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Abstract: New high-order weak schemes are proposed and simplified to solve stochastic differential
equations with Markovian switching driven by pure jumps (PJ-SDEwMs). Using Malliavin calculus
theory, it is rigorously proven that the new numerical schemes can achieve a high-order convergence
rate. Some numerical experiments are provided to show the efficiency and accuracy.
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1. Introduction

Let
(
Ω, F , {Ft}t≥0, P

)
be a complete probability space with a filtration {Ft}t≥0 gen-

erated by a Poisson process. In this paper, we mainly study the second-order weak schemes
of the following Equations (PJ-SDEwMs) on the probability space

(
Ω, F , {Ft}t≥0, P

)
:

Xt = X0 +
∫ t

0
a(s, Xs, rs)ds +

∫ t

0

∫
E

b(s, Xs, rs, e)Ñ(de, ds) (1)

with initial value X0 ∈ Rd, where rs is Markov chain, Ñ(de, ds) is a compensated Poisson
measure, and E = Rd \ {0} is equipped with its Borel field E. The drift coefficient is
denoted by a : [0, T]×Rd × S → Rd, and the jump diffusion coefficient is represented by
b : [0, T]×Rd × S× E → Rd.

Recently, the study of SDEs with Markovian switching driven by pure jumps has
attracted increasing interest. PJ-SDEwMs can be seen as a generalization of the SDEs
with jump. It is also possible to think of it as a generalization of SDEs with Markovian
switching, of course. It is not only used in finance but also has a wide range of applications
in control systems, bio-mathematics, chemistry and mechanics (see [1–3]). The authors [4]
study mode coupling in a multimode step-index microstructured polymer optical fibers for
potential sensing and communication applications. Ji and Chizeck [5] focused on the control
problem for systems with continuous-time Markovian jump parameters. Mao [6] discussed
the exponential stability for general nonlinear SDEwMs. Similar to SDEs with jump, it is
difficult to obtain an explicit solution for SDEwMs. Therefore, we need effective schemes
which are accurate and computationally convenient to approximate the true solutions. Yuan
and Mao [7] discovered the convergence of the Euler–Maruyama scheme, which is used to
obtain the stationary distribution of SDEwMs in [8]. Mao and Yuan [9] gave the systematic
presentation of the theory of SDEs with Markovian switching. Then, the existence and
uniqueness of solutions for neutral SDEwMs were proven in [10] under non-Lipschitz
conditions, and Euler approximate solutions were provided for solving SDEwMs. Common
numerical schemes for solving SDEs with jumps or SDEwMs include Euler–Maruyama
scheme [7,9,11,12], Milstein scheme [13,14], and jump-adapted scheme [15,16]. The authors
of [17] studied the balanced implicit numerical methods for solving SDEs driven by Poisson
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jumps. Zhou and Mamon [18] expanded three short-rate models, integrating the switching
of economic regimes via a discrete-time finite-state Markov chain.

A high-order model incorporating drift and volatility modulation by a discrete-time
weak Markov chain is introduced in [19]. Yang, Yin and Li [20] utilized stochastic ap-
proximation techniques to analyze the stability of numerical solutions for jump diffusions
with Markovian switching. Furthermore, the authors [21] study the convergence of SDEs
differential equations containing delay and Markovian switching, and an Euler scheme
for solving SDEwMs under non-Lipschitz conditions is given in [22]. Given the applica-
tion requirements in finance and related fields, there is an increasing interest in studying
high-order numerical schemes for solving SDEs. For instance, Fan [23] developed a strong
approximation order 1.5 scheme for solutions of SDEwMs. Liu and Li [24] proved the
convergence of the weak stochastic Taylor scheme with an appropriate order. In [25], a new
weak scheme for solving SDEwMs driven by Brownian motion was proposed and achieved
the convergence rate of second-order. Additionally, the numerical results of several weak
schemes are presented, with a focus on the second-order weak stochastic Taylor scheme
and the extrapolation of the Euler scheme. We refer to the high-order numerical methods
of solving SDEs in [24–27] to propose novel numerical schemes of pure jump SDEs, which
can achieve a weak second-order convergence rate.

The primary contributions of this paper can be succinctly highlighted as follows:

• For PJ-SDEwMs with mark-dependent jump coefficient b = b(t, Xt, rt, e), we first
propose Scheme 1 using Wagner–Platen expansion. However, Scheme 1 contains
multiple stochastic integrals, which are not easily computed. Thus, to avoid the
use of some double integrals, we propose another new Scheme 2, by employing the
trapezoidal rule to approximate the following multiple stochastic integrals∫ tn+1

tn

∫ t

tn

∫
E

L1
e a(s, Xs, rs)Ñ(de, ds) dt and

∫ tn+1

tn

∫
E

∫ t

tn
L0b(s, Xs, rs, e)ds Ñ(de, dt).

Furthermore, we can use the definition of compound Poisson process to compute∫ tn+1

tn

∫
E

∫ t

tn

∫
E

Le1 b(s, Xs, rs, e2)Ñ(de1, ds)Ñ(de2, dt),

which has no high-accuracy based on the truncation approximation.
• Especially, for PJ-SDEwMs with mark-independent jump coefficient b = b(t, Xt, rt),

we propose Scheme 3 by using the trapezoidal rule and duality formula, which does
not involve multiple stochastic integrals. Moreover, Scheme 3 is not a special case of
Scheme 2. Using Malliavin calculus theory, it is strictly proven that Scheme 3 has a
local weak order-3.0 convergence rate. The greatest state difference and the upper
bound of the state value are connected to the convergence rate.

• The convergence and stability results of Schemes 2 and 3 are validated through
numerical experiments, which are also compared with the Euler scheme to verify its
effectiveness and accuracy. Scheme 3 is simpler and faster than Scheme 2 in the case
of mark-independent PJ-SDEwMs.

The following is a list of some notations to be used later: In Section 2, we give
the introduction of fundamental concepts, encompassing the Markov Chain, Itô-Taylor
expansion, and Malliavin stochastic calculus which include duality formula and chain rule.
Section 3 presents our novel weak second-order numerical schemes, accompanied by a
rigorous proof establishing their local weak convergence order of 3.0. In Section 4, we give
the practical application of our proposed new schemes, where we present some numerical
examples to validate the effectiveness and accuracy of them. The paper concludes with
Section 5, providing a succinct summary of our work.

The following notations are listed for future reference:
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♦ Cl,k
b is the set of continuously differential functions ψ : [0, T]×Rq → Rq with uniformly

bounded partial derivatives ∂l1
t ψ and ∂k1

x ψ for 1 ≤ l1 ≤ l and 1 ≤ k1 ≤ k. The notation
Ck

b is similarly defined.
♦ Cp(Rd,R) is the set of functions which have at most polynomial growth.
♦ C is a generic constant depending only on the upper bounds of derivatives of a, b , g

and the largest state difference.

2. Preliminaries and Notation
2.1. Markov Chain

On the probability space
(
Ω, F , {Ft}t≥0, P

)
, we assume that {rt, t ≥ 0} is a right-

continuous Markov chain and takes values in a finite state space S = {1, 2, . . . , M} with
generator Q =

(
qij

)
M×M

P(rt+δ = j | rt = i) =

{
qijδ + o(δ), if i ̸= j
1 + qiiδ + o(δ), if i = j

(2)

where δ > 0, qij ≥ 0 and, for i ̸= j, qii = − ∑
i ̸=j

qij. Let E = R\{0} be the mark set

equipped with its Borel field B(E). Now, on E × [0, T], we consider a given intensity
measure of the form λ(de) := γ(e)de with kernel function γ(e) ≥ 0 for all e ∈ E and
λ(de) := 0 for e /∈ E , and suppose that the total intensity λE :=

∫
E γ(e)de < ∞. Moreover,

drt =
∫
E h(rt−, e)N(de, dt) with h(i, e) = j − i for e ∈ ∆ij and h(i, e) = 0 for e /∈ ∆ij, which

the intervals ∆ij have length qij, that is

∆12 = [0, q12), ∆13 = [q12, q12 + q13), . . . , ∆1M =

[
M−1

∑
j=2

q1j,
M

∑
j=2

q1j

)
,

∆21 =

[
M

∑
j=2

q1j,
M

∑
j=2

q1j + q21

)
, ∆23 =

[
M

∑
j=2

q1j + q21,
M

∑
j=2

q1j + q21 + q23

)
, . . . ,

∆2M =

 M

∑
j=2

q1j +
M−1

∑
j=1
j ̸=2

q2j,
M

∑
j=2

q1j +
M

∑
j=1
j ̸=2

q2j

, . . . ,

(3)

and so on (see [9]).

2.2. Wagner–Platen expansion

First, we give Itô’s isometry for jump martingale and multi-dimensional Itô formula
for PJ-SDEwMs (see [9,27]).

Lemma 1 (Itô’s isometry for jump martingale, see [27]). If u(s, e) is Fs-adapted stochastic
process, then

E
[( ∫ T

0

∫
E

u(s, e)Ñ(de, ds)
)2
]
= E

[ ∫ T

0

∫
E

u2(s, e)λ(de)ds
]
. (4)

Lemma 2 (Itô formula, see [9]). If V ∈ C1,2,2([0, T]×Rd ×N;R), for any t ≥ 0, we have

U(s, Xs, rs) = U(0, X0, r0) +
∫ s

0
L0U(t, Xt, rt)dt +

∫ s

0

∫
E

L1
e U(t, Xt, rt)Ñ(de, dt), (5)

with the operators
L1

e U(t, Xt, rt) =U(t, Xt, i0 + h(rt, e))− U(t, Xt, rt),

L0U(t, Xt, j) =
∂

∂t
U(t, Xt, j) +

d

∑
i=1

∂

∂xk
U(t, Xt, j)ak(t, x, j) +

1
2

trace
(
b(t, Xt, j)⊤

∂2

∂x2 U(t, Xt, j)b(t, Xt, j)
)
+ ∑

k∈S
U(t, Xt, j)qjk
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with i0 = r0 and
∂2

∂x2 U(t, Xt, j) =
( ∂2

∂xm∂xn
U(t, Xt, j)

)
d×d.

A higher order of PJ-SDEwMs can be obtained via the Wagner–Platen expansion.
However, there are a few more definitions and notations that must be introduced before we
can discuss the order of approximation. When ji ∈ {0, 1} for i ∈ {1, 2, ..., l}, we designate
a row vector α = (j1, j2, ..., jl) as a multi-index of length l : l(α) ∈ N+. Then, the set of all
multi-indices α is denoted by

M = {(j1, j2, ..., jl) : ji ∈ {0, 1}, i ∈ {0, 1, ..., l} f or l = 1, 2, ...} ∪ {v}.

where v is the multi-index of length zero (l(v) = 0). Assume that Γl =
{

α ∈ M : l(α) ≤ l
}

is the hierarchical set, and B(Γl) =
{

α ∈ M : l(α) = l + 1
}

is the corresponding remainder
set. Given a multi-index α ∈ M with l(α) > 1, we write α− and −α for the multi-index
obtained by eliminating the last component and the first component of α, respectively. Let
us define recursively the Itô coefficient functions fk,α by

fk,α =

{
fk,(0) = ak, gk,(i) = bk, l = 1.
L1

e fk,−α, l > 1.
(6)

Furthermore, let the multiple Itô integral Iα[ fk,α(·, X·, r·, e·)]ϱ,τ be defined by

Iα[ fk,α(·, X·, r·, e·)]ϱ,τ =

{∫ τ
ϱ Iα−[ fk,α(·, X·, r·, e·)]ϱ,sds, l ≥ 1, jl = 0,∫ τ
ϱ

∫
E Iα−[ fk,α(·, X·, r·, e·)]ϱ,sl Ñ(del , dsl), l ≥ 1, jl = 1.

(7)

For α = (j1, j2, j3) and ϱ, τ ∈ [0, T], we assume

I03
λα
[ fk,α(·, X·, r·, e·)]ϱ,τ :=

{∫ τ
ϱ Iα−[ fk,α(·, X·, r·, e·)]ϱ,sds, l ≥ 1, j3 = 0,∫ τ
ϱ

∫
E Iα−[ fk,α(·, X·, r·, e·)]ϱ,sl λ(de)ds, l ≥ 1, j3 = 1.

(8)

For example if α = (1, 1, 1),

I03
λα
[H(·, X., r., e)]ϱ,τ :=

∫ τ

ϱ

∫
E

∫ s3

ϱ

∫
E

∫ s2

ϱ

∫
E

H(s1, Xs1 , rs1 , e1)λ(de1) ds1 λ(de2) ds2 λ(de3) ds3.

2.3. Malliavin Stochastic Calculus

Suppose the operator Dt,e is the Malliavin derivative of Poisson process at (t, e). A
random variable U is Malliavin differentiable if and only if U ∈ Dl,m. Here, the stochastic
Sobolev spaces Dl,m consist of all FT−measurable U ∈ L2(P) with the norm

∥U∥2
l,m = E

[
|U|m

]
+E

[( ∫ T

0

∫ sl

0
· · ·

∫ s2

0
|Dα

s1...sl ,eU|2ds1ds2 . . . dsl

)m]
, (9)

where the Malliavin derivative Dα
s1...sl ,e is defined as

Dα
s1...sl ,e = D(j1,...,jl)

s1...sl ,e = Dj1
s1,e · · · Djl

sl ,e

with especially D0
sj ,e = 1 for 1 ≤ j ≤ l.

Lemma 3 (Duality formula, see [28]). Assume F ∈ D1,2 and u(t, e) ∈ D1,2 for 0 ≤ t ≤ T, we
obtain the duality formula

E
[

F
∫ T

0

∫
E

u(t, e)Ñ(de, dt)
]
= E

[ ∫ T

0

∫
E

u(t, e)Dt,eFλ(de)dt
]
,
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Lemma 4 (Chain rule, see [28]). Let G1, G2 ∈ D1,2, then G1G2 ∈ D1,2 and

Dt,e(G1G2) = G1Dt,eG2 + G2Dt,eG1 + Dt,eG1 Dt,eG2.

Let G ∈ D1,2 and ϕ be a real continuous function on E and ϕ(G) ∈ D1,2. Then,

Dt,eϕ(G) = ϕ(G + Dt,eG)− ϕ(G). (10)

Lemma 5 (See [28]). For t ∈ [0, T] and the stochastic process u(s, e) ∈ D1,2, we have

Dt,e

∫ T

0

∫
E

u(s, e)Ñ(de, ds) = u(t, e) +
∫ T

t

∫
E

Dt,eu(s, e)Ñ(de, ds),

and

Dt,e

∫ T

0

∫
E

∫ s2

0

∫
∆ij

Ñ(de1, ds1)Ñ(de2, ds2) =
∫ t

0

∫
∆ij

Ñ(de1, ds) + I∆ij(e)
∫ T

t

∫
E

Ñ(de1, ds),

where I∆ij(e) is the indicator function defined by I∆ij(e) = 1 for e ∈ ∆ij and I∆ij(e) = 0 for e /∈ ∆ij.

3. Main Results

First, we consider a regular time uniform discretization: 0 = t0 < · · · < tN−1 <
tN = T with ∆t = tn+1 − tn for n = 0, 1, ..., N − 1. For a basic depiction, we consider

rn,i
t := i +

∫ t
tn

∫
E h

(
rn,i

s−, e
)

N(de, ds) and Xn,i
k,tn+1

:= Xtn ,Xn,i

k,tn+1
, which is the k−th component of

Xtn ,Xn,i

tn+1
. Using the classical Wagner–Platen expansion, we can derive the following Scheme 1

for solving SDEwMs with mark-dependent jump coefficient.

Scheme 1 (Wagner–Platen expansion). Given the initial condition X0,i. For 0 ≤ n ≤ N − 1,
we solve Xn+1,i with its k-th component Xn+1,i

k by

Xn+1,i
k = Xn,i

k + ∑
α∈Γ2\{v}

Iα[ fk,α(tn, Xn,i, i, e)]tn ,tn+1 . (11)

From the Wagner–Platen expansion and trapezoidal rule we obtain

Xn,i
k,tn+1

= Xn,i
k +

∫ tn+1

tn
ak(t, Xn,i

t , rn,i
t )dt +

∫ tn+1

tn

∫
E

bk(t, Xn,i
t , rn,i

t , e)Ñ(de, dt) = Xn+1,i
k + Rn,i

k,1, (12)

where the truncation error

Rn,i
k,1 =

∫ tn+1

tn

∫ t

tn

∫
E

L1
e an,i

k Ñ(de, ds) dt − 1
2

∆t ∑
j∈S

Li,jan,i
k

∫ tn+1

tn

∫
∆ij

Ñ(de, dt)

+
∫ tn+1

tn

∫
E

∫ t

tn
L0bn,i

k,eds Ñ(de, dt)− 1
2

∆t
∫ tn+1

tn

∫
E

L0bn,i
k,e Ñ(de, dt) + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· , e)]tn ,tn+1

(13)

with Li,jan,i
k = ak

(
tn, Xn,i, j

)
− ak(tn, Xn,i, i). Here, we write an,i

k for ak(tn, Xn,i, i) and bn,i
k,e for

bk(tn, Xn,i, i, e). Then, by Equation (12), we propose the following second-order new scheme.

Scheme 2. Given the initial condition X0,i. For 0 ≤ n ≤ N − 1, we solve Xn+1,i with its k-th
component Xn+1,i

k by

Xn+1,i
k = Xn,i

k + an,i
k ∆t +

∫ tn+1

tn

∫
E

bn,i
k,e Ñ(de, dt) +

1
2

L0an,i
k (∆t)2 +

1
2

∆t ∑
j∈S

Li,jan,i
k

∫ tn+1

tn

∫
∆ij

Ñ(de, dt)

+
1
2

∆t
∫ tn+1

tn

∫
E

L0bn,i
k,e Ñ(de, dt) + ∑

j∈S

∫ tn+1

tn

∫
E

∫ t

tn

∫
∆ij

Li,jbn,i
k,e2

Ñ(de1, ds)Ñ(de2, dt)
(14)

with ∆t = tn+1 − tn.
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Remark 1. If the jump coefficient function b = b(t, Xt, rt, e), we generate the compound Pois-
son process∫ tn+1

tn

∫
E

bn,i
k,e Ñ(de, dt) =

∫ tn+1

tn

∫
E

b(tn, Xn,i, i, e)(N(de, dt)− λ(de)dt)

=

Ntn+1

∑
k=Ntn+1

b(tn, Xn,i, i, ξk)−
∫ tn+1

tn

∫
E

b(tn, Xn,i, i, e)λ(de)dt,

and the multiple stochastic integral in Scheme 2 can be computed by∫ tn+1

tn

∫
E

∫ t

tn

∫
∆ij

Ñ(de1, ds)Ñ(de2, dt)

=
∫ tn+1

tn

∫
E

(
N

∆ij
t − N

∆ij
tn

− λ∆ij(t − tn)
)

Ñ(de2, dt)

=

Ntn+1

∑
m=Ntn+1

(
N

∆ij
τm − N

∆ij
tn

− λ∆ij(τm − tn)
)
−

∫ tn+1

tn

∫
E

(
N

∆ij
t − N

∆ij
tn

− λ∆ij(t − tn)
)

λ(de2)dt

=

Ntn+1

∑
m=Ntn+1

(
N

∆ij
τm − N

∆ij
tn

− λ∆ij(τm − tn)
)
− λE

(∫ tn+1

tn
N

∆ij
t dt − N

∆ij
tn

∆t − 1
2

λ∆ij(∆t)2
)

,

(15)

where the pairs (τk, ξk) of k-th jump time and marks are independent uniformly distributed in

the planar region [0, T]× E , Ñ
∆ij
t =

∫ t
0

∫
∆ij

Ñ(de1, ds), N
∆ij
t =

∫ t
0

∫
∆ij

N(de1, ds) and λ∆ij =∫
∆ij

λ(de) =
∫

∆ij
γ(e)de. For the Lebesgue–Stieltjes stochastic integral

∫ tn+1
tn

N
∆ij
t dt, we can use

trapezoidal rule to approximate it, that is∫ tn+1

tn
N

∆ij
t dt =

1
2
(N

∆ij
tn

+ N
∆ij
tn+1

)∆t + Rn
N .

In the special case of a mark-independent jump coefficient b(t, Xt, rt, e) = b(t, Xt, rt), we
use the following discrete-time approximation

Xn,i
k,tn+1

= Xn,i
k +

∫ tn+1

tn
ak(t, Xn,i

t , rn,i
t )dt +

∫ tn+1

tn

∫
E

bk(t, Xn,i
t , rn,i

t )Ñ(de, dt) = Xn+1,i
k + Rn,i

k,2 (16)

with the truncation error

Rn,i
k,2 =

∫ tn+1

tn

∫ t

tn

∫
E

L1
e an,i

k Ñ(de, ds) dt − 1
2λE

∆t∆Ñn ∑
j∈S

Li,jan,i
k λ∆ij

+
∫ tn+1

tn

∫
E

∫ t

tn
L0bn,i

k ds Ñ(de, dt)− 1
2

L0bn,i
k ∆t∆Ñn

+
∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

bn,i
k Ñ(de1, ds)Ñ(de2, dt)− 1

2λE

(
(∆Ñn)

2 − λE∆t − ∆Ñn
)

∑
j∈S

Li,jbn,i
k λ∆ij

+ ∑
α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· )]tn ,tn+1 .

(17)

Based on Equation (16), we propose the following simplified scheme for solving mark-
independent PJ-SDEwMs.

Scheme 3. Given the initial condition X0,i. For 0 ≤ n ≤ N − 1, we solve Xn+1,i with its k-th
component Xn+1,i

k by
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Xn+1,i
k = Xn,i

k + an,i
k ∆t + bn,i

k ∆Ñn +
1
2

L0an,i
k (∆t)2 +

1
2λE

∆t∆Ñn ∑
j∈S

Li,jan,i
k λ∆ij

+
1
2

L0bn,i
k ∆t∆Ñn +

1
2λE

(
(∆Ñn)

2 − λE∆t − ∆Ñn
)

∑
j∈S

Li,jbn,i
k λ∆ij ,

(18)

where ∆t = tn+1 − tn, ∆Ñn = Ñtn+1 − Ñtn and λ∆ij =
∫

∆ij
λ(de) =

∫
∆ij

γ(e)de.

Remark 2. Here, γ(e) is a kernel function, which may be symmetric, i.e., γ(e) = γ(−e);
or non-symmetric, i.e.,

γ(e) =

{
1, if e ∈ [−c, c]
0, if e /∈ [−c, c]

, c ∈ R+; (19)

or singular, i.e.

γ(e) =


1

c2
√

c|e|
for e ∈ [−c, c]

0, for e /∈ [−c, c]
, c ∈ R+. (20)

Local Weak Convergence Theorems

In this section, using Malliavin stochastic analysis and the Wagner–Platen expansion,
we rigorously prove and obtain the local weak order-3.0 convergence of Schemes 1–3.

Theorem 1. (Local weak convergence) Suppose that Xn,i
tn+1

and Xn+1,i (0 ≤ n ≤ N − 1) satisfy

Equation (12) and Scheme 1, respectively. If the functions a, b ∈ Cp(Rd,R), a, b ∈ C2,4
b and

g ∈ C2
b , then ∣∣E[g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(∆t)3, (21)

where m ∈ N+ is a generic constant, which can vary from line to line.

Proof of Theorem 1: Subtracting Equation (18) from Equation (12) yields

Xn,i
k,tn+1

− Xn+1,i
k = ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· , e)]tn ,tn+1 . (22)

Then, by the mean value formula of integrals and duality formula, we have

E
[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]
=

d

∑
k=1

E
[
Fn+1,i

k (Xn,i
k,tn+1

− Xn+1,i
k )|Ftn

]
=

d

∑
k=1

∑
α∈B(Γ2)

E
[
Fn+1,i

k Iα[ fk,α(·, Xn,i
· , rn,i

· , e)]tn ,tn+1 |Ftn

]
=

d

∑
k=1

∑
α∈B(Γ2)

I03
λα

[
E
[
Dα

s1s2s3,e
(

Fn+1,i
k

)
fk,α(·, Xn,i

· , rn,i
· , e)|Ftn

]]
tn ,tn+1

(23)

with

Fn+1,i
k =

∫ 1

0

∂

∂xk
g(Xn+1,i + µ(Xn,i

tn+1
− Xn+1,i))dµ. (24)

Under the conditions of this theorem, we finally obtain the inequality (21). □

Theorem 2. Suppose that Xn,i
tn+1

and Xn+1,i (0 ≤ n ≤ N − 1) satisfy Equation (12) and Scheme 2,

respectively. If the functions a, b ∈ Cp(Rd,R), a, b ∈ C2,4
b and g ∈ C2

b , then∣∣E[g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(∆t)3, (25)

where m ∈ N+ is a generic constant, which can vary from line to line.
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Proof of Theorem 2. Using the multi-dimensional Taylor formula, for ease of proof, we assume

In = E
[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]
= In

1 + In
2 , (26)

where

In
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i) (Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
,

In
2 =

∫ 1

0

∫ 1

0
E
[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + µ1µ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
µ1dµ1dµ2.

(27)

Assume Xn,i
k,tn+1

is the k-th component of explicit solution Xn,i
tn+1

. Then, it follows from the
Itô–Taylor expansion that

Xn,i
k,tn+1

= Xn,i
k + ∑

α∈Γ2\{v}
Iα[ fk,α(tn, Xn,i, i, e)]tn ,tn+1 + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· , e)]tn ,tn+1

= Xn,i
k + an,i

k ∆t +
∫ tn+1

tn

∫
E

bi,e
k Ñ(de, dt) + L0an,i

k

∫ tn+1

tn

∫ s2

tn
ds1ds2 +

∫ tn+1

tn

∫ s2

tn

∫
E

L1
e an,i

k Ñ(de, ds1) ds2

+
∫ tn+1

tn

∫
E

∫ s2

tn
L0bi,e

k ds1 Ñ(de, ds2) +
∫ tn+1

tn

∫
E

∫ s2

tn

∫
E

L1
e1

bi,e2
k Ñ(de1, ds1)Ñ(de2, ds2)

+ ∑
α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· , e)]tn ,tn+1 ,

(28)

which by the fact L0an,i
k

∫ tn+1
tn

∫ s2
tn

ds1ds2 = 1
2 L0an,i

k (∆t)2 yields

Xn,i
k,tn+1

− Xn+1,i
k

= ∑
α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· , e)]tn ,tn+1 +
∫ tn+1

tn

∫ s2

tn

∫
E

L1
e an,i

k Ñ(de, ds1) ds2 −
1
2

∆t ∑
j∈S

Li,jan,i
k

∫ tn+1

tn

∫
∆ij

Ñ(de, ds)

+
∫ tn+1

tn

∫ s2

tn

∫
E

L0bi,e
k ds1 Ñ(de, ds2)−

1
2

∆t
∫ tn+1

tn

∫
E

L0bi,e
k Ñ(de, ds)

+
∫ tn+1

tn

∫
E

∫ s2

tn

∫
E

L1
e1

bi,e2
k Ñ(de1, ds1)Ñ(de2, ds2)− ∑

j∈S

∫ tn+1

tn

∫
E

∫ s2

tn

∫
∆ij

Li,jbi,e2
k Ñ(de1, ds1)Ñ(de2, ds2).

(29)

It follows from the definition of the operator L1
e1

that

∫ tn+1

tn

∫
E

∫ s2

tn

∫
E

L1
e1

bi,e2
k Ñ(de1, ds1)Ñ(de2, ds2)

=
∫ tn+1

tn

∫
E

∫ s2

tn

∫
E

(
bk(tn, Xn,i, i + h(i, e1), e2)− bk(tn, Xn,i, i, e2)

)
Ñ(de1, ds1)Ñ(de2, ds2)

= ∑
j∈S

∫ tn+1

tn

∫
E

∫ s2

tn

∫
∆ij

(
bk(tn, Xn,i, j, e2)− bk(tn, Xn,i, i, e2)

)
Ñ(de1, ds1)Ñ(de2, ds2)

= ∑
j∈S

∫ tn+1

tn

∫
E

∫ s2

tn

∫
∆ij

Li,jbi,e2
k Ñ(de1, ds1)Ñ(de2, ds2).

(30)

By the duality formula in Lemma 3 and from Equations (29) and (30), we deduce

In
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
=

d

∑
k=1

3

∑
l=1

ζ l
g,k, (31)

where



Axioms 2024, 13, 190 9 of 20

ζ1
g,k = E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫
E

∫ s2

tn
L0bi,e

k ds1 Ñ(de, ds2)−
1
2

∆t
∫ tn+1

tn

∫
E

L0bi,e
k Ñ(de, ds)

)∣∣∣Ftn

]
,

ζ2
g,k = ∑

j∈S
Li,jan,i

k E
[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ s2

tn

∫
∆ij

Ñ(de, ds1) ds2 −
1
2

∆t
∫ tn+1

tn

∫
∆ij

Ñ(de, ds)
)∣∣∣Ftn

]
,

ζ3
g,k = ∑

α∈B(Γ2)

E
[ ∂

∂xk
g(Xn+1,i) Iα[ fk,α(·, Xn,i

· , rn,i
· , e)]tn ,tn+1

∣∣Ftn

]
.

By taking Malliavin derivative with respect to Xn+1,i
k , we obtain

Dt,e2 Xn+1,i
k = bi,e2

k +
1
2

∆t
(

L0bi,e2
k + ∑

j∈S
Li,jan,i

k
)

+ ∑
j∈S

(
Li,jbi,e2

k

∫ t

tn

∫
∆ij

Ñ(de1, ds) + I∆ij(e2)
∫ tn+1

t

∫
E

Li,jbi,e1
k Ñ(de1, ds)

) (32)

for tn < t ≤ tn+1 and e2 ∈ E . Furthermore, the chain rule (10) gives

Dt,e
∂

∂xk
g(Xn+1,i) =

∂

∂xk
g(Xn+1,i + Dt,eXn+1,i)− ∂

∂xk
g(Xn+1,i). (33)

Then, it follows from Taylor formula and Lemma 5 that

∂

∂xk
g(Xn+1,i + Dt,e2 Xn+1,i)

=
∂

∂xk
g(Yn+1

i,e2
) + ∑

j∈S

d

∑
l=1

Fn+1
g,l,e2

(
Li,jbi,e2

l

∫ t

tn

∫
∆ij

Ñ(de1, ds) + I∆ij(e2)
∫ tn+1

t

∫
E

Li,jbi,e1
l Ñ(de1, ds)

)
,

(34)

where Yn+1
i,e2

= Xn+1,i + bi,e2 + 1
2 ∆t

(
L0bi,e2 + ∑

j∈S
Li,jai) and

Fn+1
g,l,e2

=
∫ 1

0

∂2

∂xk∂xl
g
(

Yn+1
i,e2

+ µ
(
Xn+1,i + Dt,e2 Xn+1,i − Yn+1

i,e2

))
dµ.

By the duality formula, we have

E
[
Fn+1

g,l,e2

∫ s2

tn

∫
∆ij

Ñ(de1, ds1)|Ftn

]
=

∫ s2

tn

∫
∆ij

E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
λ(de1) ds1,

E
[
Fn+1

g,l,e2

∫ tn+1

s2

∫
E

Li,jbi,e1
k Ñ(de1, ds1)|Ftn

]
=

∫ tn+1

s2

∫
E
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

k λ(de1) ds1.
(35)

Now by Lemma 3, from Equations (33)–(35), we have
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ζ1
g,k =

∫ tn+1

tn

∫
E

∫ s2

tn
E
[
Ds2,e

∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k ds1 λ(de) ds2

− 1
2

∆t
∫ tn+1

tn

∫
E
E
[
Ds,e

∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de) ds

=
∫ tn+1

tn

∫
E

∫ s2

tn
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de) ds1 ds2

+ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
∆ij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

+ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
∆ij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

− 1
2

∆t
∫ tn+1

tn

∫
E
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de) ds

− 1
2

∆t ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
∆ij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2

− 1
2

∆t ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
∆ij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2,

(36)

which by using the fact∫ tn+1

tn

∫
E

∫ s2

tn
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de)ds1ds2

=
1
2

∆t
∫ tn+1

tn

∫
E
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de)ds

=
1
2
(∆t)2

∫
E
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de)

yields

|ζ1
g,k| =

∣∣∣ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
∆ij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

+ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
∆ij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

− 1
2

∆t ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
∆ij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2

− 1
2

∆t ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
∆ij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2

∣∣∣
≤C(1 + |Xn,i|m)(∆t)3.

(37)

Note that ∫ tn+1

tn

∫ s2

tn

∫
∆ij

E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de)ds1ds2

=
1
2

∆t
∫ tn+1

tn

∫
∆ij

E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de)ds

=
1
2
(∆t)2

∫
∆ij

E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de),

and we deduce from Lemma 3 that
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ζ2
g,k = ∑

j∈S
Li,jan,i

k

( ∫ tn+1

tn

∫ s2

tn

∫
∆ij

E
[
Ds1,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de) ds1 ds2

− 1
2

∆t
∫ tn+1

tn

∫
∆ij

E
[
Ds,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de) ds

)
= ∑

j1∈S
∑

j2∈S

d

∑
l=1

Li,j1 an,i
k

∫ tn+1

tn

∫ s3

tn

∫
∆ij2

∫ s2

tn

∫
∆ij1

E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,j1 bi,e1

l λ(de1) ds1 λ(de2) ds2 ds3

+ ∑
j∈S

d

∑
l=1

Li,jan,i
k

∫ tn+1

tn

∫ s3

tn

∫
∆ij

∫ tn+1

s2

∫
∆ij

E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,j1 bi,e1

l λ(de1) ds1 λ(de2) ds2 ds3

− 1
2

∆t ∑
j1∈S

∑
j2∈S

d

∑
l=1

Li,j1 an,i
k

∫ tn+1

tn

∫
∆ij2

∫ s2

tn

∫
∆ij1

E
[
Ds1,e1 Fn+1

g,l,e |Ftn

]
Li,j1 bi,e1

l λ(de1) ds1 λ(de2) ds2

− 1
2

∆t ∑
j∈S

d

∑
l=1

Li,jan,i
k

∫ tn+1

tn

∫
∆ij

∫ tn+1

s2

∫
∆ij

E
[
Ds1,e1 Fn+1

g,l,e |Ftn

]
Li,jbi,e1

l λ(de1) ds1 λ(de2) ds2,

(38)

which gives
|ζ2

g,k| ≤ C(1 + |Xn,i|m)(∆t)3. (39)

Using the duality formula in Lemma 3, we conclude that

|ζ3
g,k| =

∣∣∣ ∑
α∈B(Γ2)

I03
λα

[
E
[
Dα

s1s2s3,e
( ∂

∂xk
g(Xn+1,i)

)
fk,α(s1, Xn,i

s1
, rn,i

s1
, e)|Ftn

]]
tn ,tn+1

∣∣∣ ≤ C(1 + |Xn,i|m)(∆t)3. (40)

Combining the inequalities (37)–(40), we obtain

|In
1 | =

∣∣∣E[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]∣∣∣ ≤ C(1 + |Xn,i|m)(∆t)3. (41)

For α = (1, 1, 1), applying the Itô isometry Formula (4), we have

E
[( ∫ tn+1

tn

∫ s3

tn

∫ s2

tn
fk,α(s1, Xn,i

s1
, rn,i

s1
, e1)dÑs1 dÑs2 dÑs3

)2∣∣Ftn

]
= E

[ ∫ tn+1

tn

∫
E

∫ s3

tn

∫
E

∫ s2

tn

∫
E

(
fk,α(s1, Xn,i

s1
, rn,i

s1
, e1)

)2
λ(de1) ds1 λ(de2) ds2 λ(de3) ds3

∣∣Ftn

]
= I03

λα

[
E
[(

fk,α(s1, Xn,i
s1

, rn,i
s1

, e1)
)2|Ftn

]]
tn ,tn+1

.

(42)

For α ̸= (1, 1, 1), we obtain

∑
α∈B(Γ2)
α ̸=(1,1,1)

∣∣∣E[Iα

[
fk,α(s1, Xn,i

s1
, rn,i

s1
, e1)

]
tn ,tn+1

∣∣Ftn

]∣∣∣2 ≤ C(1 + |Xn,i|m)(∆t)3. (43)

By the inequalities (42) and (43), we deduce

|In
2 | =

∣∣∣ ∫ 1

0

∫ 1

0
E
[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + µ1µ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
µ1dµ1dµ2

∣∣∣ ≤ C(1 + |Xn,i|m)(∆t)3. (44)

From the inequalities (41) and (44), we finally obtain∣∣E[g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(∆t)3.

□
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Theorem 3. Assume that Xn,i
tn+1

and Xn+1,i (0 ≤ n ≤ N − 1), respectively, satisfy Equation (16)

and Scheme 3. If the functions a, b ∈ Cp(Rd,R), a, b ∈ C2,4
b and g ∈ C2

b , then∣∣E[g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(∆t)3, (45)

where m ∈ N+ is a generic constant, which could change line by line.

Proof of Theorem 3: Using multi-dimensional Taylor formula, to make the proof easier,
we have

Jn = E
[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]
= Jn

1 + Jn
2 , (46)

where

Jn
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
,

Jn
2 =

∫ 1

0

∫ 1

0
E
[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + µ1µ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
µ1dµ1dµ2.

(47)

Assume Xn,i
k,tn+1

is the k-th component of explicit solution Xn,i
tn+1

. Then, from the Itô–Taylor
expansion, we can obtain

Xn,i
k,tn+1

= Xn,i
k + ∑

α∈Γ2\{v}
fk,α(tn, Xn,i, i)Iα[1]tn ,tn+1 + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· )]tn ,tn+1

= Xn,i
k + an,i

k ∆t + bn,i
k ∆Ñn + L0an,i

k

∫ tn+1

tn

∫ t

tn
dsdt +

∫ tn+1

tn

∫ t

tn
L1

e an,i
k dÑsdt

+ L0bn,i
k

∫ tn+1

tn

∫ t

tn
dsdÑt +

∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· )]tn ,tn+1 ,

(48)

which yields

Xn,i
k,tn+1

− Xn+1,i
k =

∫ tn+1

tn

∫ t

tn
L1

e an,i
k dÑsdt − 1

2λE
∆t∆Ñn ∑

j∈S
Li,jan,i

k λ∆ij

+ L0bn,i
k

[ ∫ tn+1

tn

∫ t

tn
dsdÑt −

1
2

∆t∆Ñn

]
+

∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt

− 1
2λE

∑
j∈S

Li,jbn,i
k λ∆ij

(
(∆Ñn)

2 − λE∆t − ∆Ñn
)
+ ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i
· , rn,i

· )]tn ,tn+1 .

(49)

By the duality formula in Lemma 3 and from Equation (49), we deduce

Jn
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
=

d

∑
k=1

4

∑
l=1

ϵl
g,k, (50)

where

ϵ1
g,k = L0bi

kE
[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
dsdÑt −

1
2

∆t∆Ñn
)∣∣∣Ftn

]
,

ϵ2
g,k = E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ s

tn
L1

e an,i
k dÑtds − 1

2λE
∆t ∆Ñn ∑

j∈S
Li,jan,i

k λ∆ij

)∣∣∣Ftn

]
,

ϵ3
g,k = E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt −

1
2λE

(
(∆Ñn)

2 − λE∆t − ∆Ñn
)

∑
j∈S

Li,jbn,i
k λ∆ij

)∣∣∣Ftn

]
,

ϵ4
g,xk

= ∑
α∈B(Γ2)

E
[ ∂

∂xk
g(Xn+1,i)Iα[ fk,α(·, Xn,i

· , rn,i
· )]tn ,tn+1

∣∣Ftn

]
.
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For tn < s ≤ t ≤ tn+1, by using Malliavin derivative in relation to Xn+1,i
k , we get

Dt,eXn+1,i
k = bn,i

k +
1
2

∆tL0bn,i
k +

1
2λE

∑
j∈S

(
∆tLi,jan,i

k + (2∆Ñn − 1)Li,jbn,i
k
)
λ∆ij ,

Ds,eDt,eXn+1,i
k =

1
λE

∑
j∈S

Li,jbn,i
k λ∆ij ,

(51)

which by combining chain rule (10) gives

Dt,e
∂

∂xk
g(Xn+1,i) =

∂

∂xk
g(Xn+1,i + Dt,eXn+1,i)− ∂

∂xk
g(Xn+1,i) := Φ(tn, Xn, ∆t, ∆Ñn),

Ds,eDt,e
∂

∂xk
g(Xn+1,i) = Ds,eΦ(tn, Xn, ∆t, ∆Ñn) := Ψ(tn, Xn, ∆t, ∆Ñn),

where the functions Φ(tn, Xn, ∆t, ∆Ñn) and Ψ(tn, Xn, ∆t, ∆Ñn) do not depending only on
t and e. Furthermore, from Lemma 3, using the notation λE :=

∫
E λ(de) =

∫
E γ(e)de,

we have

ϵ1
g,k = L0bn,i

k

( ∫ tn+1

tn

∫
E

∫ t

tn
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

]
dsλ(de)dt − 1

2
∆t

∫ tn+1

tn

∫
E
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de)dt

)
= L0bn,i

k E
[
Φ(tn, Xn, ∆t, ∆Ñn)|Ftn

]( ∫ tn+1

tn

∫ t

tn

∫
E

λ(de)dsdt − 1
2

∆t
∫ tn+1

tn

∫
E

λ(de)dt
)

,
(52)

which by using the fact∫ tn+1

tn

∫ t

tn

∫
E

λ(de)dsdt =
1
2

∆t
∫ tn+1

tn

∫
E

λ(de)dt =
1
2
(∆t)2λE

gives ε1
g,xk

= 0. Similarly, note that∫
E

L1
e an,i

k λ(de) = ∑
j∈S

∫
∆ij

(
ak(tn, Xn,i, i + h(i, e))− ak(tn, Xn,i, i)

)
λ(de)

= ∑
j∈S

∫
∆ij

(
ak(tn, Xn,i, j)− ak(tn, Xn,i, i)

)
λ(de) = ∑

j∈S
Li,jan,i

k λ∆ij ,
(53)

we deduce

ϵ2
g,k =

∫ tn+1

tn

∫ s

tn
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

] ∫
E

L1
e an,i

k λ(de) dt ds

− 1
2λE

∆t ∑
j∈S

Li,jan,i
k λ∆ij

∫ tn+1

tn

∫
E
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de) dt

=
1
2
(∆t)2( ∫

E
L1

e an,i
k λ(de)− ∑

j∈S
Li,jan,i

k λ∆ij

)
E
[
Φ(tn, Xn, ∆t, ∆Ñn)|Ftn

]
= 0.

(54)

Using Itô’s formula, we can obtain
∫ tn+1

tn

∫ t
tn

dÑsdÑt = 1
2
(
(∆Ñn)2 − λE∆t − ∆Ñn

)
, note

also that∫
E

L1
e bn,i

k λ(de) = ∑
j∈S

∫
∆ij

(
bk(tn, Xn,i, i + h(i, e))− bk(tn, Xn,i, i)

)
λ(de)

= ∑
j∈S

∫
∆ij

(
bk(tn, Xn,i, j)− bk(tn, Xn,i, i)

)
λ(de) = ∑

j∈S
Li,jbn,i

k λ∆ij ,
(55)

by the duality formula we have
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ϵ3
g,k =E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt −

1
2λE

∑
j∈S

Li,jbn,i
k λ∆ij

(
(∆Ñn)

2 − λE∆t − ∆Ñn
))∣∣∣Ftn

]
=

∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

bn,i
k E

[
Ds,e1 Dt,e2

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de1) ds λ(de2) dt

− 1
2λE

∆t ∑
j∈S

Li,jbn,i
k λ∆ij

∫ tn+1

tn

∫
E

∫ t

tn

∫
E
E
[
Ds,e1 Dt,e2

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de1) ds λ(de2) dt

=
1
2
(∆t)2λE

( ∫
E

L1
e bn,i

k λ(de)− ∑
j∈S

Li,jbn,i
k λ∆ij

)
E
[
Ψ(tn, Xn, ∆t, ∆Ñn)|Ftn

]
= 0.

(56)

Applying the duality formula in Lemma 3, we have

|ϵ4
g,k| =

∣∣∣ ∑
α∈B(Γ2)

I03
λα

[
E
[
Dα

s1s2s3,e
( ∂

∂xk
g(Xn+1,i)

)
fk,α(s1, Xn,i

s1
, rn,i

s1
)|Ftn

]]
tn ,tn+1

∣∣∣ ≤ C(1 + |Xn,i|m)(∆t)3. (57)

Combining Equation (50), ϵ1
g,k = ϵ2

g,k = ϵ3
g,k = 0, and inequality (57), we have

|Jn
1 | =

∣∣∣E[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]∣∣∣ ≤ C(1 + |Xn,i|m)(∆t)3. (58)

For α = (1, 1, 1), by using the Itô isometry Formula (4), we obtain

E
[( ∫ tn+1

tn

∫ s3

tn

∫ s2

tn
fk,α(s1, Xn,i

s1
, rn,i

s1
)dÑs1 dÑs2 dÑs3

)2∣∣Ftn

]
= E

[ ∫ tn+1

tn

∫
E

∫ s3

tn

∫
E

∫ s2

tn

∫
E

f 2
k,α(s1, Xn,i

s1
, rn,i

s1
)λ(de1)ds1λ(de2)ds2λ(de3)ds3

∣∣Ftn

]
= I03

λα
E
[

f 2
k,α(·, Xn,i

· , rn,i
· )|Ftn

]
.

(59)

For α ̸= (1, 1, 1), we obtain

∑
α∈B(Γ2)
α ̸=(1,1,1)

∣∣∣E[Iα

[
fk,α(s1, Xn,i

s1
, rn,i

s1
)
]∣∣Ftn

]∣∣∣2 ≤ C(1 + |Xn,i|m)(∆t)3. (60)

Combining inequalities (59) and (60), we have

Jn
2 =

∫ 1

0

∫ 1

0
E
[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + µ1µ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
µ1dµ1dµ2 ≤ C(1 + |Xn,i|m)(∆t)3. (61)

From inequalities (58) and (61), we finally obtain∣∣E[g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(∆t)3.

□

4. Numerical Experiments

Assume that the state space Markov chain rt is in S = {1, 2, 3}, and the transition
probability matrix is

P =

 0.3 0.6 0.1
0.2 0.7 0.1
0.4 0.4 0.2


3×3

.
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We choose Nsp = 5000 as the sample size for our numerical experiments, where Nsp is
the total number of sample pathways. We can measure the average errors of local weak
convergence and the errors of global weak convergence as follows:

eglobal
∆t :=

∣∣∣∣∣ 1
Nsp

Nsp

∑
i=1

(
φ
(

XN
i

)
− φ

(
Xi,tN

))∣∣∣∣∣, elocal
∆t :=

∣∣∣∣∣ 1
Nsp

1
N

Nsp

∑
i=1

N

∑
j=1

(
φ
(

X j
i

)
− φ

(
Xi,tj

))∣∣∣∣∣,
where N = T/∆t, ∆t are

1
8

,
1

16
,

1
32

,
1

64
,

1
128

. We let φ
(

X j
i

)
= sin

(
X j

i

)
. Let Xn,i represent

numerical solution and Xtn represent explicit solutions at the time tn, where j ∈ {1, 2, ..., N}.
Now, we give three numerical examples, including mark-dependent PJ-SDEwMs, mark-

independent PJ-SDEwMs (Ornstein-Uhlenbeck type) and PJ-SDEwMs (geometrical type).

Example 1. We consider the following mark-dependent PJ-SDEwMs:{
dXt = −µ Xtdt +

∫
E g(rt) e Ñ(de, dt),

X0 = 0.5, r0 = 0.5,
(62)

where µ is a constant and the Markov chain rt is in S = {1, 2, 3}. The group coefficients
g are given by g(1) = 0.35, g(2) = 0.3, g(3) = 0.25. We use the Itô formula to obtain the
explicit solution of Equation (62) which is

Xt = X0 · e−µt + e−µt
∫ t

0

∫
E

g(rs)eµseÑ(de, ds).

Assume T = 1 and E = [0, 1], and the pairs (τm, ξm) (Ntn + 1 ≤ m ≤ Ntn+1 ) are independent
uniformly distributed in the square [0, 1]× [0, 1]. Assume the kernel function γ(e) = e, we
have for ∆ij = [aij, aij + qij]

λ∆ij =
∫

∆ij

λ(de) =
∫

∆ij

ede =
1
2

e2|aij+qij
aij =

1
2

qij(2aij + qij),

∫ tn+1

tn

∫
E

eÑ(de, ds) =
Ntn+1

∑
m=Ntn+1

ξm,
∫
E

λ(de) =
∫ 1

0
γ(e)de =

1
2

.

Then, for solving the PJ-SDEwMs (62), we have Scheme 2 with the form

Xn+1,i =Xn,i − µXn,i∆t + g(i)
∫ tn+1

tn

∫
E

eÑ(de, dt) +
1
2
(∆t)2µ2Xn,i +

1
2 ∑

j∈S
(g(j)− g(i))qij∆t

∫ tn+1

tn

∫
E

eÑ(de, dt)

+
∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

g(i) e2Ñ(de1, ds)Ñ(de2, dt),

which by the computation of compound Poisson process (see [27]) and the trapezoidal
rule gives
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∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

g(i) e2Ñ(de1, ds)Ñ(de2, dt)

= ∑
j∈S

(g(j)− g(i))
∫ tn+1

tn

∫
E

e2

(
N

∆ij
t − N

∆ij
tn

− λ∆ij(t − tn)
)

N(de2, dt)

− ∑
j∈S

(g(j)− g(i))
∫
E

e2λ(de2)
∫ tn+1

tn

(
N

∆ij
t − N

∆ij
tn

− λ∆ij(t − tn)
)

dt

= ∑
j∈S

Ntn+1

∑
m=Ntn+1

(g(j)− g(i)) ξm

(
N

∆ij
τm − N

∆ij
tn

− λ∆ij(τm − tn)
)

− 1
6 ∑

j∈S
(g(j)− g(i))∆t

(
N

∆ij
tn+1

− N
∆ij
tn

− λ∆ij ∆t + 2Rn
N

)
,

where
∫
E e2λ(de2) =

∫ 1
0 e2

2de2 = 1
3 ,

∫ tn+1
tn

(t − tn)dt = 1
2 (∆t)2, Ñ

∆ij
t =

∫ t
0

∫
∆ij

Ñ(de, ds),

N
∆ij
t =

∫ t
0

∫
∆ij

N(de, ds),

∫ tn+1

tn
N

∆ij
t dt =

1
2
(N

∆ij
tn

+ N
∆ij
tn+1

)∆t + Rn
N .

We use CR to represent the rate of convergence over the time step ∆t. To evaluate the
performance of Scheme 2, we calculate their global errors and average local errors. It is
gratifying to find that the global convergence rate (Glo.CR) has order 2.0, while the average
local convergence rate (Avg.local CR) has order 3.0. This means that Scheme 2 has excellent
convergence properties and shows the great accuracy in numerical calculations (see Table 1).
At the same time, we draw trajectories of numerical and analytical solutions in Figure 1.
By comparing different state values, it was found that regardless of how the state values
change, the simulation efficacy demonstrated by Scheme 2 remains highly favorable.

Table 1. The results of convergence rates and errors for Scheme 2 in Example 1.

N Global Errors CR Avg. Local Errors CR

8 1.619 × 10−3 2.296 × 10−4

16 4.007 × 10−4 1.9921 3.001 × 10−5 2.993
32 8.914 × 10−5 2.0111 2.967 × 10−6 3.0846
64 2.107 × 10−5 2.0237 3.601 × 10−7 3.1007

128 6.108 × 10−6 2.1063 5.229 × 10−8 3.0991

Figure 1. (Left) True solution and numerical solution when g(1) = 0.35, g(2) = 0.3. (Right) True
solution and numerical solution when g(1) = 3.5, g(2) = 3.
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Example 2. Consider the Ornstein–Uhlenbeck (O-U) PJ-SDEwMs as follows:{
dXt = −µXtdt +

∫
E g(rt)Ñ(de, dt),

X0 = 0.5, r0 = 0.5,
(63)

where µ is a constant and the Markov chain rt is in S = {1, 2}, and the group coefficients
g are given by g(1) = 0.3 and g(2) = 0.25. It is evident that Equation (63) possesses an
explicit solution:

Xt = X0 · e−µt +
∫ t

0

∫
E

e−µ(t−s)g(rs)Ñ(de, ds).

According to the evaluation results presented in Table 2, a detailed analysis was
conducted regarding the performance of Schemes 2 and 3. The evaluation included the
calculation of their global error and average local error. Interestingly, both Schemes 2 and 3
demonstrated a second-order convergence rate during the global convergence process, in-
dicating a relatively rapid approach towards the optimal solution. Furthermore, in terms of
local convergence performance, both schemes exhibited a higher level of convergence with
a third-order average convergence rate. This finding suggests that both Schemes 2 and 3
exhibit favorable performance. In Table 3, we compare the global errors and convergence
rate of the Euler scheme, Schemes 2 and 3. It is obvious that Scheme 3 makes it simpler
and more convenient for us to calculate in comparison to Scheme 2. Equally gratifying is
that Scheme 3 greatly reduces the computing time. Scheme 3 takes 3.597104 seconds, while
Scheme 2 takes 10.024912 seconds.

Table 2. The results of convergence rates and errors for Scheme 3 in Example 2.

N Global Errors CR Avg. Local Errors CR

8 1.723 × 10−3 2.157 × 10−4

16 3.880 × 10−4 2.1502 2.430 × 10−5 3.1497
32 9.239 × 10−5 2.1103 2.887 × 10−6 3.1114
64 2.255 × 10−5 2.0835 3.542 × 10−7 3.0823

128 5.583 × 10−6 2.0643 4.350 × 10−8 3.0651

Table 3. The results of global convergence rates and errors for three schemes in Example 2.

N 8 16 32 64 128 CR Time (s)

Euler Scheme 1.765 × 10−2 8.645 × 10−3 4.277 × 10−3 2.124 × 10−3 1.060 × 10−3 1.0139 0.382757
Scheme 2 1.186 × 10−2 4.874 × 10−4 3.115 × 10−5 2.992 × 10−5 6.502 × 10−6 2.0992 10.024912
Scheme 3 1.723 × 10−2 3.889 × 10−4 9.249 × 10−5 2.255 × 10−5 5.587 × 10−6 2.0646 3.597104

Example 3. We consider the following PJ-SDEwMs with mark-independent jump coefficient:{
dXt = Xt · f (rt)dt +

∫
E Xt · g(rt)Ñ(de, dt),

X0 = 0.5, r0 = 0.5,
(64)

where the Markov chain rt is in S = {1, 2}, and Ñ(de, dt) represents a compensated Poisson
measure in one dimension. Assuming that Nt and rt are independent, with the group
coefficients f and g provided by

f (1) = 2, g(1) = 0.3, f (2) = 1.5, g(2) = 0.2.

We utilize the Itô formula to derive the explicit solution for Equation (64) as

Xt = X0 exp
(∫ t

0
f (rs)ds +

∫ t

0

∫
E

ln|1 + g(rs)|Ñ(de, ds)
)

.
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The time t ∈ [0, T] with T = 1 is set in Table 4, and we use Scheme 3 to solve the
PJ-SDEwMs (64). Scheme 3 has the second-order global convergence rate (Glo.CR) and the
third-order average local convergence rate (Avg.local CR). In Tables 5 and 6, we compare
the Euler Scheme with Scheme 3 with different state values. For clearer display, we draw
two pictures (errors of the new scheme and CPU times) according to the two tables in
Figure 1. In Figure 2 (left), we clearly demonstrate that there are differences in global errors
between individual states and transition states. For a more intuitive presentation, Figure 3
(right) illustrates the fluctuation of convergence rates as the number of times changes,
showcasing the process of convergence rate variation with the change in state value times
(CTSV). These visualizations allow us to gain a clearer understanding of the impact of
state changes on convergence rates. The observation enhances our comprehension of the
dynamic nature of the system.

Figure 2. (Left) The results of the global errors and the average local errors for Scheme 3 in Example 3.
(Right) The correlations for global errors and CPU time of all schemes.

Table 4. The results of convergence rates and errors for Scheme 3 in Example 3.

N Global Errors CR Avg. Local Errors CR

8 6.129 × 10−2 7.646 × 10−3

16 1.558 × 10−2 1.9764 9.623 × 10−4 2.9902
32 3.931 × 10−3 1.9814 1.219 × 10−4 2.9854
64 1.019 × 10−3 1.9717 1.518 × 10−5 2.9909

128 1.944 × 10−4 2.0535 1.825 × 10−6 3.0051

Table 5. Global convergence rates of multiple groups of different state values for two schemes with
X0 = 0.5.

[ f (1), f (2)] [3, 2.5] [3, 2] [3, 1.5] [3, 1] [3, 0.1] [3, 0.05] [3, 0.01]
[g(1), g(2)] [0.35, 0.3] [0.35, 0.26] [0.35, 0.2] [0.35, 0.18] [0.35, 0.1] [0.35, 0.02] [0.35, 0.01]

Euler Scheme CR1 0.9187 0.9793 1.0371 1.0837 1.169 1.1682 1.1703
Scheme 3 CR1 1.9163 2.0072 2.0197 2.0328 2.0446 2.0501 2.0418

Table 6. Global convergence rates of multiple groups of different state values in two schemes with
X0 = 0.5.

[ f (1), f (2)] [2, 1.5] [3.5, 3] [5.5, 5] [8, 7.5] [12.5, 12] [15, 14.5] [17.5, 17]
[g(1), g(2)] [0.3, 0.2] [0.4, 0.3] [0.6, 0.5] [1, 0.9] [1.8, 1.7] [2.8, 2.7] [3.5, 3.4]

Euler Scheme CR2 0.9881 0.8845 0.7432 0.5731 0.3326 0.2439 0.1410
Scheme 3 CR2 1.9813 1.9160 1.8405 1.7114 1.4414 1.2898 1.0951
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Figure 3. (Left) The convergence rates of different states. (Right) The correlations for global conver-
gence rates and the variation of state values.

5. Discussion

In this work, we mainly study stochastic differential equations with Markovian switch-
ing driven by pure jumps (PJ-SDEwMs) and give three numerical schemes. In general,
PJ-SDEwMs contains mark-dependent jump coefficient b = b(t, Xt, rt, e), which we can
solve using Schemes 1 and 2. Compared to the Itô-Taylor expansion scheme (Scheme 1),
Scheme 2 is easier to calculate by using the trapezoidal rule to approximate the following
multiple stochastic integrals:∫ tn+1

tn

∫ t

tn

∫
E

L1
e a(s, Xs, rs)Ñ(de, ds) dt and

∫ tn+1

tn

∫
E

∫ t

tn
L0b(s, Xs, rs, e)ds Ñ(de, dt).

In particular, PJ-SDEwMs contains mark-independent jump coefficient b = b(t, Xt, rt),
we can compute it in Schemes 2 and 3. Because multidimensional random integrals are
avoided, Scheme 3 is simpler and more convenient (Example 2 demonstrates this very
well). In addition, by using Malliavin calculus theory, we strictly proved that the proposed
new schemes have local weak order-3.0 convergence rates. However, through Example 3,
we find that as the upper bound of the state values gradually increases, the simulation
effect of Scheme 3 is still good, but the convergence rates will gradually decrease.

6. Conclusions

In this paper, we propose three new weak second-order numerical schemes to solve
stochastic differential equations with Markovian switching driven by pure jumps. By
using the Malliavin stochastic analysis method, the new schemes are strictly analyzed
theoretically, and the second-order convergence rate is proven. Finally, the correctness
and effectiveness of the second-order schemes are verified by three numerical experiments.
In addition, we find that as the upper bound of the state values increases, the global
convergence rate of Scheme 3 gradually decreases to the first-order. Besides, the maxi-
mum state difference and the variation of Markov chains have a certain impact on the
convergence rate.
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