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Abstract: Making use of integration by parts and variable replacement methods, we derive some
interesting explicit definite integral formulae involving trigonometric or hyperbolic functions, whose
results are expressed in terms of Catalan’s constant, Dirichlet’s beta function, and Riemann’s zeta
function, as well as 7t in the denominator.
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1. Introduction and Motivation

For a complex number s, Dirichlet’s beta function is defined by the alternating infinite
series [1]

i’l

e}
; 271 + 1
When setting s = 2, it becomes Catalan’s constant G, expressed as
v (=D)"
G=) = =pB(2),
r;) (2n+1)2 A2)

which was introduced by Eugene Charles Catalan in [2] (Equation (4)). There are many
other famous representations of G (see [3-5]), for example,

/ arctan x
2nG = /

Recently, Stewart [6] and Holland [7] proposed, respectively, the following problems
requiring proof:

/7 sin(4x) gy — —
0o Intanx

where {(s) denotes the Riemann zeta function,

(1)

= — - X
2 Jo sinx

7
X+ 5@(3)- )
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14&2) and / tanh” x = 14€(i)
T 0 s
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Motivated by these two elegant formulae, we primarily investigate, in this paper,
the following integrals involving trigonometric and hyperbolic functions with an integer
parameter n:

e 2x)2n+1 7 (sin 4x)2n+1
Hn::/zwdx,n% ﬁ::/zwdwem
0 0

Intan x Intan x
2n ) 2n+1
A e - L R
0 x 0 X

Deriving explicit formulae involving trigonometric and hyperbolic functions is important
for accurate computations in combinatorics, physics, computer science, and other fields.
This study not only fills the gap in the literature for these types of integrals but also serves
as a good inspiration for computing similar definite integrals.

To evaluate these integrals, we first give the following two lemmas (cf. [8] ([1.5.44 and
1.2.2])). And throughout the paper, m =; n indicates that “m is congruent to n modulo j”.
x(x) denotes the logical function defined by x(true) = 1 and x(false) = 0.

Lemma 1. For each n € N, we have the representation

" T n
/ 2 X 2}’l+1
0 sinx

[e9)

®)

m:l
where
n—1
R UV SR 72 i
(n—1—2k)! (4m —2)2k+1

k=0
(n—1)!

W){(Tl =, 0).

(-7

Proof. By means of the trigonometric function relations

X 2tar12

5 ain ¥
sinx =2sin = cos = = ——=2
2 2 sec? 3’

we can rewrite the integral as

X
/ _/ _/2 X" sec? xsec"3
sin x 251n cos 2 2tan % 5

Setting y = tan 5, we have

7 x"sec? % . [1arctan”y
(5t [,
0 tan 5 0 Y

= 2" Inyarctan” y|é -

1 . n—1
oy /0 Iny - (arctany) dy

14 y?

00—, /1 Iny - (arctany)"~!
B 0 1+y2

Letting y = tan 1, we obtain

1 . n—1 z
/ Iny (arctar;y) dy = /4 u" 1 in tan udu.
0 1+y 0
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By means of the Fourier series [9] (Equation (1.7.1))
o 2 o
Insinu = —In2 — Z cos(2mu) and Incosu =—In2— 2(—1)’"M,
m=1 m m=1 m
we obtain
Intanu = Insinu — Incosu = —2 2 w.
w1 2m—1
Thus, we can evaluate the integral
/Z u"Hntan udu = — Lcos(4m — 2)udu.
0 o Zm -1
Keeping in mind the formula
\_%J n! xn72k
/u cos(Au)du = sin(Au) 2 0 CE e
"7t . n—2k—1
k n. X
+ cos(Au) kg;) (—1) (e +C,
we can evaluate the integral
/74r u" ! cos(4m — 2)udu = (—1)""1 Lnizj(—l)k (n — D! (r/4) 17
0 a = (n—1—2k)! (4m —2)2k+1
n—2 (1’1 — 1)'

- (‘UTWX(” = 0),

which completes the proof. [

Letting n = 3,4, 5, 6 in the above lemma, we can obtain the following corollary.

Corollary 1.

7 %8 3772

/o sinxdx 7G —125(4); (4)
LS 93

/O sf;xdx =G — 247p(4) + {(5); (5)
7 ox° 57

7 Sy = 276 302 (4) + 2408(6); ©
LS 3 5715

[F e =¥ 6 a0wpta) + 720mp(6) - T2 (7). )

The Beta function B(p, q) is defined by the following integral [9] (Equation (1.1.12)):

Blp.a) = [ 2 (0-2)1 Y (R(p) > 0R(g) > 0) ®

Replacing z by z/(1 + z) in (8), we have an infinite integral representation of B(p,q):

) p—1
B(p,q) :/0 O_T_Wdz- )
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The Gamma function I'(s) is defined by [9] (Equation (1.1.18))
T(s) := / et 1dt (R(s) > 0),
0

which is closely related to the Beta function. In fact, they satisfy the relation [9] (Equation (1.1.13))

T'(p)L(q)
I(p+q)

The following useful relationship between the Gamma and Circular functions [9]
(Equation (1.2.1)) is well known as Euler’s reflection formula:

B(p,q) = with  (R(p) > 0; R(q) > 0).

T()T(1—x) = Sin”nx. (10)

Generally, for an integer n € Ny, by combining Equation (10) and I'(x + 1) = xI'(x), we
can immediately obtain the following equations:

_mx n=1
sin(7x)” ;

Tn+0)Mn—x) =9 4 N (11)

sinnx[<n_1)!] k1;11<1_k7>, l<neN.
TR ST SO U W

1’l—|-*—|-x n-‘—*—x = 1“2(n+l) n 42
2 2 cos(n;) kl;[l[l - ﬁ]/ ne N.
Lemma 2. For T > 0and v > 0, the following identity holds:
+oco P4 1 1.1 % p p

o army = o Q) Bt 13)

Proof. Setting y = 7z", we can rewrite the integral as follows:

+oo gp-l 1,1,2 [ yo—1
/0 (14 Tzv)Pta — 5(¥) /o (14 y)pta
Then, the proof follows by means of (9). O

The rest of this paper is organized as follows. In Section 2, we calculate #, and 7j,.
Then, in Section 3, we compute £, and P,. Finally, in Section 4, the paper ends with
two integral equations.

2. Integrations #, and 7,

In this section, we use the method of substitution and other techniques to evaluate the
integrals #H, and 7.
As a warm-up, we first calculate two particular cases, n = 0and n = 1:

4 z 3
7‘[02/2 Cos 2x dx and H, :/z (cos2x) i
0

Intan x 0 Intanx

Theorem 3.

Ho = /7 cos2r - 3¢ (14)
o Intanx T
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Proof. Making the replacement In tan x — y, we have

cos(2x) = —tanhy and dx = dy,

2coshy

which leads us to
® sinhy © 1 1
Ho = — / Sy, / / h(uy)du)d
0 0 ycoshzy Y= 0 cosh2y< 0 cosh(uy) ) Y

/ / cosh( ;/l]/ dydu.
cosh”y

By setting z = et and using (13), the inner integral can be evaluated as

Lz =T+ )T - 2). (15)

/°° cosh( uy /°° ZUFl 4 putl u
0 2

cosh2 (14 22)2

Therefore, by making use of (1) and (11), we have

1 u u 2 v oum/2 4
O
Theorem 4.
7 cos® 2x 16 10
Hy — /0 8 =k = 2p(4) - 5 G (16)

Proof. Setting t = Intan x, we can manipulate the integral as follows:

1 [+ ginh3t
H1=—= ——dt = / / 3 cosh ut sinh? utdu ) dt
! 2 J-oo i.‘cosh4 2/ cosh4 )
+00 2
/ / coshutsTh utdtdu.
cosh™ t

By replacing e by z and then using (11) and (13), we can compute the inner integral:

+ cosh ut sinh? ut 400 Z3u+3 4 ,=3utd _ jutd _ —udl
[ coshutsintut, _y | i -
—c0 cosh™ t (1+42%)
Cu(l—9u?/4)m Cu(l- u?/4)m
~ 2sin(3umr/2) 6sin(um/2)
which leads us to
1 Lu(l—u?/4)m 1 13u(1—9u2/4)
=3 o 2sinfun/2) ™73y 2sinGun2) 17)
By means of Formulae (1) and (4), we can evaluate the first integral:
u(l—u?/4)m G 24
—————du=—+ —B(4). 1
0o 2sin(umr/2) =t 7‘[3ﬁ( ) (18)
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For the second integral, by making the replacement %un — t, we obtain

/1 3u(1— 9u2/4)7rdu
0

2sin(3urm/2)
2 (it—8/n? ’Tt—t3/7r *t—t3/7r
_ﬁ(/(; sin dt+/g Csint )
Then, replacing t by —t + 77, the second integral in “()” leads to
/”tt3/7r /2 m—t—( —t)3/n2dt
z  sint N sint '

2

And replacing t by t 4- 7, the third integral in “()” gives

sint sin t

/32”1‘—1?3/71 _/zH—n t+7r)3/7r2dt
7T

Introducing them into the above equation and making use of (1) and (4), we have

/13u(1—9u2/4)7rd 2 /§5t+t3/n2dt 23
0

- sint 37'(

2sin(3um/2) "Z3x 713’8( )

According to the above results, we can obtain the formula stated in the theorem. O

Generally, for an integer n € Ny, we have the following theorem.

Theorem 5. For each n € Ny, we have the representation

% (cos2x)Xtl - (nl)2 X L(2n\ (1
o '_/0 Thanx T 2(2n)!kgo( D /0 h(n, x)dx, (19)
where

Zk2ntl kil

hin, x) = S S TR P 1-(————x
(%) sin( =2+ 7ry) g[ ( 2 )]

g1, n 1
+ —— T 1— (——x)7|.
sin(”f—%i’“—lﬂx) g[ ( 2i )7

Proof. Setting t = Intan x, we can compute the integral

/% (c:ost)Z”+1 / (sinh t)21+1 (sinht)™™
0 Intan x T 2) e t t(cosh t)21+2

2 1 1 1
- ”Z‘L / o / (sinh ut)2" cosh utdu)dt
—00 O

2n + 1 +o° (sinh ut) 21 cosh ut
- / / dtdu.
cosht 2n+2
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Letting z = ¢!, the inner integral can be evaluated:

/+°° (sinh ut)" cosh ut 2/*‘” 22 (g4 — 77 )20 (M 4 z‘”)dz
o (COSh t)2n+2 - (1 _|_ZZ)2n+2
2n 0o 2n+1+(2k—2n+1)u 2n+1+(2k—2n—1)u
2 +
—2 () T az
= k) Jo (1+22)
(n!)? ZZ” k([ 2n
== 2. (1) h(n,u),
@n+ 1)1 & k
where
Zk=2ntly  n 2k —2n+1 2
h(nu) = —2—T[1- (—=——u
( ) Sin(2k7%n+1 7'[14) E[ ( 2 ) ]
2k—2n—1 n
==ty 2k—2n—-1 2
+—2 T - (——u)7,
sin( 221 7ry) g[ ( 2i )]

which completes the proof. [

For a given parameter n € Ny, by making use of Lemma 1 and Theorem 5, we can
evaluate the definite integral

s 2 2n+1
H, = /2 7@05 ) dx, n € Ny
0 Intan x

whose results can be expressed in terms of 7r, Catalan’s constant G, and Dirichlet’s beta
function B(s). For instance, setting n = 2, we have the following formula:

Corollary 2.

3 2x)5 24 64 89
Hy= [T g Mgy Shpe) - 2 0)

Intan x 07t

Proof. By setting n = 2 in Theorem 5, we have

1
Hy = —ﬁ(h — o+ J3),

where
= /1 5rx(1— 2x2)(1 - %gﬁ)dx
" sin(37rx) ’
= /1 97x(1— §x2)(1 — %xz)dx
sm( x) ’
127x(1 (1 12)
Js = / sin %x) dax.

By means of variable replacement and (1), (4), and (6), we can ascertain that

4 pFlex+ St 4 b 1689 . 138 48
I / sin x * 407‘[G 3 Al )+7T5l3(6)’
15 .3 1.5 210

_ 4 [TA g g 240
]2_71/0 sin x dx 8 G+ 7.[3ﬁ() 7_[5ﬁ(6)/

8 [T x— 2%+ 480
== dx = —-G+ Lpay+ 20
I3 7_(/(; x a7 +7_[3:B( )+ 5 :B( )/

sinx




Axioms 2024, 13, 230

8 of 15
which completes the proof. [
Similarly, we can establish the following formula for the integral 7.
Theorem 6. For each n € Ny, we have the representation
/ (sin4x)?"+1
= ———dx
Intan x
3, 2n+1 1 2" 2n
—24n+r2(oy / 21
where
2n+1 2n+1
[T = (3207 T = (27
nx)=-= + =
f(n.x) cos(2k_2++1x7r) cos(”‘_zf”_]xn)
Proof. Letting y = Intan x, we have
1 nh
= dy and sindx = — planhy
2coshy coshy
which yields
z : 2n+1 40 : 2n+1
T — /z (sin4x) gy — _4,1/ (sinhy) dy
0 Intanx oo y(coshy)4”+3
+o (sinh uy)?" cosh uy
— 420 +1) / / dydu.
" (coshy)4n+3 o
Setting z = ¢¥ and using (12), the inner integral can be rewritten as
/+°° (sinh uy)?" cosh uy
S (coshy)4n+3
_ i ZEH(_l)k o) /+oo ZAn+2+(2k=2n+1)u | 4n+2+(2k—2n—1)u
— 0 (1+ 22)4n+3
2n
=4 R () s,
where
2n+1 2n+1
T —(g2up] T - (g2t
nu) = = + = ,
f( ) Cos(2k72n+1un) COS(Zk*zn*lun’)
which concludes the proof. O
Corollary 3.
7 sin(4x) 14
— == ) 22
To /0 lntanxdx 7'[2€(3) 2)
Proof. Letting n = 0 in Theorem 6, we have
2 sindx | 1—u?
76_/0 lntanx -2 / cos g (23)
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Lettingu =1 — %U and making use of (1) and (2), we obtain
4 17 2 4 (7w 14
To 2 Jo sino”’  wlo sino nzg( )
O
The above formula resolves the problem proposed by Stewart [6].
Corollary 4.
7 (sin4x)? 1016 248 392
Ti= [Ty = —20(7) = S50(5) — ot d) 4

Proof. Letting n = 1 in Theorem 6, we have

,E:

15 1((1—x2)(1—9x2)(1—295x2) (1_’52)(_9692)(1_55))11%

_7777 J—
16 Jo cos(37x) cos(7x)

By means of variable replacement, we can ascertain that

32 (7 oz 112 7 22 16 7 z*
S d / d —7/ 2 g
T 1571/0 sinz Z—'—45712 0 sinz z 94 Jo sinz z
32 (3 2 32 (7 26
dz — / dz.
+157r5/0 sinz - 4576 Jo sz -

Then, the proof follows by making use of (1), (2), (5), (6), and (7). O

NN

3. Integrations £, and P,

In this section, by making use of the method of substitution and integrating by parts,
as well as other techniques, we will compute the integrals £,, and P;,.
First of all, we compute two simple cases, n = 1 and n = 2:

+o0 2 +o0 4
L1 :/ tan}; xdx and £, :/ tan}; xdx.
0 X 0 X

Theorem 7.

+00 tanh? x 14
Ly = /0 Sy = —50(3) (25)

Proof. For the second integral, integrating by parts, we can rewrite it as

+o0 h2 400
/ tanh X / tanh? xd -
0 JO X

2
1 +oo + tanh x - sech®x
:—f~tanh2x’ +2/ — dx.
X 0 0 X
Obviously, it is not difficult to obtain

1 +oo tanh? x tanh? x

—.tanh’x| = lim — lim =0-0=0,

X 0 x—+oo X x—0 X

where the second limit can be evaluated by means of L'Hospital’s rule. Then, by making
the replacement x — Intany, we have

tanh x - sech”x cos2y-sin“2y and dx =dIntany sin Zydy.
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Therefore, we can rewrite the integral as

dx = =2
2 7 Intany

/+°° tanh? x 3 sindy
0
In addition, replacing y by 7 — y yields

7 sindy , (% sindy |
/E lntanydy_/o Intany 4y,

4

which leads us to

/+°° tanh2xdx _ _/% sin 4x ”
0 0

x? Intan x

Then, the proof follows by using Corollary 3 and resolves the problem proposed recently

by Holland [7]. O
Theorem 8.

7 cos?(2x) sin(4x) 62 28
/o In tan x dx = 7r4€( )= 37T2é(3)'
Proof. Replacing Intan x by ¢, we have

1 tanh ¢
= 2y = — tanh in4y = —2
dy 2coshtdt' cos2y tanht and sindy wosht’

by means of which we obtain

/% cos?(2x) sin(4x) gy — /+°° sinh® t i
0 ln tan x oo tcosh’t

—+o00
:7/ /SSm (ut) cos(ut)dudt

0 cosh5

—+o0
__3/ / sin® (ut) C5os(ut)dtdu.
cosh” t

By letting z = ¢! and using (13), the inner integral can be rewritten as

400 sin2(ut) cos(ut) 400 Z3u—&-4 + Z—3u+4 _ Zz¢+4 _ Z—u+4
/—oo cosh’ t dat = 4/ (1+422)°
~(9/4—9u?/4)(1/4 —9u?/4)
N 6 cos(3um/2)
(9/4 —u?/4)(1/4 —u?/4)
a 6cos(um/2)

Therefore, the integral can be rewritten as

-G -)n

cos(urm/2)
u

H=\O
S

du

/-’»} cos?(2x) sin(4x) 1 /‘1 (
—dx = —
0 Intan x 2 Jo
2 2
1G-S

4
2 Jo cos(3urm/2)

[uny

du

dz

(26)
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Lettingu =1—% and then using (1), (2), (4), and (5), the first integral on the right-hand

side can be rewrltten as

2 Jo cos(um/2) 7 Jo sint

7 93
= ﬁ@@) + QC@)-

Setting v = 3Z'u, the second integral on the right-hand side can be rewritten as

s T 3
5 [ r@ior 3 [ foyo+ 3 [ 7 o),
3 3/z 3
where 0 5 0 14
floy = 122 T
Cosv
Letting v = 7 — z and then using (1), (2), (4), and (5), we have
7 2% — 2z — %22 42z
3 / flo T3 / sinz 4z

:Eﬁ®+£ﬁ®-

Similarly, by setting v = Z + z and v = 3 — z, we can obtain

/ f(o /3[ 24+ 2773 — 222 — 27r3zdZ
3 Y7 sinz
2 16 31 7

= 26+ gy - 26— Ly

and
/ /3 z4 —6mz® + 11222 — 117r3zd
3 f(o)do = 37‘(4 sinz z
31 16 2
= T0) - 2205 - p) - 2

respectively. Based on the above results, we can confirm the first formula.

Theorem 9.
+oo tanh* x 56 124
= 7d = — —_—— .
Lo /0 %) x 372 €(3) v} C-(S)

Proof. Integrating by parts, we can rewrite it as

+oo tanh* x tanh* x [+ +e0 tanh® xsech’x
1 gy o o ey 7 tanh? ssechf
0 X 0 x

/+°° tanh® xsech?x
0 X

dx.

11 G-9G-9n 1 [32m0t— 2 —2mt® + 1
7T

dx

dt

O

(27)
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Replacing x by Intan y, we have

/+°° tanh® xsechzxdx _ /i} cos?(2y) sin(4y)d
0 X o s Intany

1 /7 cos?(2y) sin(4y)
T2 Intany ’

which completes the proof by using Theorem 8. [

Generally, for an integer n € N, we have the following formula.

Theorem 10. For each n € N, we have the representation

+o00 2n z 2n—2 o3
/ (tanh x) dx — —n/2 cos(2x) sm(4x)dx
0 0

x2 Intan x

20, 4 1y 212 _
St A () st e

2n—2)! & k
where 2k—2n+3 2k—2n+1
o ) = il 52207 | T [1 - (3527 0)7)
’ cos( 72]‘_%’“’3 7TX) cos( 72"_%”“ 7TX)

Proof. Integrating by parts, we can rewrite the integral as

+o0 2n oo
/ de — / (tanh x)anl
0 x Jo X

+e (tanh x)2"~lsech®x

1 25| +00
:—;-(tanhx) "o +2n/0 p dx.
Obviously, it is not difficult to obtain
+o00 2n 2n
Dani?a| T = g (a0h0T g (anh 0T gy,
X 0 X— o0 X x—0 X

where the second limit can be evaluated by means of L'Hospital’s rule.
Letting x = Intany, we can evaluate

. 2
tanhx = —cos(2y), sechx =sin(2y) and dx = mdy,
which yields
/+°° (’canhx)z”*lsech2 /z cos(2y)?"~ 251n(4y)
0 x 2 Intany ay-

By setting t = Intany, the above integral becomes

/-E cos(2y)?*~ 251r1(4y) _/+°° (sinh ¢)?~1 ;
Jx Intany ay = 0o  t(cosht)z+l

+o0 1 1
= _/ W(/ (2n — 1) (sinh ut)?"~2 cosh utdu)dt
0

+o (sinh ut) 2n=2 cosh ut
=—2n-1) / / cosht)2”+1 dtdu.
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Then, letting z = ¢, the inner integral can be evaluated as

dz

/+oo (sinhut)z”*2 Coshutdt _ 2/+oo 21 (Zu _ qu)2n72(zu 4 qu)
0 (cosh )2+l 0 (1 + 22)2nH]
2n—=2 _ 2n+(2k—2n+3)u 2n+(2k—2n+1)u
2 2 Foeo
R () [
= k 0 (14 z2)2n+
= r?(n+3) 2n—2(_1)k <2” - 2) { i1 — (‘Zki@lﬁ’”)z] i1 — (‘Zkgi%rl1+l’”)2] }
(2n)! k cos(Z=21t3 7y ) cos( 22t 7y '

dz

k=0
Therefore, we obtain

+e (tanh x)?" I2(n+ 1) 202 2n—2\ !
/0 ———dx = (2n7—22)' ) (—1)k< r >/0 g(n,u)du,

2
x k=0

where 2ni3 —mal
a1 — (35 u)?] L1 — (B2 u)?
cos(2k_2++37ru) cos(m‘_%i’q“nu)

which completes the proof. [

g(n,u) =

7

For a given integer n € N, we can evaluate £, based on the above Theorem 10 and
Lemma 1.

Corollary 5.

/7 s1n(8x)dx _ 248
o Intanx T4

28
- — . 2
(5) ~ 55003) 9)
Proof. By means of the relation
sin(8x) = 2sin(4x) cos(4x) = 4(cos 2x)? sin(4x) — 2 sin(4x)

and Corollary 3 and the formula of Theorem 8, we can obtain the desired formula. O

Theorem 11.

® tanh® 186 7
P = [T A = e(5) - 25209). (30)

Proof. Integrating by parts two times, we can manipulate the integral:

1 [ 3 ,1 3 [* tanh® x - sech®x

= —§/ ’fanhzx-sechzxd1
2 Jo x

dx.

3 /+°° tanh x - sech*x — tanh® x - sech®x
T2 ) x

Letting x = Intany, we have

‘ 2
tanhx = — cos(2y), sechx =sin(2y) and dx = md%
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which leads us to

id 2 . w2 .
P = %/02 cos*(2y) sin(4y) — sin”(2y) sin(4y) dy

Intany
3 (7% 2cos?(2y)sin(4y) — sin(4y)
= 7/ dy.
2 Jo Intany

Then, the proof follows by means of the first identities of Corollary 3 and Theorem 8. [

Generally, for any integer n € N, we have the following theorem.

Theorem 12 (n € N).

dx

® tanh?"*1 x 2n+1
Py = / . = (L~ Lana). (31)

Proof. Similar to the proof of Theorem 11, integrating by parts two times, we obtain

_ 2n+1 /+°° ntanh® 1 x - sech*x — tanh?* 1 x - sech®x

Pn dx.

2 —o00 X

By making the replacement x — Intany, we have

Pr

_2n+1 /75 (n +1) cos®™(2y) sin(4y) — n cos®"~2(2y) sin(4y) dy
A .

2 Intany
By making use of Theorem 10, we can complete the proof. O

4. Conclusions

In this paper, by means of the method of substitution and integration by parts, integrals
containing trigonometric and hyperbolic functions are transformed into integrals of rational
fractions or into known integrals, and by employing Beta and Gamma functions, we then
derive their explicit results. The methods have been shown to be efficient in dealing with
the types of definite integrals mentioned in previous sections, and it is possible to derive
more similar formulae. For instance, we can obtain the following identity:

7 cos(2x)(sin4x)? , 256 32 22
/0 Intan x dx = s 20 7'(3‘3(4) 157

Finally, we point out that, for two integers m,n € Ny and m =, n, we have

/% (cost)m(sin4x)"dx o,
0 In tan x

In fact, setting ¢ = In tan x, we have

z m(q; n 400 m-+n
/2 (cos 2x)™(sin4x) gy — 2n_1(_1)m+n/ (tanh t) it
0 Intan x —co t(cosht)m+l

(tanh ¢)"+7
t(cosh t)m+1
In this paper, we focus on the computation of four types of definite integrals whose

results can be expressed in terms of special functions, such as Dirichlet’s beta function,
Riemann’s zeta function, and Catalan’s constant. Our results not only provide methods
for the computation of similar definite integrals but also are important for the study of
Dirichlet’s beta function, Riemann’s zeta function, and Catalan’s constant.

The integrand is an odd function, so the value of the integral is 0.
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