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Abstract

:

In this paper, we consider blow-up solutions for the fourth-order nonlinear Schrödinger equation with mixed dispersions. We study the dynamical properties of blow-up solutions for this equation, including the    H ˙   γ c   -concentration and limiting profiles, which extend and improve the existing results in the literature.
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1. Introduction


In this paper, we study the nonlinear fourth-order Schrödinger equation with mixed dispersions


      i  ψ t  −  Δ 2  ψ + μ Δ ψ +   | ψ |  p  ψ = 0 ,   ( t , x )  ∈  [ 0 ,  T ∗  )  ×  R N  ,       ψ  ( 0 , x )  =  ψ 0   ( x )  ,      



(1)




where   μ ∈ R  ,   ψ :  [ 0 ,  T ∗  )  ×  R N  → C   is a complex valued function,   0 <  T ∗  ≤ ∞  ,   0 < p <  4 ∗    (where    4 ∗  = + ∞   if   N = 1 , 2 , 3 , 4   and    4 ∗  =  8  N − 4     if   N ≥ 5  ). Karpman in [1] first introduced the fourth-order Schrödinger Equation (1) to stabilize soliton instabilities. Karpman and Shagalov in [2] also proposed a small fourth-order dispersion term to describe the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. In recent years, there has been a great deal of interest in using higher-order operators to model physical phenomena (see [3,4,5,6,7,8]).



When   μ = 0  , Equation (1) entails the scaling invariance


   ψ λ   ( t , x )  =  λ  4 p   ψ  (  λ 4  t , λ x )  ,   λ > 0 .  











This implies that if  ψ  solves (1) with   μ = 0  , then   ψ λ   solves the same equation with the initial data    ψ λ   ( 0 , x )  =  λ  4 p    ψ 0   ( λ x )   . A direct computation shows


   ∥   ψ λ     ( 0 )  ∥    H ˙  γ   =  λ  γ +  4 p  −  N 2      ∥  ψ 0  ∥    H ˙  γ   .  











This implies that the Sobolev    H ˙   γ c   -norm and Lebesgue   L  p c   -norm are invariant under the scaling   ψ ↦  ψ λ   , where


   γ c  : =  N 2  −  4 p     and     p c  : =   2 N   N − 2  γ c    =   N p  4  .  











Although there is not any scaling invariance for Equation (1) with   μ ≠ 0  ,   γ c   and   p c   are referred to as the critical Sobolev and Lebesgue exponents of (1), respectively. When   0 ≤  γ c  ≤ 2  , i.e.,    8 N  ≤ p ≤  4 ∗   , Equation (1) is referred to as    H ˙   γ c   -critical. In particular, when    γ c  = 0   and    γ c  = 2  , Equation (1) is referred to as   L 2  -critical (or mass-critical) and    H ˙  2  -critical (or energy-critical), respectively.



If the initial data    ψ 0  ∈  H 2   , then Equation (1) reflects the mass and energy conservation laws:


       ∥ ψ  ( t )  ∥   L 2   =   ∥  ψ 0  ∥   L 2   ,   E  ( ψ  ( t )  )  = E  (  ψ 0  )  ,     








where the energy E is defined by


  E  ( ψ  ( t )  )  =  1 2    ∥ Δ ψ  ( t )  ∥    L 2   2  +  μ 2    ∥ ∇ ψ  ( t )  ∥    L 2   2  −  1  p + 2     ∥ ψ  ( t )  ∥    L  p + 2     p + 2   .  



(2)







If the initial data    ψ 0  ∈   H ˙   γ c   ∩   H ˙  2    with    γ c  ≤ 1  , then the equation only assumes energy conservation. The conservation of mass is no longer available in this setting.



Recently, Equation (1) was investigated extensively in [9,10,11,12,13,14,15,16,17,18]. The local well-posedness in   H 2   was studied in [9,13,15]. The global well-posedness for (1) in   H 2   was studied by Fibich, Ilan, and Papanicolaou in [19]. The global properties, including the sharp threshold of scattering and blow-up, asymptotical behavior, and scattering were investigated in [12,15,16,17,18,20]. When   0 < p <  8 N   , it follows that all the solutions of (1) exist globally using the mass conservation. Boulenger and Lenzmann in [21] proved the existence of radial blow-up solutions for (1) with    8 N  ≤ p ≤  4 ∗   . When   μ = 0  , the dynamical properties of the blow-up solutions of (1) were investigated in [22,23,24,25,26,27,28]. However, when   μ ≠ 0  , the dynamical properties of the blow-up solutions of (1) have not yet been discussed.



The aim of this paper is to consider the dynamical properties of the blow-up solutions of (1) with   μ ≠ 0  . However, compared with the case   μ = 0   considered in [25,26,28], there are two major difficulties in the analysis of the blow-up solutions of (1). One is the loss of mass conservation due to the initial data    ψ 0  ∈   H ˙   γ c   ∩   H ˙  2   ; the other is the loss of scaling invariance to (1) with   μ ≠ 0  . Since there is no scaling invariance for   μ ≠ 0  , we choose the ground states of the equations


   Δ 2  Q +   ( − Δ )   γ c   Q −   | Q |  p  Q = 0 ,  



(3)




and


   Δ 2  R +   | R |    p c  − 2   R −   | R |  p  R = 0 ,  



(4)




to describe some of the concentration properties and limiting profiles of the blow-up solutions to (1), respectively, where (3) and (4) arise in the study of the optimal constants of inequalities (12) and (14) (see [25]).



The structure of this paper is as follows: In Section 2, we provide some preliminary information, including the local well-posedness of (1), the profile decomposition of the bounded sequences in     H ˙   γ c   ∩   H ˙  2   , and the localized virial to (1). In Section 3, we investigate the dynamical properties of the blow-up solutions of (1) with   μ ≠ 0   in the   L 2  -critical and   L 2  -supercritical cases, including the concentration properties and limiting profiles.




2. Preliminaries


First, we recall the local well-posedness for the Cauchy problem (1).



Lemma 1 

([14]). Let   0 < p <  4 ∗    and    ψ 0  ∈  H 2   . Then, there exists   T = T ( ∥  ψ 0   ∥  H 2   )  , such that (1) admits a unique solution   ψ ∈ C (  [ 0 , T )  ,  H 2  )  . If    T ∗  < ∞  , then     ∥ Δ ψ  ( t )  ∥   L 2   → ∞   as    t ↑   T ∗   , where   T ∗   is the maximal existence time of solution   ψ ( t )  . Moreover, for all   [ 0 ,  T ∗  )  , the following mass and energy conservation laws follow:


  M  ( ψ  ( t )  )  =  ∫  R N     | ψ  ( t , x )  |  2  d x = M  (  ψ 0  )  ,  



(5)






  E  ( ψ  ( t )  )  = E  (  ψ 0  )  ,  



(6)




where   E ( ψ ( t ) )   is defined by (2).





Next, in order to study the existence of the blow-up solutions, we recall the localized virial to (1) established in [21]. Let   φ :  R N  → R   be a radial function which satisfies    ∇ j  φ ∈  L ∞   , for   1 ≤ j ≤ 6  ,


  φ  ( r )  : =        r 2  2     f o r  r ≤ 1        c o n s t .    f o r  r ≥ 10 ,       a n d   φ  ″    ( r )  ≤ 1 ,  f o r  r ≥ 0 .  











For   R > 0  , we define    φ R   ( r )  : =  R 2  φ  (  r R  )   . When   ψ ∈ C (  [ 0 ,  T ∗  )  ;  H 2  )  , we define the localized virial of   ψ ( t )   by


   M  φ R    ( ψ  ( t )  )  : = 2  I m   ∫  R N    ψ ¯   ( t , x )  ∇  φ R   ( x )  ∇ ψ  ( t , x )  d x .  



(7)







Boulenger and Lenzmann in [21] obtained the following time evolution of    M  φ R    ( ψ  ( t )  )   .



Lemma 2 

([21], Lemma 3.1). Let   0 < p <  4 ∗    and   R > 0  . Let   ψ ∈ C (  [ 0 ,  T ∗  )  ;  H 2  )   be a radial solution to (1), then,


      d  d t    M  φ R    ( ψ  ( t )  )  ≤     2 N p E  ( ψ  ( t )  )  −    ( N p − 8 )  ∥ Δ ψ  ( t )  ∥    L 2   2  −  ( N p − 4 )  μ   ∥ ∇ ψ  ( t )  ∥    L 2   2  +  X μ   [ ψ  ( t )  ]           + O   1  R 4   +    ∥ ∇ ψ  ( t )  ∥    L 2   2   R 2   +    ∥ ∇ ψ  ( t )  ∥    L 2    p / 2    R   ( N − 1 ) p  2    +   | μ |   R 2         =    4 Q  ( ψ  ( t )  )  +  X μ   [ ψ  ( t )  ]  + O   1  R 4   +    ∥ ∇ ψ  ( t )  ∥    L 2   2   R 2   +    ∥ ∇ ψ  ( t )  ∥    L 2    p / 2    R   ( N − 1 ) p  2    +   | μ |   R 2    ,     








for any   t ∈ [ 0 ,  T ∗  )  , where


   X μ   [ ψ  ( t )  ]  ≤      0    f o r  μ ≤ 0 ,        A 0    | μ | ∥ ∇ ψ  ( t )  ∥    L 2   2     f o r  μ < 0 ,       








with some constant    A 0  > 0  .





Lemma 3 

([29], Proposition 1.32). Let    s 0  ≤ s ≤  s 1   . Then,     H ˙   s 0   ∩   H ˙   s 1     is included in    H ˙  s  , and


    ∥ v ∥    H ˙  s   ≤   ∥ v ∥    H ˙   s 0    1 − θ     ∥ v ∥     H ˙   s 1    θ  ,   f o r  a l l  v ∈   H ˙   s 0   ∩   H ˙   s 1   ,  



(8)




where   s =  ( 1 − θ )   s 0  + θ  s 1   .





Lemma 4 

([26], Theorem 1.1). If   0 < p <  4 ∗   , then


    ∥ v ∥   L  p + 2    p + 2   ≤   4 ( p + 2 )   4 ( p + 2 ) − N p       4 ( p + 2 ) − N p   N p      N p  8    1   ∥ R ∥   L 2  p     ∥ v ∥   L 2    4 ( p + 2 ) − N p  4     ∥ Δ v ∥   L 2    N p  4   ,  



(9)




for all   v ∈  H 2   , where   R ∈  H 2    is a ground state of the equation


   Δ 2  R + R −   | R |  p  R = 0 .  



(10)




Moreover, the following Pohozaev’s identities follow.


       ∥ Δ R ∥   L 2  2  =   N p   4 ( p + 2 )     ∥ R ∥   L  p + 2    p + 2   =   N p   8 − p ( N − 4 )     ∥ R ∥   L 2  2  .     



(11)









Lemma 5 

([25], Proposition 3.2). Let    8 N  < p <  4 ∗   . Then, for all   v ∈   H ˙   γ c   ∩   H ˙  2   


    ∥ v ∥   L  p + 2    p + 2   ≤   p + 2  2   1   ∥ Q ∥    H ˙   γ c   p     ∥ v ∥    H ˙   γ c   p    ∥ Δ v ∥   L 2  2  ,  



(12)




where   Q ∈   H ˙   γ c   ∩   H ˙  2    is a ground state of (3). Moreover, the following Pohozaev’s identities follow.


       ∥ Q ∥    H ˙  2  2  =  2  p + 2     ∥ Q ∥   L  p + 2    p + 2   =  2 p    ∥ Q ∥    H ˙   γ c   2  .     



(13)









Lemma 6 

([25], Proposition 3.2). Let    8 N  < p <  4 ∗   . Then, for all   v ∈  L  p c   ∩   H ˙  2   


    ∥ v ∥   L  p + 2    p + 2   ≤   p + 2  2   1   ∥ R ∥   L  p c   p     ∥ v ∥   L  p c   p    ∥ Δ v ∥   L 2  2  ,  



(14)




where   R ∈  L  p c   ∩   H ˙  2    is a ground state solution of the elliptic Equation (4). Moreover, the following Pohozaev’s identities hold true:


       ∥ R ∥    H ˙  2  2  =  2  p + 2     ∥ R ∥   L  p + 2    p + 2   =  2 p    ∥ R ∥   L  p c   2  .     



(15)









Since the uniqueness of the ground state solutions to (10), (3) and (4) is still unknown, to study the dynamical properties of blow-up solutions, we introduce the notions of Sobolev and Lebesgue ground states. Denote


      G 0   ( u )      : =   ∥ u ∥   L   8 N  + 2     8 N  + 2   ÷    ∥ u ∥   L 2   8 N     ∥ Δ u ∥   L 2  2   ,  u ∈  H 2  ,       G ( u )     : =   ∥ u ∥   L  p + 2    p + 2   ÷    ∥ u ∥    H ˙   γ c   p    ∥ Δ u ∥   L 2  2   ,  u ∈   H ˙   γ c   ∩   H ˙  2  ,       K ( u )     : =   ∥ u ∥   L  p + 2    p + 2   ÷    ∥ u ∥   L  p c   p    ∥ Δ u ∥   L 2  2   ,  u ∈  L  p c   ∩   H ˙  2  .     











Definition 1 

(Ground states).








	1. 

	
We call the  Sobolev ground states  the maximizers of   G 0   and G, which are solutions to (10) and (3), respectively. We denote the set of Sobolev ground states of   G 0   and G by   G 0   and  G , respectively.




	2. 

	
We call the  Lebesgue ground states  the maximizers of K, which are solutions to (4). We denote the set of Lebesgue ground states by  K .











It follows from the optimal constants in (9), (12), and (14) that all the Sobolev ground states have the same    H ˙   γ c   -norm and all the Lebesgue ground states have the same   L  p c   -norm. We thus denote


      G 0  : =   ∥ Q ∥   L 2   ,   ∀ Q ∈  G 0  ,     G 1  : =   ∥ Q ∥    H ˙   γ c    ,   ∀ Q ∈ G ,     G 2  : =   ∥ R ∥   L  p c    ,   ∀ R ∈ K .     



(16)







Finally, we recall the following two compactness lemmas:



Lemma 7 

([28], Compactness lemma I). Suppose that    {  u n  }   n = 1  ∞   is a bounded sequence in   H 2   and satisfies


   lim sup  n → ∞    ∥ Δ   u n    ∥   L 2   ≤ M ,     lim sup  n → ∞     ∥  u n  ∥   L  8 / N + 2    ≥ m > 0 .  











Then, there exist     {  x n  }   n = 1  ∞  ⊂  R N    and   V ∈  H 2   , such that, up to a subsequence,


    u n   ( · +  x n  )  ⇀ V   w e a k l y  i n   H 2    








with


     ∥ V ∥    L 2   p  ≥  2  p + 2     m  p + 2    M 2    G 0 p  .   













Lemma 8 

([25], Compactness lemma II). Let    8 N  < p <  4 ∗   . Let    {  v n  }   n = 1  ∞   be a bounded sequence in     H ˙   γ c   ∩   H ˙  2   , such that


   lim sup  n → ∞    ∥   v n    ∥    H ˙  2   ≤ M ,   lim sup  n → ∞     ∥  v n  ∥   L  p + 2    ≥ m .  
















	
Then, there exist   V ∈   H ˙   γ c   ∩   H ˙  2    and a sequence    {  y n  }   n = 1  ∞   in   R N  , such that up to a subsequence,


    v n   ( · +  y n  )  ⇀ V  weakly  in    H ˙   γ c   ∩   H ˙  2  ,   











with


        ∥ V ∥    H ˙   γ c   p  ≥  2  p + 2     m  p + 2    M 2    G 1 p  .      



(17)







	
Then, there exist   W ∈  L  p c   ∩   H ˙  2    and a sequence    {  z n  }   n = 1  ∞   in   R N  , such that up to a subsequence,


    v n   ( · +  z n  )  ⇀ W  weakly  in   L  p c   ∩   H ˙  2  ,   











with


        ∥ W ∥   L  p c   p  ≥  2  p + 2     m  p + 2    M 2    G 2 p  .      



(18)














Remark 1. 

The lower bounds (17) and (18) are optimal. Indeed, taking    v n  = Q   in the first case and    v n  = R   in the second case where   Q ∈ G   and   R ∈ K  , we obtain the equalities.






3. Dynamic of Blow-Up Solutions in the   L 2  -Critical and   L 2  -Supercritical Cases


In this section, we study the dynamical properties of the blow-up solutions for (1) in the   L 2  -critical and   L 2  -supercritical cases.



3.1. The Sharp Threshold Mass of Blow-Up and Global Existence


It easily follows from the local well-posedness that the solution of (1) with small initial data exists globally, and the solution may blow up in finite time for some large initial data. Therefore, whether there is a sharp threshold of global existence and blow-up for (1) is of particular interest. Next, we obtain the sharp threshold mass of global existence and blow-up for (1) by using the scaling argument and the inequality (9).



Theorem 1. 

Let    ψ 0  ∈  H 2   ,   μ > 0  ,   p =  8 N   . Then, we obtain the following sharp threshold mass of the global existence and blow-up:



(i) If    ∥   ψ 0    ∥   L 2   ≤  G 0   , then all solutions of (1) exist globally.



(ii) For any   ρ >  G 0   , there exist initial data   ψ 0  , such that    ∥   ψ 0    ∥   L 2   = ρ   and the corresponding solution   ψ ( t )   of (1) blows up in finite time.





Remark 2. 

When   μ = 0  , Fibich, Ilan, and Papanicolaou in [19] proved that all solutions of (1) with initial data    ∥   ψ 0    ∥   L 2   <  G 0    exist globally. When   μ > 0  , we prove that all solutions of (1) with initial data    ∥   ψ 0    ∥   L 2   ≤  G 0    exist globally. This suggest that the defocusing second-order dispersion term may prevent the occurrence blow-up.





Proof. 

(i) When    ∥   ψ 0    ∥   L 2   <  G 0   , we deduce from (2) and (9) that


     E (  ψ 0  )     = E  ( ψ  ( t )  )  =  1 2    ∥ Δ ψ  ( t )  ∥    L 2   2  +  μ 2    ∥ ∇ ψ  ( t )  ∥    L 2   2  −  1  p + 2     ∥ ψ  ( t )  ∥    L  p + 2     p + 2          ≥   1 2  −    ∥   ψ 0    ∥    L 2   p    2  G 0 p       ∥ Δ ψ  ( t )  ∥    L 2   2  .     











Due to    ∥   ψ 0    ∥   L 2   <  G 0   , we have that    ∥ Δ ψ  ( t )  ∥   L 2    is uniformly bounded for all times t. Therefore, (i) follows from the conservation of mass and Lemma 1.



When    ∥   ψ 0    ∥   L 2   =  G 0   , we prove this result by contradiction. If the solution   ψ ( t )   of (1) blows up in finite time, then there exists    T ∗  > 0  , such that    lim  t →  T ∗      ∥ Δ ψ  ( t )  ∥   L 2   = ∞  . Set


   ρ 2   ( t )  =   ∥ Δ R ∥   L 2   /   ∥ Δ ψ  ( t )  ∥   L 2     a n d   v  ( t , x )  = ρ   ( t )   N / 2   ψ  ( t , ρ  ( t )  x )  .  











Let    {  t n  }   n = 1  ∞   be any time sequence, such that    t n  →  T ∗   ,    ρ n  : = ρ  (  t n  )    and    v n   ( x )  : = v  (  t n  , x )   . Then, the sequence   {  v n  }   satisfies


   ∥   v n    ∥   L 2    = ∥ ψ   (  t n  )    ∥   L 2    = ∥   ψ 0    ∥   L 2   =  G 0   ,   ∥ Δ   v n    ∥   L 2   =  ρ n 2   ∥ Δ ψ   (  t n  )    ∥   L 2   =   ∥ Δ R ∥   L 2   .  



(19)







Observe that


     0 ≤  1 2   ∥ Δ   v n    ∥    L 2   2  −  1  p + 2     ∥  v n  ∥    L  p + 2     p + 2   =      ρ n 4    1 2   ∥ Δ ψ   (  t n  )    ∥    L 2   2  −  1  p + 2     ∥ ψ  (  t n  )  ∥    L  p + 2     p + 2         =     ρ n 4   E  (  ψ 0  )  −  μ 2    ∥ ∇ ψ  (  t n  )  ∥    L 2   2        ≤     ρ n 4  E  (  ψ 0  )  → 0 ,   a s  n → ∞ .     



(20)







This implies that


   lim  n → ∞    ∥   v n    ∥    L  p + 2     p + 2   =   p + 2  2    ∥ Δ R ∥    L 2   2  .  











Thus, we deduce from (19) that there exist subsequences, still denoted by   {  v n  }   and   u ∈  H 2   ∖  { 0 }    , such that


   u n  : =  τ  x n    v n  ⇀ u ≠ 0   w e a k l y  i n   H 2  ,  








for some    {  x n  }  ⊆  R N   . This implies that there exists    C 0  > 0  , such that


      lim  n → ∞    ∥ ∇   v n    ∥    L 2   2  =  lim  n → ∞     ∥ ∇  u n  ∥    L 2   2  ≥  C 0  > 0 .     



(21)







On the other hand, we deduce from (9) and     ∥ ψ  ( t )  ∥   L 2    = ∥   ψ 0    ∥   L 2   =   ∥ R ∥   L 2     that


      1 2    ∥ Δ ψ  ( t )  ∥    L 2   2  −  1  p + 2     ∥ ψ  ( t )  ∥    L  p + 2     p + 2   ≥ 0 ,     








for all   t ∈ [ 0 ,  T ∗  )  . This implies that


      μ 2    ∥ ∇ ψ  ( t )  ∥    L 2   2  ≤ E  (  ψ 0  )  ,     








for all   t ∈ [ 0 ,  T ∗  )  . We consequently obtain that


      ∥ ∇   v n    ∥    L 2   2  =  ρ n 2    ∥ ∇ ψ  (  t n  )  ∥    L 2   2  ≤   2  ρ n 2   μ  E  (  ψ 0  )  → 0 ,   a s  n → ∞ ,     








which is a contradiction with (21). Thus, the solution   ψ ( t )   of (1) exists globally.



(ii) Let   R ∈  G 0    be radial. We define the initial data    ψ 0   ( x )  = c  λ  N 2   R  ( λ x )    with   c =  ρ  G 0     and some   λ > 1  . Then,    ∥   ψ 0    ∥   L 2   = ρ  . Applying the Poho   z ˘   aev identity for the following equation:


   Δ 2  R + R −   | R |  p  R = 0 ,  



(22)




i.e.,    1 2    ∥ Δ R ∥    L 2   2  =  1  p + 2     ∥ R ∥   L  p + 2    p + 2    , we deduce that


     E (  ψ 0  )     =     | c |  2   λ 4   2    ∥ Δ R ∥    L 2   2  +     μ | c |  2   λ 2   2    ∥ ∇ R ∥    L 2   2  −     | c |   p + 2    λ   N p  2     p + 2     ∥ R ∥    L  p + 2     p + 2            = −     | c |  2   λ 4   2    ( | c |  p  −   1 ) ∥ Δ R ∥    L 2   2  +     μ | c |  2   λ 2   2    ∥ ∇ R ∥    L 2   2  .     



(23)







Now, taking  λ , such that


     μ ∥ ∇ R ∥    L 2   2     ( | c |  p  −   1 ) ∥ Δ R ∥    L 2   2    <  λ 2  .  











This implies   E (  ψ 0  ) < 0  . Thus, the solution  ψ  of (1) with initial data   ψ 0   blows up by applying the same method as that of Theorem 3 in [21]. □






3.2. The   L 2  -Critical Case


In this subsection, we investigate some dynamical properties of the blow-up solutions for (1) with   μ ≠ 0   in the   L 2  -critical case.



Theorem 2. 

(  L 2  -concentration) Let    ψ 0  ∈  H 2   ,   μ ≠ 0  ,   p =  8 N   . If the solution   ψ ( t )   of (1) blows up in finite time    T ∗  > 0  . Let   a ( t )   be a real-valued non-negative function defined on   [ 0 ,  T ∗  )   satisfying     a  ( t )  ∥ Δ ψ  ( t )  ∥    L 2    1 2   → ∞   as   t →  T ∗   . Then, there exists   x  ( t )  ∈  R N   , such that


    lim inf  t →  T ∗     ∫  | x − x ( t ) | ≤ a ( t )     | ψ  ( t , x )  |  2  d x ≥  G 0 2  ,   



(24)




where   G 0   is defined by (16).





Remark 3. 

By a similar analysis as that in Remark 2, this theorem gives the   L 2  -concentration and rate of   L 2  -concentration of the blow-up solutions of (1).





Proof. 

Let   R ∈  G 0   ; we set


   ρ 2   ( t )  =   ∥ Δ R ∥   L 2   /   ∥ Δ ψ  ( t )  ∥   L 2     a n d   v  ( t , x )  =  ρ  N 2    ( t )  ψ  ( t , ρ  ( t )  x )  .  











Let    {  t n  }   n = 1  ∞   be any time sequence, such that    t n  →  T ∗   ,    ρ n  : = ρ  (  t n  )    and    v n   ( x )  : = v  (  t n  , x )   . Then, the sequence   {  v n  }   satisfies


   ∥   v n    ∥   L 2    = ∥ ψ   (  t n  )    ∥   L 2    = ∥   ψ 0    ∥   L 2    ,   ∥ Δ   v n    ∥   L 2   =  ρ n 2   ∥ Δ ψ   (  t n  )    ∥   L 2   =   ∥ Δ R ∥   L 2   .  



(25)







Observe that


      |   E 0   (  v n  )   | =       1 2   ∫  R N    | Δ   v n     ( x )  |  2  d x −  1  p + 2    ∫  R N     |  v n   ( x )  |   p + 2   d x      =     ρ n 4    1 2   ∫  R N    | Δ ψ   (  t n  , x )    |  2  d x −  1  p + 2    ∫  R N     | ψ  (  t n  , x )  |   p + 2   d x       ≤     ρ n 4   E  (  ψ 0  )  +   | μ |  2   ∫  R N     | ∇ ψ  (  t n  , x )  |  2  d x  .     



(26)







Thus, applying the inequality (8), we deduce that    E 0   (  v n  )  → 0  , as   n → ∞  . This implies    ∫  R N    |   v n     ( x )  |   p + 2   d x →   p + 2  2    ∥ Δ R ∥    L 2   2   .



Set    m  p + 2   =   p + 2  2    ∥ Δ R ∥    L 2   2    and   M =   ∥ Δ R ∥   L 2    . Then, it follows from Lemma 7 that there exist   V ∈  H 2    and     {  x n  }   n = 1  ∞  ⊂  R N   , such that, up to a subsequence,


   v n   ( · +  x n  )  =  ρ n  N / 2   ψ  (  t n  ,  ρ n   ( · +  x n  )  )  ⇀ V   w e a k l y  i n   H 2   



(27)




with


    ∥ V ∥   L 2   ≥  G 0  .  



(28)







Note that


    a (  t n  )   ρ n   =   a  (  t n  )    ∥ Δ ψ  (  t n  )  ∥    L 2    1 / 2      ∥ Δ R ∥    L 2    1 / 2    → ∞ ,   a s  n → ∞ .  











Then, for every   r > 0  , there exists    n 0  > 0  , such that for every   n >  n 0   ,   r  ρ n  < a  (  t n  )   . Therefore, using (27), we obtain


      lim inf  n → ∞    sup  y ∈  R N     ∫  | x − y | ≤ a (  t n  )     | ψ  (  t n  , x )  |  2  d x     ≥  lim inf  n → ∞    sup  y ∈  R N     ∫   | x − y |  ≤ r  ρ n      | ψ  (  t n  , x )  |  2  d x          ≥  lim inf  n → ∞    ∫   | x −   x n   | ≤ r   ρ n      | ψ  (  t n  , x )  |  2  d x          =  lim inf  n → ∞    ∫  | x | ≤ r    ρ n N    | ψ  (  t n  ,  ρ n   ( x +  x n  )  )  |  2  d x          =  lim inf  n → ∞    ∫  | x | ≤ r     | v  (  t n  , x +  x n  )  |  2  d x          ≥  lim inf  n → ∞    ∫  | x | ≤ r     | V  ( x )  |  2  d x ,   f o r  e v e r y  r > 0 ,     








which means that


   lim inf  n → ∞    sup  y ∈  R N     ∫  | x − y | ≤ a (  t n  )    | ψ   (  t n  , x )    |  2  d x ≥  ∫  R N     | V  ( x )  |  2  d x .  











Since the sequence    {  t n  }   n = 1  ∞   is arbitrary, we obtain


   lim inf  t →  T ∗     sup  y ∈  R N     ∫  | x − y | ≤ a ( t )     | ψ  ( t , x )  |  2  d x ≥  ∫  R N     | R  ( x )  |  2  d x .  



(29)







Observe that for every   t ∈ [ 0 ,  T ∗  )  , the function   g  ( y )  : =  ∫  | x − y | ≤ a ( t )     | ψ  ( t , x )  |  2  d x   is continuous on   y ∈  R N    and   g ( y ) → 0   as   | y | → ∞  . So, there exists a function   x  ( t )  ∈  R N   , such that for every   t ∈ [ 0 ,  T ∗  )  


   sup  y ∈  R N     ∫  | x − y | ≤ a ( t )     | ψ  ( t , x )  |  2  d x =  ∫  | x − x ( t ) | ≤ a ( t )     | ψ  ( t , x )  |  2  d x .  











This and (29) yield (24). □





Next, we study the limiting profile of the blow-up   H 2  -solutions with critical norms. To do so, we recall the following characterization of the ground states:



Lemma 9 

(Characterization of ground states [28]). Let   p =  8 N   . If   u ∈  H 2    is such that     ∥ u ∥   L 2   =  G 0    and


   E 0   ( u )  : =  1 2    ∥ u ∥    H ˙  2  2  −  1  p + 2     ∥ u ∥   L  p + 2    p + 2   = 0 ,  








then there exists   R ∈  G 0   , such that u is of the form


  u  ( x )  =  e  i θ    λ  N 2   R  ( λ x +  x 0  )  ,  








for   θ ∈  R N  , λ > 0   and    x 0  ∈  R N   .





Theorem 3. 

Let    ψ 0  ∈  H 2   ,   μ < 0  ,   p =  8 N   . Assume    ∥   ψ 0    ∥   L 2   =  G 0    and the corresponding solution ψ of (1) blows up in finite time    T ∗  > 0  , then there exist    R 1  ∈  G 0   ,   ρ ( t ) > 0  ,   x  ( t )  ∈  R N    and   θ ( t ) ∈ [ 0 , 2 π )  , such that


    ρ  N / 2    ( t )  ψ  ( t , ρ  ( t )   ( · + x  ( t )  )  )   e  i θ ( t )   →  R 1   s t r o n g l y  i n   H 2  ,  a s  t →  T ∗  .   



(30)









Proof. 

We use the notations in the proof of Theorem 2. Assume that    ∥   ψ 0    ∥   L 2   =  G 0   . Recall that we have verified that     ∥ V ∥   L 2   ≥  G 0    in the proof of Theorem 2. Whence


   G 0  ≤   ∥ V ∥   L 2   ≤  lim inf  n → ∞    ∥   v n    ∥   L 2   =  lim inf  n → ∞    ∥ ψ   (  t n  )    ∥   L 2   =   ∥  ψ 0  ∥   L 2   =  G 0  ,  








and then,


   lim  n → ∞    ∥   v n    ∥   L 2   =   ∥ V ∥   L 2   =  G 0  ,  



(31)




which implies


   v n   ( · +  x n  )  → V  s t r o n g l y  i n   L 2   a s  n → ∞ .  











We infer from the inequality (8) that


   ∥ ∇   (  v n   ( · +  x n  )  − V )    ∥   L 2  2   ≤ C ∥   v n   ( · +  x n  )    − V ∥   L 2     ∥ Δ  (  v n   ( · +  x n  )  − V )  ∥   L 2   .  











From    ∥ Δ   v n   ( · +  x n  )    ∥   L 2   ≤ C  , we obtain


  ∇  v n   ( · +  x n  )  → ∇ V   i n   L 2   a s  n → ∞ .  











Next, we will prove that    v n   ( · +  x n  )    converges to V strongly in   H 2  . For this purpose, we estimate as follows:


     0 =  lim  n → ∞    |  E 0   (  v n  )  |  =      1 2   ∫  R N     | Δ R  ( x )  |  2  d x −  1  p + 2    lim  n → ∞    ∫  R N     |  v n   ( x )  |   p + 2   d x      =      1 2   ∫  R N     | Δ R  ( x )  |  2  d x −  1  p + 2    ∫  R N     | V  ( x )  |   p + 2   d x  .     



(32)







Thus, we infer from the inequality (9) that


   1 2   ∫  R N     | Δ R  ( x )  |  2  d x =  1  p + 2    ∫  R N     | V  ( x )  |   p + 2   d x ≤  1 2     ∥ V ∥    L 2   p   G 0 p     ∥ Δ V ∥    L 2   2  =  1 2    ∥ Δ V ∥    L 2   2  .  



(33)







On the other hand, we deduce from (25) that     ∥ Δ V ∥   L 2   ≤  lim inf  n → ∞    ∥ Δ   v n   ( · +  x n  )    ∥   L 2   =   ∥ Δ R ∥   L 2    . Hence, we have     ∥ Q ∥   H 2   =   ∥ V ∥   H 2     and


   v n   ( · +  x n  )  → V  s t r o n g l y  i n   H 2   a s  n → ∞ .  



(34)







This and (33) imply that


   E 0   ( V )  =  1 2   ∫  R N     | Δ V  ( x )  |  2  d x −  1  p + 2    ∫  R N     | V  ( x )  |   p + 2   d x = 0 .  











Up to now, we have verified that


    ∥ V ∥   L 2   =  G 0   a n d   E 0   ( V )  = 0 .  











Applying Lemma 9, there exists    R 1  ∈  G 0   , such that


  V  ( x )  =  e  i θ    R 1   ( x +  x 0  )   f o r  s o m e  θ ∈  [ 0 , 2 π )  ,   x 0  ∈  R N   








and


   ρ n  N / 2   ψ  (  t n  ,  ρ n   ( · +  x 0  )  )  →  e  i θ    R 1   ( · +  x 0  )   s t r o n g l y  i n   H 2   a s  n → ∞ .  











Since the sequence    {  t n  }   n = 1  ∞   is arbitrary, we infer that there are two functions   x  ( t )  ∈  R N    and   θ ( t ) ∈ [ 0 , 2 π )  , such that


   ρ  N / 2    ( t )   e  i θ ( t )   ψ  ( t , ρ  ( t )   ( x + x  ( t )  )  )  →  R 1   s t r o n g l y  i n   H 2   a s  t →  T ∗  .  











□






3.3. The   L 2  -Supercritical Case


In this subsection, we investigate some dynamical properties of the blow-up solutions for (1) with    ψ 0  ∈   H ˙   γ c   ∩   H ˙  2    in the   L 2  -supercritical case. The main difficulty in this consideration is the lack of conservation of mass.



Theorem 4. 

Let   μ ∈ R  ,    8 N  < p <  4 ∗   ,    ψ 0  ∈   H ˙  γ  ∩   H ˙  2    with   γ = min {  γ c  , 1 }  . If the solution   ψ ( t )   of (1) blows up in finite time    T ∗  > 0   and satisfies


    sup  t ∈ [ 0 ,  T ∗  )     ∥ ψ  ( t )  ∥    H ˙   γ c    < ∞   i f   γ c  ≤ 1 ,    sup  t ∈ [ 0 ,  T ∗  )     ∥ ψ  ( t )  ∥     H ˙   γ c   ∩   H ˙  1    < ∞   i f  1 <  γ c  < 2 .   



(35)







Assume that   a ( t ) > 0  , such that


     a  ( t )  ∥ Δ ψ  ( t )  ∥    L 2    1  2 −  γ c     → ∞ ,   



(36)




as   t →  T ∗   . Then, there exist    x 1   ( t )  ,  x 2   ( t )  ∈  R N   , such that


    lim inf  t →  T ∗     ∫   | x −   x 1    ( t )  | ≤ a  ( t )       |   ( − ▵ )    γ c  2   ψ  ( t , x )  |  2  d x ≥  G 1 2  ,   



(37)




and


    lim inf  t →  T ∗     ∫   | x −   x 2    ( t )  | ≤ a  ( t )       | ψ  ( t , x )  |   p c   d x ≥  G 2  p c   .   



(38)









Remark 4. 

The assumption    ψ 0  ∈   H ˙  γ  ∩   H ˙  2    with   γ = min {  γ c  , 1 }   guarantees that the energy   E ( ψ )   is well-defined.





Proof. 

Let   Q ∈ G  ; we set


  ρ  ( t )  =   ∥ Δ Q ∥    L 2    1  2 −  γ c     /   ∥ Δ ψ  ( t )  ∥    L 2    1  2 −  γ c       a n d   v  ( t , x )  =  ρ  4 p    ( t )  ψ  ( t , ρ  ( t )  x )  .  











Let    {  t n  }   n = 1  ∞   be an any time sequence, such that    t n  →  T ∗   ,    ρ n  = ρ  (  t n  )    and    v n   ( x )  = v  (  t n  , x )   . Then, it follows from assumption (35) that   v n   satisfies    ∥   v n    ∥    H ˙   γ c    =   ∥ ψ  (  t n  )  ∥    H ˙   γ c    < ∞   uniformly in n. Moreover, by some direct computations, we obtain


   ∥ Δ   v n    ∥   L 2   =  ρ n  2 −  γ c     ∥ Δ ψ   (  t n  )    ∥   L 2   =   ∥ Δ Q ∥   L 2   ,  








and


      |   E 0   (  v n  )   | =       1 2   ∫  R N    | Δ   v n     ( x )  |  2  d x −  1  p + 2    ∫  R N     |  v n   ( x )  |   p + 2   d x      =     ρ n  2 ( 2 −  γ c  )     1 2   ∫  R N    | Δ ψ   (  t n  , x )    |  2  d x −  1  p + 2    ∫  R N     | ψ  (  t n  , x )  |   p + 2   d x       =     ρ n  2 ( 2 −  γ c  )    E  ( ψ  (  t n  )  )  −  μ 2   ∫  R N     | ∇ ψ  (  t n  , x )  |  2  d x       =       ∥ Δ Q ∥    L 2   2    ∥ Δ ψ   (  t n  )    ∥    L 2   2     E  (  ψ 0  )  −  μ 2   ∫  R N     | ∇ ψ  (  t n  , x )  |  2  d x  .     



(39)







When   0 <  γ c  < 1  , applying the inequality (8), that is


   ∥ ∇ ψ   (  t n  )    ∥    L 2   2   ≤ ∥ Δ ψ   (  t n  )    ∥    L 2     2 ( 1 −  γ c  )   2 −  γ c       ∥ ψ  (  t n  )  ∥     H ˙   γ c     2  2 −  γ c     ,  



(40)




we have    E 0   (  v n  )  → 0   as   n → ∞  . When   1 ≤  γ c  < 2  , it follows from (35) that    E 0   (  v n  )  → 0   as   n → ∞  . These imply that    ∥   v n    ∥    L  p + 2     p + 2   →   p + 2  2    ∥ Δ Q ∥    L 2   2    as   n → ∞  .



Set    m  p + 2   =   p + 2  2    ∥ Δ Q ∥    L 2   2    and   M =   ∥ Δ Q ∥   L 2    . Then, it follows from Lemma 8 that there exist   V ∈   H ˙   γ c   ∩   H ˙  2    and     {  x n  }   n = 1  ∞  ⊂  R N   , such that up to a subsequence,


   v n   ( · +  x n  )  =  ρ n  4 p   ψ  (  t n  ,  ρ n  · +  x n  )  ⇀ V   w e a k l y  i n    H ˙   γ c   ∩   H ˙  2   








with


    ∥ V ∥    H ˙   γ c    ≥  G 1  .  



(41)







By the definition of    H ˙   γ c   , we have


    ( − Δ )    γ c  2    ρ n  4 p   ψ  (  t n  ,  ρ n  · +  x n  )  ⇀   ( − Δ )    γ c  2   V   w e a k l y  i n   L 2  .  











Thus, for any   R > 0  ,


   ∫  | x | ≤ R     |  ( − Δ )     γ c  2     V  ( x )  |  2  d x ≤  lim inf  n → ∞    ∫   | x −   x n   | ≤   ρ n  R     |   ( − Δ )    γ c  2   ψ  (  t n  , x )  |  2  d x .  











In view of the assumption   a  (  t n  )  /  ρ n  → ∞  , this implies immediately


   ∫  | x | ≤ R     |  ( − Δ )     γ c  2     V |  2  d x ≤  lim inf  n → ∞    sup  y ∈  R N     ∫  | x − y | ≤ a (  t n  )     |   ( − Δ )    γ c  2   ψ  (  t n  , x )  |  2  d x .  











Then, we can prove this theorem by a similar argument as that in Theorem 3. The proof of (38) is similar, so we omit it. This completes the proof. □





Let us now study the limiting profile of the blow-up     H ˙   γ c   ∩   H ˙  2    solutions with critical norms. To do so, we recall the following characterization of the ground states.



Lemma 10 

(Characterization of ground states [25]). Let    8 N  < p <  4 ∗   .








	1. 

	
If   u ∈   H ˙   γ c   ∩   H ˙  2    is such that     ∥ u ∥    H ˙   γ c    =  G 1    and


    E 0   ( u )  : =  1 2    ∥ u ∥    H ˙  2  2  −  1  p + 2     ∥ u ∥   L  p + 2    p + 2   = 0 ,   








then, u is of the form


   u  ( x )  =  e  i θ    λ  4 p   Q  ( λ x +  x 0  )  ,   








for some   Q ∈ G  ,   θ ∈  R N  , λ > 0   and    x 0  ∈  R N   .




	2. 

	
If   u ∈  L  p c   ∩   H ˙  2    is such that     ∥ u ∥   L  p c    =  G 2    and


   H  ( u )  : =  1 2    ∥ u ∥    H ˙  2  2  −  1  p + 2     ∥ u ∥   L  p + 2    p + 2   = 0 ,   











then, u is of the form


   u  ( y )  =  e  i ϑ    ρ  4 p   R  ( ρ y +  y 0  )  ,   











for some   R ∈ K  ,   ϑ ∈  R N  , ρ > 0   and    y 0  ∈  R N   .











Proposition 1 

(Limiting profile with critical norms). Let   μ ∈ R  ,    8 N  < p <  4 ∗   ,    ψ 0  ∈   H ˙  γ  ∩   H ˙  2    with   γ = min {  γ c  , 1 }  , and the corresponding solution   ψ ( t )   of (1) blows up in the finite time    T ∗  > 0  .








	1. 

	
Assume that


       sup  t ∈ [ 0 ,  T ∗  )     ∥ ψ  ( t )  ∥    H ˙   γ c    =  G 1  .      



(42)







If   1 <  γ c  < 2  , assume further that    sup  t ∈ [ 0 ,  T ∗  )     ∥ ψ  ( t )  ∥    H ˙  1   < ∞  . Then, there exists    Q 1  ∈ G  ,   θ ( t ) ∈ R , λ ( t ) > 0   and   y  ( t )  ∈  R N   , such that


    e  i θ ( t )    λ  4 p    ( t )  ψ  ( t , λ  ( t )  · + y  ( t )  )  →  Q 1   strongly  in    H ˙   γ c   ∩   H ˙  2  ,   











as    t ↑   T ∗   .




	2. 

	
Assume that


       sup  t ∈ [ 0 ,  T ∗  )     ∥ ψ  ( t )  ∥    H ˙   γ c    < ∞ ,   sup  t ∈ [ 0 ,  T ∗  )     ∥ ψ  ( t )  ∥   L  p c    =  G 2  .      



(43)







If   1 <  γ c  < 2  , assume further that    sup  t ∈ [ 0 ,  T ∗  )     ∥ ψ  ( t )  ∥    H ˙  1   < ∞  . Then, there exist    Q 2  ∈ K , ϑ  ( t )  ∈ R , ρ  ( t )  > 0   and   z  ( t )  ∈  R N   , such that


    e  i ϑ ( t )    ρ  4 p    ( t )  ψ  ( t , ρ  ( t )  · + z  ( t )  )  →  Q 2   strongly  in   L  p c   ∩   H ˙  2  ,   











as    t ↑   T ∗   .











Proof. 

We only treat the first term, the second one is similar. It is enough to show that for any    (  t n  )   n ≥ 1    satisfying    t n   ↑   T ∗   , there exists a subsequence still denoted by    (  t n  )   n ≥ 1   ,    Q 1  ∈ G  , sequences    θ n  ∈ R ,  λ n  > 0   and    y n  ∈  R N   , such that


      e  i t  θ n     λ n  4 p   ψ  (  t n  ,  λ n  · +  y n  )  →  Q 1   strongly  in    H ˙   γ c   ∩   H ˙  2  ,     



(44)




as   n → ∞  . Using the notation given in the proof of Theorem 4, we have


   v n   ( · +  y n  )  =  λ n  4 p   ψ  (  t n  ,  λ n  · +  y n  )  ⇀ V  weakly  in    H ˙   γ c   ∩   H ˙  2  ,  








as   n → ∞   with     ∥ V ∥    H ˙   γ c    ≥  G 1   . By the semi-continuity of weak convergence, (41) and (42), we have


   G 1  ≤   ∥ V ∥    H ˙   γ c    ≤  lim inf  n → ∞    ∥   v n    ∥    H ˙   γ c    =  lim inf  n → ∞     ∥ ψ  (  t n  )  ∥    H ˙   γ c    ≤  G 1  .  











We thus obtain


      lim  n → ∞    ∥   v n    ∥    H ˙   γ c    =   ∥ V ∥    H ˙   γ c    =  G 1  .     



(45)







This shows that    v n   ( · +  y n  )  → V   strongly in    H ˙   γ c    as   n → ∞  . Using the sharp Gagliardo–Nirenberg inequality (12), we have


   v n   ( · +  y n  )  → V  strongly  in   L  p + 2   ,  








as   n → ∞  . Using (39) and (45), the sharp Gagliardo–Nirenberg inequality (12) yields


    ∥ Q ∥    H ˙  2  2  =  2  p + 2    lim  n → ∞    ∥   v n    ∥   L  p + 2    p + 2   =  2  p + 2     ∥ V ∥   L  p + 2    p + 2   ≤      ∥ V ∥    H ˙   γ c     G 1    p    ∥ V ∥     H ˙  2   2  =   ∥ V ∥    H ˙  2  2  .  











This combined with


    ∥ V ∥    H ˙  2   ≤  lim inf  n → ∞    ∥   v n    ∥    H ˙  2   =   ∥ Q ∥    H ˙  2    








shows that


      lim  n → ∞    ∥   v n    ∥    H ˙  2   =   ∥ V ∥    H ˙  2   =   ∥ Q ∥    H ˙  2   .     



(46)







Combining (45), (46) and the fact   v ( · +  y n  ) ⇀ V   weakly in     H ˙   γ c   ∩   H ˙  2   , we conclude that


   v n   ( · +  y n  )  → V  strongly  in    H ˙   γ c   ∩   H ˙  2  ,  








as   n → ∞  . In particular, we have


   E 0   ( V )  =  lim  n → ∞    E 0   (  v n  )  = 0 .  











Therefore, we have proved that   V ∈   H ˙   γ c   ∩   H ˙  2    and satisfies


    ∥ V ∥    H ˙   γ c    =  G 1  ,   E 0   ( V )  = 0 .  











Applying Lemma 10, there exists    Q 1  ∈ G  , such that   V  ( y )  =  e  i θ    λ  4 p    Q 1   ( λ y +  y 0  )    for some   θ ∈ R , λ > 0   and    y 0  ∈  R N   . We thus obtain


   v n   ( · +  y n  )  =  λ n  4 p   ψ  (  t n  ,  λ n  · +  y n  )  → V =  e  i θ    λ  4 p    Q 1   ( λ · +  y 0  )   strongly  in    H ˙   γ c   ∩   H ˙  2  ,  








as   n → ∞  . Redefining variables, we prove (44). The proof is complete. □
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