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Abstract: In this study, the ill-conditioning of the iterative method for nonlinear models is discussed.
Due to the effectiveness of ridge estimation for ill-conditioned problems and the lack of a combination
of the H-K formula with the iterative method, the improvement of the LM algorithm is studied in this
paper. Considering the LM algorithm for ill-conditioned nonlinear least squares, an improved LM
algorithm based on the H-K formula is proposed for image distortion correction using self-calibration.
Three finite difference methods are used to approximate the Jacobian matrix, and the H-K formula
is used to calculate the damping factor in each iteration. The Brown model, quadratic polynomial
model and Fourier model are applied to the self-calibration, and the improved LM algorithm is used
to solve the model parameters. In the simulation experiment of space resection of a single image, we
evaluate the performance of the LM algorithm based on the gain ratio (LMh) and the improved LM
algorithm based on the H-K formula (LMHK), and the accuracy of different models and algorithms is
compared. A ridge trace analysis is carried out on the damping factor to illustrate the effects of the
improved algorithm in handling ill-conditioning. In the second experiment, the improved algorithm
is applied to measure the diameter of a coin using a single camera. The experimental results show that
the improved LM algorithm can reach the same or higher accuracy as the LMh algorithm, and it can
weaken the ill-conditioning to a certain extent and enhance the stability of the solution. Meanwhile,
the applicability of the improved LM algorithm in self-calibration is verified.

Keywords: nonlinear least squares iteration; ill-conditioning; ridge estimation; distortion correction;
self-calibration

MSC: 2020; 47J06

1. Introduction

Self-calibration is a type of analytical calibration method that describes the system
error of a camera by the distortion models in the adjustment model. The self-calibration
method is convenient and flexible, and it is widely used in camera calibration. According to
the coordinates of the reference points, the additional parameters in the distortion model are
solved to compensate for the influence of system error on the results. In order to improve
the accuracy of the self-calibration, the camera parameters and distortion parameters
need to be solved accurately [1]. In the field of self-calibration, a lot of research about
distortion models has been done. Based on many experiments and analyses, the Brown
model was introduced into the analytical calibration method for distortion correction in
1971 [2]. Currently, the Brown model and its improved model are still commonly used in
photogrammetry [3]. To address the problem of inconsistency between the optical center
and the geometric center of the imaging system, self-calibration based on a simplified Brown
model is proposed [4]. David et al. show that the complex distortion model can improve
the accuracy of self-calibration by an experiment of three-dimensional reconstruction [5].
Based on the mathematical approximation theory, a distortion model based on the Fourier
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series was proposed for self-calibration purposes [6] and verified in an experiment of
simulated distortion data fitting [7]. The Brown model and Fourier model are applicable in
image processing, pattern classification and scene analysis in the field of computer vision.
With the development of the self-calibration method, it is worth considering whether
the distortion model has a strong correlation or overparameterization, which leads to
ill-conditioning. Unreasonable distortion models and parameters are one of the important
causes of ill-conditioning. In the self-calibration method, the quality of feature points is
another important cause of ill-conditioning. It depends on many factors, including the
number, accuracy and distribution of feature points [8]. Insufficient feature extraction will
fail to fully reflect the role of each parameter, or unilaterally highlight the roles of some
parameters. Furthermore, it is easy to cause ill-conditioning in the solution of parameters.
Most of the above research avoids ill-conditioning from the aspect of model selection and
feature extraction, but few research studies are carried out from the aspect of parameter
iteration. In this work, the method for solving the self-calibration model is studied from
the aspect of a numerical iterative method.

The solutions of ill-conditioned equations are very sensitive to small parameter value
perturbations, showing poor numerical stability. For ill-conditioned equations, it is difficult
to obtain accurate and reliable parameter estimates, which severely affects the accuracy and
quality of data processing. For the solution of ill-conditioned problems, a variety of biased
estimation methods and improved methods have been proposed to improve the quality of
parameter estimates, such as regularization, truncated singular value decomposition and
ridge estimation [9–16]. The key to solving ill-conditioned problems by the regularization
method is the selection of the stabilization functional and regularization parameter. The
stabilization functional is constructed based on prior information of the model parameters,
which can effectively improve the structure of the model and make solving it feasible [17].
When prior information cannot be obtained, the stabilization functional is often expressed
as a 2-norm constraint on model parameters [18] and then the ridge estimation of the
parameters is derived. Ridge estimation is a special form of regularization that regards the
identity matrix as a regularization matrix and then improves the reliability and stability
of parameter estimation by reasonably selecting the regularization parameter. In ridge
estimation, the regularization parameter is also called the ridge parameter. The common
methods to determine the ridge parameters are the ridge trace method and Hoerl–Kennard
(H-K) formula. After determining the appropriate ridge parameters, ridge estimation
can effectively reduce the mean square error by properly modifying the ill-conditioned
matrix [18]. The adjustment criterion of the ill-conditioned uncertainty model based on
ridge estimation can effectively suppress the influence of ill-conditioning [19]. The common
strategy for solving nonlinear parameters is to linearize the nonlinear model and solve it
by an iterative method, and the Levenberg–Marquardt (LM) algorithm [20,21] is commonly
used. An LM algorithm based on the gain ratio [22] can weaken the ill-conditioning by
determining a damping factor, and it has been widely used in nonlinear optimization [23].
However, there are some problems in the existing research: on the one hand, the damping
factor determined by this algorithm is usually large, which greatly changes the structure of
the Jacobian matrix; on the other hand, although ridge estimation can effectively improve
the stability of the solution, there are few research studies on the combination of ridge
estimation and the LM algorithm. In response to the shortcomings of the above research
work, the combination of the method for determining the ridge parameters and the LM
algorithm is studied in this paper.

In this work, with the LM algorithm steps as the basic framework, an improved LM
algorithm is proposed. Firstly, the ill-conditioning of the iterative method for nonlinear
models is discussed. Then, according to the parameter estimation criterion of the LM
algorithm, the H-K formula is combined with the LM algorithm to calculate the damping
factor in each iteration. Finite difference methods are used to approximate the Jacobian
matrix, and finally, we present the algorithm steps of the improved LM algorithm based on
the H-K formula and finite difference. The Brown model, quadratic polynomial model and
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Fourier model are discussed. In the numerical experiments, the three distortion models
are applied to self-calibration, and the improved LM algorithm is used to solve the model
parameters. In the simulation experiment of space resection of a single image, the accuracy
and performance of different models and algorithms on the solution of parameters are
evaluated, and a ridge trace analysis is carried out on the damping factor to illustrate the
effects of the improved algorithm in handling ill-conditioning. The applicability of the
improved algorithm in practical problems is verified by the measurement of a coin diameter
using a single camera. The experimental results show that the improved LM algorithm
can reach the same or higher accuracy as the LM algorithm based on the gain ratio, and it
can weaken the ill-conditioning to a certain extent and enhance the stability of the solution
under the condition of changing the matrix structure as little as possible. The improved
LM algorithm proposed in this paper provides a new method for solving self-calibration
model parameters, and it also provides a new idea for solving ill-conditioned nonlinear
least squares.

2. Iterative Method for Ill-Conditioned Nonlinear Least Squares Problems
2.1. Ill-Conditioned Problems in the Iterative Method

For a nonlinear model, the Taylor formula is usually used to transform it into a linear
form, and then the iterative method is used to solve it. We consider a nonlinear model
F(x) = (F1, F2, · · · , Fm)

T, x = (x1, x2, · · · , xn)
T, expand it by the Taylor formula and take

only the first-order term:
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F(x) ≈ F0 + Bx̂

(1)

where B is the Jacobian matrix consisting of the first-order partial derivatives of F(x) at
x0. We rewrite it as an error equation, V = F(x)− L ≈ Bx̂ −

(
L − F0). Under the condition

of equal-precision independent observation, the iterative formula of the Gauss–Newton
method can be obtained according to the least squares criterion:

xk+1 = xk +
(

BT
k Bk

)−1
BT

k

(
L − F0

k

)
(2)

where k is the number of iterations, B = (B1, · · · , Bn) is a matrix of order m × n and its
rank is r. In practical problems, usually m > n, and r

(
BTB

)
≤ n < m can be obtained

according to the properties of matrix rank. If B is rank-deficient, so is BTB. If it is of full
rank but strong multicollinearity exists in its columns:

ω1B1 + ω2B2 + · · ·+ ωnBn ≈ 0 (3)

where ω = (ω1, ω2, · · · , ωn)
T is the set of eigenvectors corresponding to the eigenvalues

of BTB. The Jacobian matrix is ill-conditioned at this moment. Rank deficiency or ill-
conditioning of the matrix occurs easily when the Gauss–Newton method is used.

2.2. LM Method Based on Hoerl–Kennard Formula and Finite Differences

According to the analysis in the previous section, rank deficiency or ill-conditioning
occurs easily when the Gauss–Newton method is used, resulting in no unique or stable
solution in the normal equation. Therefore, to avoid the ill-posedness of the normal
equation, it is necessary to impose new constraints on the parameters. L2 regularization,
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namely, ridge regression, is commonly used. When L2 regularization is introduced, the
parameter estimation criterion and its estimation formula are

min
(
VTV + µx̂Tx̂

)
⇒ xk+1 = xk +

(
BT

k Bk + µkI
)−1BT

k
(
L − F0

k
) (4)

The iterative formula for the LM method is presented as Formula (4). This is an
improved algorithm based on the Gauss–Newton method, and it is also an iterative method
without a specific line search for calculating the step size, which is determined by the
damping factor µ [22]. The initial value of the damping factor can be set to µ = τ ·max{Bii}.
Bii denotes the diagonal elements of BTB, and τ is usually a small value. If the selected
initial values of the parameters are believed to be good approximations to the estimated
values, it can be set to τ = 10−6; otherwise, it can be set to τ = 10−3 or τ = 1. Then, the
damping factor is increased or decreased according to the gain ratio (h) in the iteration. The
algorithm steps are as follows:

Step 1: Given the initial parameter value xk, the Jacobian matrix and initial value of the
damping factor are calculated, and the convergence criteria are set: the threshold ε1 of the
gradient g, the threshold ε2 of the error difference and the maximum number of iterations
kmax, along with k = 0 and υ = 2, are set.

Step 2: Bk and gk = BT
k
(
L − F0

k
)

are calculated.
Step 3: The equation

(
BT

k Bk + µkI
)
x̂k = −gk is solved; then, the (k + 1)th iterative

estimate is obtained: xk+1 = xk + x̂k.
Step 4: If ∥gk∥2 ≤ ε1, ∥Vk+1 − Vk∥2 ≤ ε2, then xk+1 is the optimal parameter estimate,

and the iteration is terminated; otherwise, h is calculated:

h =
∥Vk∥2 − ∥Vk+1∥2

1
2 x̂T

k
(
µkx̂k − gk

)
Step 5: If h > 0, then µk+1 = µk · max

{
1
3 , 1 − (2h − 1)3

}
and υ = 2; otherwise,

µk+1 = µk · υ and υ = 2υ. We set k = k + 1 and return to Step 2.
The LM algorithm introduces the damping factor and identity matrix based on the

Gauss–Newton method, which effectively resolves the rank deficiency of BTB and avoids
the ill-conditioning caused by multicollinearity. When the Jacobian matrix is ill-conditioned,
there is at least one eigenvalue close to 0 in BTB, while the degree of the eigenvalue close to 0
in BTB+ µI will be improved, which will weaken the ill-conditioning. In the LM algorithm,
the Jacobian matrix determines the descent direction of the function, and the damping
factor affects both the direction and step size. Therefore, the key to solving the nonlinear
model by the LM algorithm is to calculate the damping factor and the Jacobian matrix.
Formula (4) shows that the calculation method of x̂ in the iterative formula can be regarded
as a ridge estimation derived from the regularization principle. Therefore, different from
the above method based on the gain ratio, the damping factor can be determined by the
method of selecting the ridge parameter.

2.2.1. Methods for Selecting the Ridge Parameter

The damping factor is a number greater than 0, and different values lead to different
ridge estimates. When µ → ∞ , x̂ → 0 , and the solution is not relevant. Therefore, the
value should be chosen to be as small as possible to solve the ill-posed problem using the
proximal well-posed problem. The main methods of selecting the ridge parameter are ridge
trace and the Hoerl–Kennard formula.

(1) Ridge trace: Each component x̂i(i = 1, 2, · · ·) of the correction value of x is regarded
as a function of the damping factor. When the damping factor changes between
[0, ∞), several curves can be drawn in the rectangular coordinate system o − µx̂, which
are called ridge trace curves, as shown in Figure 1. With the increase in the ridge
parameter, the model parameter estimates gradually stabilize and reach a stable state
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around µ∗. The ridge trace method selects the smallest µ∗ that makes the change
stable. To determine the appropriate value according to the ridge trace curves, the
following three criteria must be generally satisfied: first, the ridge estimates of model
parameters in the equation are roughly stable; second, the ridge estimation can make
the parameter values reasonable; and third, the sum of the squared residuals does not
increase substantially. The main disadvantage of this method is the lack of a strict
theoretical basis. Determining the value of the damping factor using ridge trace curves
is subjective, but this subjectivity can also organically combine qualitative analysis
with quantitative analysis. However, the numbers of iterations may be large. If the
ridge parameter in each iteration is selected by the ridge trace curves, the workload
may be large. Therefore, this method is mainly used for ridge trace analysis rather
than directly determining the ridge parameter in the iteration.
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(2) Hoerl–Kennard (H-K) formula: The H-K formula is a common method for determin-
ing the ridge parameter according to the canonical form of the error equation. In
order to analyze the problem, the canonical form of the error equation is introduced.
Considering the symmetry of matrix BTB, the Formula (5) can be obtained according
to matrix theory

ΩTBTBΩ = Λ (5)

where Ω is an orthogonal matrix; Λ is diagonal matrix and the diagonal element is the
eigenvalue of BTB. Formula (6) can be obtained by identity transformation of the original
error equation

V = BΩΩTx̂ −
(

L − F0
)

(6)

Denote C = BΩ, Y = ΩTx̂, then

V = CY −
(

L − F0
)

(7)

Formula (7) is the canonical form of the error equation; Y is the canonical parameter,
and its estimation is

Ŷ =
(

CTC
)−1

CT(L − F0)
= Λ−1CT(L − F0) (8)

According to x̂ = ΩY, the parameter estimation of the original error equation can be
obtained. In canonical form, the mean square error (MSE) of the canonical parameter is

MSE(Y) = E
(∥∥Ŷ − Y

∥∥2
)

= E

(∥∥∥∥(CTC
)−1

CTV
∥∥∥∥2
)

= E
(

VTCΛ−2CTV
)

(9)
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Hoerl and Kennard proposed the H-K formula [14] based on the canonical form of
the error equation. (ω1, · · · , ωn) are assumed to be the eigenvectors corresponding to the
eigenvalues (λ1, · · · , λn) of BTB:

Ω = (ω1, · · · , ωn), Λ = diag(λ1, · · · , λn) (10)

Then µ is calculated by the H-K formula

µ =
σ̂2

max ê2
i

(11)

where σ̂2 = VTV
m−n and ê = Λ−1ΩBT(L − F) = (ê1, · · · , ên)

T. Then

x̂ =
(

BTB + µI
)−1

BT
(

L − F0
)

(12)

The mean square error of parameter estimation is

MSE(x̂) = σ2
r

∑
i=1

λi

(λi + µ)2 + µ2
r

∑
i=1

x2
i

(λi + µ)2 (13)

It can be seen that, when µ is large, although this estimation method can overcome the
multicollinearity, it will also introduce more bias. The determination of µ according to the
H-K formula is related to the eigenvalues. An ill-conditioned matrix contains very small
eigenvalues, so a smaller value can be obtained according to the H-K formula, so that the
parameter estimation can be stable as soon as possible with less bias.

2.2.2. Finite Difference Form of the Jacobian Matrix

The Jacobian matrix can be calculated according to the differentiation rule of functions
of several variables, as expressed in Formula (1). However, in practical problems, due to
the large number of observation equations and the associated large-scale matrices, this
method may require a huge amount of calculation. In a common numerical method,
the finite difference approximates the differential of the function by the corresponding
function value after parameter discretization. This method of approximating the derivative
by the difference quotient can effectively reduce the calculational burden. In this paper,
the forward difference method (FDM), backwards difference method (BDM) and central
difference method (CDM) are adopted to approximate the Jacobian matrix. According to
the definition of forward difference, ∆Fi = Fi

(
xj + δ

)
− Fi

(
xj
)
, and δ is the difference step.

Fi
(

xj + δ
)

is expanded by the Taylor formula, and only the first-order term is considered:

Fi
(
xj + δ

)
≈ Fi

(
xj
)
+ ∂Fi

∂xj

(
xj + δ − xj

)
∂Fi
∂xj

≈ Fi(xj+δ)−Fi(xj)
δ

(14)

Similarly, the backwards difference and central difference are

∂Fi
∂xj

≈ Fi(xj)−Fi(xj−δ)
δ

∂Fi
∂xj

≈ Fi(xj+δ)−Fi(xj−δ)
2δ

(15)

Compared with the forward difference and backwards difference, the accuracy of
approximating the Jacobian matrix by the central difference is higher, and the calculational
burden is multiple times larger.
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The steps of the improved LM algorithm based on the H-K formula and finite differ-
ences are as follows:

Step 1: Given an initial parameter value xk, set convergence criteria: the threshold ε1 of
gradient g, the threshold ε2 of the error difference and the maximum number of iterations
kmax, along with k = 0, are set.

Step 2: Given the difference step, ∂Fi
∂xj

(i = 1, · · · , m, j = 1, · · · , n) is calculated by the

finite difference method, the matrix Bk is obtained, and gk = BT
k
(
L − F0

k
)

is calculated; then,

the damping factor is determined by the H-K formula µk =
σ̂2

max ê2
i
.

Step 3: The equation
(
BT

k Bk + µkI
)
x̂k = −gk is solved, and the (k + 1)th parameter

estimate xk+1 = xk + x̂k is obtained.
Step 4: If ∥gk∥2 ≤ ε1, ∥Vk+1 − Vk∥2 ≤ ε2, then xk+1 is the optimal parameter estimate,

and the iteration is terminated; otherwise, we set k = k + 1 and return to Step 2.

2.3. Distortion Models

In photogrammetry, since the beam of the imaging system within the field of view
does not strictly meet the ideal center projection, the actual image points produce a position
error, which is called distortion. Considering the distortion of image points, the actual
image coordinates can be regarded as the sum of the ideal image coordinates and distortion,
which is expressed by a collinearity equation with additional parameters:

u = − f R11(X − XS) + R21(Y − YS) + R31(Z − ZS)
R13(X − XS) + R23(Y − YS) + R33(Z − ZS)

+ u0 + ∆u

v = − f R12(X − XS) + R22(Y − YS) + R32(Z − ZS)
R13(X − XS) + R23(Y − YS) + R33(Z − ZS)

+ v0 + ∆v
(16)

where (u, v) are the actual image coordinates, (X, Y, Z) are the corresponding ground
control point coordinates, (u0, v0, f ) are the elements of interior orientation, (XS, YS, ZS)
are the translation elements of exterior orientation, Rij(i, j = 1, 2, 3) are the direction cosine
composed of the angle elements of exterior orientation (φ1, φ2, φ3) and (∆u, ∆v) are the
distortions, which are generally functions of the image coordinates. Formula (16) is also
called a self-calibration model. Distortion models mainly include physical models and
mathematical models. The Brown model, polynomial model and Fourier model are mainly
described in this paper.

2.3.1. Brown Model

The Brown model is a commonly used physical model, which was originally designed
for large-area film cameras. Various forms of distortion that occur in camera imaging
are considered. In practical applications, the parameters of the Brown model need to be
selected according to the camera imaging characteristics. With the application of a digital
camera in aerial photography, the model has been simplified into radial distortion and
decentering distortion. The Brown model is expressed as

∆uRadial = u
(
K1s2 + K2s4 + K3s6)

∆vRadial = v
(
K1s2 + K2s4 + K3s6)

∆uDecentring = 2P1uv + P2
(
r2 + u2)

∆vDecentring = 2P2uv + P1
(
r2 + v2)

(17)

where s =
√

u2 + v2, and Ki(i = 1, 2, 3) and Pi(i = 1, 2) are radial distortion parameters
and decentering distortion parameters. The distortion of the image edges can be described
only by the radial distortion and decentering distortion when using a digital camera. In
practical applications, radial distortion usually remains K1, K2.
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2.3.2. Polynomial Model and Fourier Model

In addition to the physical model, the distortion model can also be established from the
mathematical point of view (in this section, a is used to represent the distortion coefficient
of different mathematical models). The orthogonal polynomial in the mathematical model
can effectively reduce the correlation between parameters and improve the stability of the
solution. The polynomial model is a commonly used distortion correction model, which is
expressed mathematically as

∆u =
t

∑
i=0

t−i

∑
j=0

aijuivj

∆v =
t

∑
i=0

t−i

∑
j=0

aijuivj

(18)

where t is the order of the polynomial and aij are the parameters to be determined. How-
ever, a higher-order polynomial is also prone to overparameterization, which will not only
increase the calculational work required to obtain the numerical solution but also lead
to the instability of the solution. Therefore, the order should not be too high in practi-
cal applications. The quadratic polynomial (QP) model is often selected as a distortion
model. Considering the correlation of the coefficients in u and v, the quadratic orthogonal
polynomial model is

∆uQP = a10u + a01v − a20u2 + a11uv + a02v2

∆vQP = −a01v + a10u + a11uv − a02v2 + a20u2
(19)

According to the Weierstrass second approximation theory, a binary Fourier series
orthogonal polynomial model represented by the image coordinates can be obtained [6]:

∆u = a1COS1,0 + a2COS0,1 + a3COS1,−1 + a4COS1,1 + a5SIN1,0 + a6SIN0,1 + a7SIN1,−1 + a8SIN1,1

∆v = a9COS1,0 + a10COS0,1 + a11COS1,−1 + a12COS1,1 + a13SIN1,0 + a14SIN0,1 + a15SIN1,−1 + a16SIN1,1
(20)

where ai are the parameters to be determined and COSi,j = cos(iu + jv), SINi,j = sin(iu + jv),

u = (u−width/2)
width π, v = (v−height/2)

height π (width and height are the image width and height).

3. Numerical Experiments and Analysis

The first experiment involves a simulation experiment of the space resection of a
single image based on the collinearity equation with additional parameters, and the second
involves measuring the diameters of coins using a single camera. The improved LM
algorithm is used in the numerical experiments, and the convergence conditions are set
as follows:

∥gk∥2 ≤ 10−5

∥Vk+1 − Vk∥2 ≤ 10−5

kmax = 50

 (21)

The Jacobian matrix in each iteration is approximated by the finite difference methods
introduced in Section 2. The H-K formula is used to calculate the damping factor, which is
compared with the method according to the gain ratio. The experimental environment is
MATLAB R2021a running on a 1.80 GHz PC with Windows 7.

3.1. Space Resection of a Single Image Based on the Collinearity Equation with
Additional Parameters

In this experiment, the image points in a single aerial image are simulated for space
resection. It is assumed that the local coordinate system is a North-East-Down (NED)
coordinate system, the flight altitude is 50 m, the design focal length of the camera is
9 mm, the pixel size is 2.4 µm/px and the image width and height are 5472 pixels and
3648 pixels. At the moment of exposure, the focal length is 8.9 mm, the coordinates of the
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principal points are u0 = 2737.2 px, v0 = 1827.4 px and the elements of exterior orientation
are XS = 5 m, YS = −10 m, ZS = −51 m, φ1 = 0◦, φ2 = 1◦, φ3 = 2◦. This experiment is
carried out according to the following steps:

Step 1: Simulate the data. The values of X and Y of the ground points are centered on
the plane coordinates of the camera station, which are uniformly distributed in the range of
[XS − 10, XS + 10] and [YS − 10, YS + 10]. And the values of Z are in the range of [−1, 1]
since the origin of the NED coordinate system is set on the ground. A total of 120 image
coordinates, and the corresponding ground point coordinates, are simulated, and Gaussian
noises are added to the image coordinates as observations.

Step 2: Select the distortion models. The Brown model, quadratic polynomial (QP)
model and Fourier model are regarded as distortion models, which are added to the
collinearity equation to form the self-calibration models.

Step 3: Initialization. The initial values of the angle elements of the exterior orientation
are set to φ1 = φ2 = φ3 = 0◦, the initial value of ZS is Z0

S = −50 m and the initial values of
XS and YS are calculated according to the following formula

X0
S =

m

∑
i=1

Xi

m
, Y0

S =

m

∑
i=1

Yi

m

where m is the number of ground points. The initial values of the elements of the interior
orientation are u0

0 = width/2, v0
0 = height/2, f 0 = 9mm, and the initial values of the

additional parameters are set to 0. The normalized image coordinates are substituted into
the self-calibration models composed of the three distortion models.

Step 4: Solve the parameters. The LM algorithm based on the forward difference,
backwards difference and central difference methods with the gain ratio and the H-K
formula (LMFDM+h, LMBDM+h, LMCDM+h, LMFDM+HK, LMBDM+HK and LMCDM+HK) are
used to solve the parameters. The elements of the interior orientation, and additional
parameters, are determined while solving for the elements of the exterior orientation.

The experiment evaluates the performance of the algorithms from the following
aspects: the accuracy is compared using the sum of squared residuals (SSR), the maximum
residuals of the image points, the reprojection errors (REs) and the true errors of the
parameters; the efficiency is compared using the number of iterations and the running
time; the influence on the ill-conditioning is compared using the condition number; the
stability of the solution is analyzed using the ridge trace curve. Table 1 presents the SSR
and the maximum residuals of each algorithm at the optimal solution. It can be seen from
Table 1 that, for the same algorithm, the fitting accuracy of different models for image
coordinate observations is high, and the SSR of the Fourier model is generally the smallest,
reaching an accuracy of 10−6. Because the three difference methods are consistent in the
approximation of the Jacobian matrix, the difference between the results obtained by the
three difference methods is small. In contrast, the performance of the LM algorithm based
on CDM is better. For the maximum residuals obtained by the LM algorithm based on the
gain ratio (LMh) and the improved LM algorithm based on the H-K formula (LMHK), there
is no significant law, which means that the LMHK algorithm has a poor fitting effect on
image points with a large error. However, the SSR corresponding to the LMHK algorithm is
generally smaller, reaching an accuracy of 10−6, indicating that the LMHK algorithm has
a higher fitting accuracy for the observations. According to the introduction of the H-K
formula in Section 2, the H-K formula can determine a small damping factor and less bias
is introduced, so that the solution of the parameters can reach a higher accuracy. This is
proved by the comparison results of the LMh algorithm and LMHK algorithm. Through the
above analysis, another discovery obtained from the table is explained: for the same model,
the LMCDM+HK algorithm can reach the same or higher accuracy as other algorithms.
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Table 1. SSR and maximum residuals of each algorithm.

Algorithms

Models Brown QP Fourier

SSR Maximum SSR Maximum SSR Maximum

LMFDM+h 1.631 × 10−4 3.137 × 10−4 1.114 × 10−4 2.990 × 10−4 6.245 × 10−6 3.511 × 10−4

LMBDM+h 1.632 × 10−4 3.137 × 10−4 1.114 × 10−4 2.990 × 10−4 6.245 × 10−6 3.511 × 10−4

LMCDM+h 1.631 × 10−4 3.137 × 10−4 1.114 × 10−4 2.990 × 10−4 6.245 × 10−6 3.511 × 10−4

LMFDM+HK 3.197 × 10−6 3.423 × 10−4 3.145 × 10−6 3.391 × 10−4 2.856 × 10−6 2.959 × 10−4

LMBDM+HK 3.197 × 10−6 3.423 × 10−4 3.145 × 10−6 3.391 × 10−4 2.856 × 10−6 2.959 × 10−4

LMCDM+HK 3.196 × 10−6 3.423 × 10−4 3.144 × 10−6 3.391 × 10−4 2.856 × 10−6 2.958 × 10−4

The LM algorithm based on CDM shows a better performance in Table 1. Therefore,
in order to show the accuracy of the improved LM algorithm more clearly and intuitively,
Figure 2 and Table 2 present the distribution and the root mean square error (RMSE) of
reprojection errors (REs) obtained by the LMCDM+h and LMCDM+HK corresponding to each
model. In Figure 2, the dotted line indicates the position where the RE is 1 pixel. It can
be seen from Figure 2 that the maximum of the REs for all methods is less than 2 pixels.
For the same model, the number of image points with an RE greater than 1 pixel in the
results of the LMCDM+HK algorithm is generally less than that of the LMCDM+h algorithm,
and a consistent conclusion can be obtained from Table 2: the RMSE corresponding to
the LMCDM+HK algorithm is the same as or smaller than that of the LMCDM+h algorithm,
which indicates that the LMCDM+HK algorithm can reach the same or higher accuracy as the
LMCDM+h algorithm. For the same algorithm, the RMSE of the Brown model is the closest to
1 pixel, which is the worst accuracy of all the methods. The Brown model considers radial
distortion and decentering distortion without considering other forms of distortion. The
QP model and Fourier model, established from the perspective of function approximation,
can accurately fit the unknown distortion in the image. The accuracy of the Fourier model
solved by the LMCDM+HK algorithm is less than 0.8 pixels, which is the highest accuracy of
all methods. Table 3 presents the true errors of the parameters. It can be seen from Table 3
that the parameter estimates of LMCDM+h and LMCDM+HK have an equivalent accuracy.
From the true error of the exterior orientation elements, it can be found that, compared
with the LMCDM+h, the true error obtained by the LMCDM+HK is generally smaller and the
result is closer to the true value.
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Table 2. The RMSE of reprojection errors (px).

Algorithms
Models Brown QP Fourier

LMCDM+h 0.970 0.861 0.929
LMCDM+HK 0.937 0.861 0.749

Table 3. The true errors of parameters.

Errors

Methods LMCDM+h LMCDM+HK

Brown QP Fourier Brown QP Fourier

∆XS(m) 0.065 0.064 0.064 0.002 −0.010 −0.051
∆YS(m) 0.766 0.755 0.745 0.017 −0.015 −0.008
∆ZS(m) 0.721 0.776 0.998 −0.573 0.572 −0.206

∆ϕ1(rad) −1.824 × 10−3 −1.730 × 10−3 −2.106 × 10−3 −4.841 × 10−4 −1.392 × 10−4 −1.746 × 10−3

∆ϕ2(rad) 1.661 × 10−2 1.610 × 10−2 8.391 × 10−3 1.067 × 10−3 4.340 × 10−4 7.422 × 10−3

∆ϕ3(rad) 1.506 × 10−4 5.104 × 10−4 −2.008 × 10−2 −1.005 × 10−5 −9.283 × 10−6 −7.342 × 10−3

∆ f (px) 41.665 41.665 41.666 41.588 41.652 41.696
∆u0(px) −1.200 −1.199 −1.199 −1.803 −1.248 −1.206
∆v0(px) −3.399 −3.399 −3.399 −3.376 −3.358 −3.434

Figure 3 shows the iterative changes in the SSR for different models solved by
LMCDM+h and LMCDM+HK. In order to clearly show the difference, the first iteration
has been removed. Table 4 presents the number of iterations and the running time of each
algorithm and model. According to Table 4, the number of iterations and the running time
of the LMHK algorithm are generally less than those of the LMh algorithm, indicating that a
high fitting accuracy can be obtained by the improved algorithm, with a higher iterative
efficiency. According to the running time, compared with the LMCDM+h algorithm, the
efficiency of the LMCDM+HK algorithm is improved by 64%, 55% and 33% corresponding to
the three models. The algorithms using CDM to approximate the Jacobian matrix require
more time, which is consistent with the principle of central difference. Compared with
FDM and BDM, CDM needs to calculate one more approximate partial derivative of each
variable in the iteration within the difference step range, and the calculational burden is
the largest. As shown in Figure 3, the LMCDM+h algorithm makes the SSR of the Brown
model reach a stable state after five iterations, which indicates that the descending speed
is slower. However, the LMCDM+HK algorithm makes the SSR of all models stable after
three iterations.
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Table 4. The number of iterations k and the running time (s).

Algorithms
Models Brown QP Fourier

k Time k Time k Time

LMFDM+h 14 3.681 12 1.647 8 2.459
LMBDM+h 14 3.666 12 1.632 8 2.508
LMCDM+h 14 7.224 12 3.204 8 4.963

LMFDM+HK 5 1.313 5 0.728 5 1.609
LMBDM+HK 5 1.348 5 0.739 5 1.580
LMCDM+HK 5 2.601 5 1.411 5 3.302

To further analyze the performance of the improved LM algorithm based on the H-K
formula, a ridge trace analysis of the different methods is carried out. Figure 4 shows the
ridge trace curves of x̂ changing with the damping factor at the optimal solution. Table 5
shows the condition number (C/C0) of the normal matrix with or without the damping
factor. It can be seen from Table 5 that both the LMCDM+h algorithm and the LMCDM+HK
algorithm can reduce the condition number of the matrix and weaken the ill-conditioning,
and the effect of the LMCDM+h algorithm is more significant. Especially for the Brown
model and the QP model, the condition number is reduced to 26.823 and 32.576, which can
be considered to mean that the matrix is well-posed. However, it can be seen from Figure 4
that the order of magnitude of the damping factor for the Brown model, QP model and
Fourier model should be 10−9, 10−14 and 10−11. According to the selection principle of
the damping factor and Table 5, the actual value determined by the LMCDM+h algorithm
is generally too large, while the values of damping factor determined by the LMCDM+HK
algorithm are relatively consistent with the trend of the ridge trace curves, which is closer
to the result of the ridge trace analysis. Therefore, it is found that the LMCDM+h algorithm
weakens the ill-conditioning of the normal matrix more significantly, since this algorithm
changes the structure of the normal matrix by selecting a larger damping factor. Upon the
premise of changing the structure of the normal matrix as little as possible, the LMCDM+HK
algorithm can weaken the ill-conditioning to a certain extent and make the solution stable
by selecting a smaller damping factor.
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Table 5. The condition number and damping factor at the optimal solution.
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3.2. Measurement of a Coin Diameter Using a Single Camera

Experiment 3.1 shows that the LM algorithm based on CDM presents a better perfor-
mance in solving the self-calibration model. Therefore, LMCDM+h and LMCDM+HK are used
to measure the diameters of coins using a single camera in this experiment. Nine images
of a calibration pattern are taken from different angles to calibrate the camera by Zhang’s
calibration method. Taking the calibration result as the initial value and using the detected
point of the last image, LMCDM+h and LMCDM+HK are combined with the Brown model,
QP model and Fourier model to estimate the model parameters and then measure the
diameters of the coins. The detected points and the coins are shown in Figure 5. The SSR
and the maximum residuals in pixels of each algorithm and model are shown in Table 6.
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Table 6. SSR and maximum residuals (px).

Algorithms
Models Brown QP Fourier

SSR Maximum SSR Maximum SSR Maximum

LMCDM+h 8.512 × 10−3 2.738 × 10−2 1.208 × 10−5 9.448 × 10−3 1.816 × 10−4 3.617 × 10−3

LMCDM+HK 8.950 × 10−3 2.858 × 10−2 1.007 × 10−5 8.995 × 10−3 9.463 × 10−5 3.137 × 10−3

It can be seen from Table 6 that the accuracy of all the models and algorithms is high,
since good initial values are obtained. The SSR and maximum residuals of the LMCDM+h
algorithm and LMCDM+HK algorithm are consistent, which indicates that the fitting accuracy
is equivalent. The orders of magnitude of SSR and the maximum for the Brown model
are 10−3 and 10−2. For the same algorithm, the accuracy of the Brown model is lower,
while the accuracy of the QP model and Fourier model are higher, which indicates that
the image has other forms of distortion except radial distortion and decentering distortion,
and the mathematical model can compensate for these distortions more effectively. Table 7
presents the number of iterations and running time. It can be seen from Table 7 that the
LMCDM+HK algorithm has a higher iteration efficiency than LMCDM+h. This is consistent
with the conclusion in Section 3.1. According to the running time, the efficiency of the
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LMCDM+h algorithm is improved by 12%, 28% and 30% corresponding to the three models.
For the same algorithm, the QP model and Fourier model need fewer iterations, while the
Brown model requires more iterations. However, the running time of the Brown model is
the least, since the model has the least number of distortion parameters.

Table 7. The number of iterations k and the running time (s).

Algorithms
Models Brown QP Fourier

k Time k Time k Time

LMCDM+h 8 1.569 6 2.213 6 2.350
LMCDM+HK 7 1.378 4 1.587 4 1.622

To measure the coins, the top-left and top-right corners of the bounding box are
converted into world coordinates. Then the Euclidean distance between them is calculated
in millimeters. The actual diameter is 19.05 mm. The diameters of the coins calculated
by different methods are shown in Table 8. It can be seen from Table 8 that the numerical
results calculated by the different methods are consistent. The measurements of the first
coin and the second coin are accurate to within 0.004 mm and 0.164 mm. All the methods
have a sufficiently high accuracy.

Table 8. The diameter of coins calculated by different methods (mm).

Algorithms
Models Brown QP Fourier

Diameter1 Diameter2 Diameter1 Diameter2 Diameter1 Diameter2

LMCDM+h 19.054 18.886 19.053 18.886 19.053 18.886
LMCDM+HK 19.053 18.886 19.053 18.887 19.053 18.887

4. Discussion

In this work, we study the combination of the H-K formula and the LM algorithm,
and an analysis of the LM algorithm and its improvement are carried out in the numerical
experiment. Consistent with the previous study [20–23], it is found that the LM algorithm
based on the gain ratio (LMh) is effective in handling nonlinear least squares problems,
and it can weaken the ill-conditioning of the Jacobian matrix by determining the damping
factor. However, from the perspective of ridge estimation, the damping factor determined
by this algorithm is generally too large, and it greatly changes the structure of the matrix.
In the existing literature about the methods for solving ill-conditioning [9–19], there is
no research on the combination of the H-K formula and the LM algorithm. Therefore, an
improved LM algorithm based on the H-K formula (LMHK) is proposed and used to solve
the self-calibration model composed of the Brown model, QP model and Fourier model.

From the numerical experiment and analysis, it is found that, compared with the LMh
algorithm, the LMHK algorithm can reach the same or higher accuracy, and it makes the SSR
stable after fewer calculations (three iterations) in the simulation experiment, indicating that
a high fitting accuracy can be reached by the improved algorithm with a higher iterative
efficiency. In the ridge trace analysis, it is found that the damping factor determined by
the improved LM algorithms is smaller, and it is consistent with the trend of the ridge
trace curves, which means that this algorithm can weaken the ill-conditioning to a certain
extent and make the solution stable by selecting a smaller damping factor and changing
the structure of the Jacobian matrix as little as possible.

From the aspect of the distortion model, we consider the fitting effects of the Brown
model, QP model and Fourier model on image distortion. In this paper, the study of the
Brown model is different from the previous study [2,4]. In the simulation experiment,
the specific distortion form is uncertain. Under this condition, the fitting effect of the
Brown model on distortion is studied. It is found that if there are unknown distortions
in the image, the mathematical model, such as the QP model and Fourier model, can
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effectively compensate for these distortions. For the same algorithm, the fitting accuracy
of the Fourier models for image point observations is higher, which is consistent with the
previous study [7].

Although the study reveals the above discoveries, there are also limitations in this
paper. In this paper, the LM algorithm is improved from the perspective of ridge esti-
mation. However, in addition to the ridge trace method and H-K formula, the method
for determining the ridge parameters also includes the minimum mean square error and
cross validation, which are not considered. Therefore, an important future direction for
improving the LM algorithm is a combination of the calculation of the damping factor and
other methods for determining the ridge parameter.

5. Conclusions

Ill-conditioning generally exists in nonlinear least squares problems. An LM algorithm
based on the gain ratio is the commonly used method, and it is discussed in this paper. This
algorithm linearizes the nonlinear model and weakens the ill-conditioning of the Jacobian
matrix by determining a damping factor. However, the damping factor determined by this
algorithm is usually large, which greatly changes the structure of the matrix. Since the
H-K formula can weaken the ill-conditioning by determining a smaller damping factor, an
improved LM algorithm based on the H-K formula is proposed for solving nonlinear least
squares problems. From the perspective of the ridge estimation of nonlinear parameters,
the damping factor is calculated by the H-K formula. For the ill-conditioned problem in
image distortion, the Brown model, quadratic polynomial model and Fourier model are
discussed for the space resection of a single image. The improved LM algorithm based on
the H-K formula is used to solve the self-calibration model, and it is applied to measure the
diameter of coins using a single camera. The applicability of the improved LM algorithm in
self-calibration is verified. Through numerical experiments, it is found that the improved
LM algorithm can stabilize the parameter values under the condition of changing the matrix
structure as little as possible, and it can reach the same or a higher accuracy than the LM
algorithm based on the gain ratio. The improved LM algorithm based on the H-K formula
provides a new method for solving the self-calibration model, and it also provides a new
idea for solving ill-conditioned nonlinear least squares.
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