefore, by combining the above results, the proof is completed.

With the help of the above lemmas, we first prove Theorem 3.

Proof of Theorem 3. Let f = ( f1, f2, . . . , fd) ∈ C(K,Rd) and λ ≥ m + 1. By the uniform
continuity of each component fi (i = 1, 2, . . . , d) on K, for every ε > 0, there exists a δi > 0
such that

| fi(y)− fi(x)| < ε

for all x, y ∈ K satisfying |y − x|m < δi. Then, it follows from (4) that for each i = 1, 2, . . . , d,∣∣L̃n,λ( fi; x)− fi(x)
∣∣ ≤ (n + 1)m ∑

k∈Ωn

sk,n(λ, x)
∫

K
| fi(y)− fi(x)|dy

≤ (n + 1)m ∑
k∈Ωn

sk,n(λ, x)
∫

K

(
ε +

2M
δi

|y − x|m
)

dy

= ε +
2Mi

δi
L̃n,λ(φx; x).
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Lemma 3 implies that for each i = 1, 2, . . . , d,

L̃n,λ( fi) ⇒ fi on K

holds for λ ≥ m + 1. Since the uniform convergence on K implies Lp-convergence, we
obtain for each i = 1, 2, . . . , m that

lim
n→∞

∥∥L̃n,λ( fi)− fi
∥∥

p = 0

holds for λ ≥ m + 1, which completes the proof.

For the proof of Theorem 2, we also need the next lemma.

Lemma 4. Let λ ≥ m + 1 and p ≥ 1. Then, the sequence of companion operators {L̃n,λ} given by
(4) is uniformly bounded from Lp(K) into itself, i.e., for every g ∈ Lp(K),∥∥L̃n,λ(g)

∥∥
p ≤ B∥g∥p

holds for some absolute constant B.

Proof. Lemma 2 immediately gives that for every k ∈ Ωn,∫
K

sk,n(λ, x)dx = ∑
u∈Ωn

∫
Ru,n

sk,n(λ, x)dx

≤ C ∑
u∈Ωn

∫
Ru,n

{
m

∑
i=1

(|ui − ki|+ 1)2

}−λ/2

dx

=
C

(n + 1)m ∑
u∈Ωn

{
m

∑
i=1

(|ui − ki|+ 1)2

}−λ/2

≤ C
(n + 1)m

n

∑
k1,k2,...,km=1

1(
k2

1 + k2
2 + · · ·+ km2

)λ/2

= O
(

1
(n + 1)m

)
holds for λ ≥ m + 1. If g ∈ L1(K), then we obtain that∥∥L̃n,λ(g)

∥∥
1 =

∫
K

∣∣L̃n,λ(g; x)
∣∣dx

≤ (n + 1)m ∑
k∈Ωn

(∫
Rk,n

|g(y)|dy
) ∫

K
sk,n(λ, x)dx

≤ C ∑
k∈Ωn

(∫
Rk,n

|g(y)|dy
)

,

which yields ∥∥L̃n,λ(g)
∥∥

1 ≤ C∥g∥1 for λ ≥ m + 1. (7)

On the other hand, if g ∈ C(K), then one can easily check that∥∥L̃n,λ(g)
∥∥ ≤ ∥ f ∥, (8)

where the symbol ∥·∥ denotes the usual supremum norm on K. Therefore, considering
(7) and (8), the Riesz–Thorin theorem [20] (see also [15]) implies that for some absolute
constant B > 0, ∥∥L̃n,λ(g)

∥∥
p ≤ B∥g∥p
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is satisfied for every g ∈ Lp(K) (p ≥ 1) and λ ≥ m + 1.

Then, we are ready to give the proof of our main theorem.

Proof of Theorem 2. Let f ∈ Lp(K,Rd) (p ≥ 1). Then for each component fi ∈ Lp(K),
i = 1, 2, . . . , d, there exists a real-valued continuous function gi on K such that∥∥L̃n,λ( fi)− fi

∥∥
p ≤

∥∥L̃n,λ( fi − gi)
∥∥

p +
∥∥L̃n,λ(gi)− gi

∥∥
p

+∥ fi − gi∥p.

Then, we may write from Lemma 4 that, for every λ ≥ m + 1,∥∥L̃n,λ( fi)− fi
∥∥

p ≤ C∥ fi − gi∥p +
∥∥L̃n,λ(gi)− gi

∥∥
p (9)

holds for some C > 0. From Theorem 3, we get

lim
n→∞

∥∥L̃n,λ(gi)− gi
∥∥

p = 0. (10)

Now, since the space of all real-valued and continuous functions on K is dense in the space
Lp(K), the proof is completed from (9) and (10).

4. Illustrations and Concluding Remarks

We first give applications of Theorems 2 and 3 on the set K = [0, 1]m. Later, we
modify vector-valued Shepard operators in order to show the effects of regular summability
methods in the approximation.

Example 1. Take d = 3 and m = 2. Define the function f on K = [0, 1]2 by

f(x) = ( f1(x), f2(x), f3(x)),

where for x = (x1, x2) ∈ K, the component functions are given, respectively, by

f1(x) = x1,
f2(x) = x2,
f3(x) = [x1 + x2].

(11)

Then, we obtain from Theorem 2 that for every λ ≥ 3 and p ≥ 1,

Ln,λ(f) → f in Lp

(
[0, 1]2,R3

)
as n → ∞.

If the function f is considered to be a three-dimensional surface parametrized by x1 and x2, one can
produce its three-dimensional parametric plots with the help of the Mathematica program. Similarly,
we can also produce the corresponding approximations by vector-valued Shepard operators. Such
parametric plots are shown in Figure 1 for the values n = 5, 12, 20 and λ = 6. Observe that since f
is not continuous on K, Theorem 1 is not valid for the function f given by (11). Hence, this example
explains why we also need the Kantorovich version of vector-valued Shepard operators.

Example 2. Take d = 3 and m = 1. Now define the function h on the set K = [0, 1] by

h(x) = (sin(20x), cos(20x), 2x). (12)

Then this function parametrized by x gives a helix curve. Since h ∈ C
(
K,R3), we obtain from

Theorems 1 and 3 that for every λ ≥ 2,

Ln,λ(h) ⇒ h on [0, 1]
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and
Ln,λ(h) → h in Lp

(
[0, 1],R3

)
.

This approximation is indicated in Figure 2 for the values n = 15, 22, 30 and λ = 4.

(a) n = 5 and λ = 6 (b) n = 12 and λ = 6

(c) n = 20 and λ = 6 (d) f

Figure 1. Parametric plots of Ln,λ(f) for the values n = 5, 12, 20 and λ = 6, where f is given by (11).

Finally, we discuss the regular summability methods on the Lp-approximation. Be-
fore giving our final application, we recall some concepts from summability theory. For a
given infinite matrix A := [ajn] (j, n ∈ N) and a sequence x := (xn), the A-transformed
sequence of (xn) is defined by Ax :=

(
(Ax)j

)
= ∑∞

n=1 ajnxn provided that the series is
convergent for every j ∈ N. Also, A = [ajn] is called regular if lim Ax = L whenever
lim x = L (see [21]). A = [ajn] is nonnegative if ajn ≥ 0 for all j, n ∈ N. Now let A = [ajn]
be a nonnegative regular summability matrix. Then, we say that a sequence (xn) is A-
summable (or A-convergent) to a number L if limn→∞(Ax)j = L. It is also possible to give

the same definition for a sequence of functions in the space Lp

(
K,Rd

)
(p ≥ 1). Let (fn)

be a sequence of vector-valued functions in Lp

(
K,Rd

)
, and let A = [ajn] be a nonnegative

regular summability method such that ∑∞
n=1 ajnfn ∈ Lp

(
K,Rd

)
for every j ∈ N. Then, we

say that ( fn) is A-summable to a function f in Lp

(
K,Rd

)
if ∑∞

n=1 ajnfn → f in Lp

(
K,Rd

)
as j → ∞. As stated before, here we mean the componentwise Lp-convergence on K.
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(a) n = 15 and λ = 4 (b) n = 22 and λ = 4

(c) n = 30 and λ = 4 (d) h

Figure 2. Parametric plots of Ln,λ(h) for the values n = 15, 22, 30 and λ = 4, where h is given by (12).

We should note that the use of regular summability methods in the approximation
theory enables us to get more powerful results than the classical ones. We will now consider
an application in this direction.

Example 3. In this application, we modify the vector-valued Kantorovich–Shepard operators in (2)
as follows:

L∗
n,λ(f; x) :=

{
1 + f(x), if n = k2 (k ∈ N)
Ln,λ(f; x) otherwise,

(13)

where 1 = (1, 1, . . . , 1). Since 1 + f ̸= f, we cannot get an Lp-approximation to f by means of the
operators L∗

n,λ(f) given by (13); that is, for every λ > 0 and i = 1, 2, . . . , d,

L∗
n,λ(f) ↛ f in Lp

(
K,Rd

)
as n → ∞.
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Now to overcome the loss of convergence, we consider the well-known Cesàro summability method
C1 := [cjn] (see [21] for details) given by

cjn =

{
1
j , if n = 1, 2, . . . , j
0, otherwise.

Let f ∈ Lp

(
K,Rd

)
(p ≥ 1) and λ ≥ m + 1 be given. Then, we observe that the arithmetic mean of

L∗
n,λ(f) is Lp-convergent to f in Lp

(
K,Rd

)
. To see that considering the companion operator L̃∗

n,λ

of (13), it is enough to show that for each i = 1, 2, . . . , d, the sequence
(
L̃∗

n,λ( fi)
)

, i = 1, 2, . . . , d,
is C1-summable (with respect to the Lp-norm on K) to the function fi. Indeed, by using (13) we
may write that∥∥∥∥∥ ∞

∑
n=1

cjnL̃∗
n,λ( fi)− fi

∥∥∥∥∥
p

=

∥∥∥∥∥1
j

j

∑
n=1

L̃∗
n,λ( fi)− fi

∥∥∥∥∥
p

≤ 1
j

j

∑
n=1

∥∥L̃∗
n,λ( fi)− fi

∥∥
p

=
1
j

j

∑
n=1 (n=k2)

∥∥L̃∗
n,λ( fi)− fi

∥∥
p +

1
j

j

∑
n=1 (n ̸=k2)

∥∥L̃∗
n,λ( fi)− fi

∥∥
p

≤ 1√
j
+

1
j

j

∑
n=1

∥∥L̃n,λ( fi)− fi
∥∥

p,

where L̃n,λ is the classical companion operator given by (4). Now, by taking the limit as j → ∞ on
both sides of the last inequality, we obtain from Theorem 2 and the regularity of the Cesàro method
that for each i = 1, 2, . . . , d,

lim
j→∞

∥∥∥∥∥ ∞

∑
n=1

cjnL̃∗
n,λ( fi)− fi

∥∥∥∥∥
p

= 0,

holds, which means

L∗
1,λ(f) +L∗

2,λ(f) + · · ·+L∗
j,λ(f)

j
→ f in Lp

(
K,Rd

)
as j → ∞.

In other words, the sequence
(
L∗

n,λ(f)
)

is C1-summable to f in Lp

(
K,Rd

)
.
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