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Abstract: The protection of forests and the mitigation of pest damage to trees play a crucial role in
mitigating the greenhouse effect. In this paper, we first establish a delayed differential equation model
for Ips subelongatus Motschulsky-Larix spp., where the delay parameter represents the time required
for trees to undergo curing. Second, we analyze the stability of the equilibrium of the model and
derive the normal form of Hopf bifurcation using a multiple-time-scales method. Then, we analyze
the stability and direction of Hopf bifurcating periodic solutions. Finally, we conduct simulations to
analyze the changing trends in pest and tree populations. Additionally, we investigate the impact of
altering the rate of artificial planting on the system and provide corresponding biological explanations.

Keywords: Ips subelongatus Motschulsky disaster; delayed differential equation; Hopf bifurcation; stability
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1. Introduction

At present, the issue of the greenhouse effect has received widespread attention world-
wide. Human activities release a significant amount of greenhouse gases, with CO2 being
the most crucial among them, as it increasingly traps solar heat and warms the global
climate. Forests have been identified as a major leverage for climate change mitigation
because of their capacity to fix atmospheric CO2 and transform it into organic carbon,
in biomass and then in soils [1]. However, tree damage and death associated with insect
and disease disturbance can reduce this carbon sequestration capacity [2]. Solving the
problem of forest diseases and pests could also help mitigate the greenhouse effect. Schol-
ars have conducted corresponding research on forest diseases and pests. Some scholars
proposed the use of microorganisms and fungi for pest control [3–5]. Some scholars used
modern technologies such as drones and remote sensing to monitor forests by constructing
models [6–8]. Some scholars introduced methods for suppressing pest outbreaks by estab-
lishing mathematical models. For example, Jentsch et al. [9] used a difference equation
model for the age structure of bark beetle outbreaks and forest fires, indicating that fires
can not only remove infected trees but also alter their structure, thereby suppressing pest
outbreaks. Xu et al. [10] described the process of controlling pests through pulse spraying
of pesticides within a given time by constructing a dynamic system of logistic differential
equations with pulse effects. It solved the problem of pest control within a limited time.

To address the issue of forest pests and diseases, an important approach in the field of
mathematics is to establish mathematical models for simulating these problems. Various
models of forest diseases and pests have been studied [11–13]. Many scholars provided
a theoretical analysis of the models from an equation analysis perspective [14–18]. For
example, Song et al. [14] considered a diffusive predator–prey system with memory-based
diffusion and Holling type-II functional response. Jiang et al. [15] derived the normal form
up to the third order for the Turing–Hopf bifurcation.
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China’s total forest area ranks fifth in the world. The Northeast Forest Region is the
largest natural forest region in China. Larix spp. is one of the most important trees in the
northeast forest area. Therefore, giving attention to Larix spp. resources has a huge impact
on China’s forests and the world’s forest resources. Some scholars have conducted research
on the genes and genetics of Larix spp. [19,20]. Some scholars have studied the factors that
hinder the growth and development of larch trees. For example, Skrzecz et al. [21] found
that larch receded strongly in forested agricultural lands due to tillage techniques used
before planting that prevented proper root development of larch seedlings and the severe
impact of the large larch bark beetle (Heer). Chen et al. [22] showed that Ips subelongatus
Motschulsky is a serious pest of northeastern larch that can kill relatively healthy trees
during outbreak periods.

Ips subelongatus (Motschulsky) is an Asian larch bark beetle that causes significant
damage to several species of larch in East Asia, particularly in northern China [23], such
as the Da Hinggan and Xiao Hinggan ranges in the Inner Mongolia autonomous region
and Heilongjiang Province, south-eastern Heilongjiang and the Changbai Mountains in
Liaoning Province, and middle Inner Mongolia autonomous region, consequently threat-
ening local plantations [24]. Ips subelongatus exhibits a high reproductive rate and low
mortality rate in environments with high humidity. The larvae feed on phloem from both
sides of the main tunnel, while the sub-tunnel gradually widens and lengthens as they
grow. Upon reaching adulthood, the larvae emerge through small holes and disperse to
find new hosts, establishing fresh tunnels. In addition, the weaker the vitality of trees and
the fresher the fallen trees, the more rampant the pests. The smaller the canopy density of
forest, the more severe the damage to the tree. Figure 1 shows the infection mechanism of
Ips subelongatus Motschulsky.

Figure 1. The infection mechanism of Ips subelongatus Motschulsky.
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Currently, scholars have conducted extensive research on the occurrence pattern,
biological characteristics, and genetic modification of Ips subelongatus Motschulsky [25–28].
However, there have been few studies on the use of mathematical models to study Ips
subelongatus Motschulsky. The research motivation for this article was as follows: by
establishing a delayed differential equation, where the delay represents the time required
for infected trees to regain their health, we discuss strategies for maintaining forest stability
in the face of Ips subelongatus Motschulsky.

The rest of this article is arranged as follows: In Section 2, a delayed differential
equation is established based on the living habits and infection ability of the Ips subelon-
gatus Motschulsky. In Section 3, we analyze the existence and stability of the nonnegative
equilibrium point, as well as the existence of Hopf bifurcation. In Section 4, we calculate
the normal form of Hopf bifurcation. In Section 5, we use numerical simulations to verify
the correctness of the results. In Section 6, we provide some conclusions.

2. Mathematical Modeling

In this section, we establish the following model:

dX
dt

= rX(1 − X
N
)− β1X − MX,

dS
dt

= γI(t − τ)− kβ2 IXS + R,

dI
dt

= kβ2 IXS − γI(t − τ)− β2 I,

(1)

where r, N, β1, M, γ, k, β2, and R are nonnegative parameters. The specific meanings of
variables and parameters can be seen in Table 1.

Table 1. Descriptions of the variables and parameters of the system (1).

Symbol Descriptions Unit

X The population size of the Ips subelongatus Motschulsky 107 PCS
S The population size of susceptible Larix spp. 106 trees
I The population size of infected Larix spp. 106 trees
r The proliferation rate of Ips subelongatus Motschulsky -
N Environmental capacity of Ips subelongatus Motschulsky 106 PCS
β1 The natural mortality rate of Ips subelongatus Motschulsky -
β2 Mortality rate of infected trees -
γ The cure rate of infected trees -
τ The time required for infected trees to recover their health Month
k Infection rate coefficient -
M The mortality rate caused by pests being preyed upon by natural enemies -
R The input rate of artificially planted trees -

Next, we offer some explanations about the system (1).

(a) Based on the biological characteristics of Ips subelongatus Motschulsky, we denote X(t)
as the population size of Ips subelongatus Motschulsky. The reproductive capacity of
pests is subject to resource constraints, resulting in a gradual decrease in their growth
rate as they approach the environmental capacity N, we assume that the growth rate
of pests follows the logistic model; that is, rX(1 − X

N ). Moreover, the mortality rate
pests experience not only depends on their own mortality rate β1, but also depends
on predation by natural predators M. Based on this analysis, we establish the first
equation of system (1) to describe the rate of change in the pest population.

(b) We assume that susceptible Larix spp. S(t) becomes infected Larix spp. I(t) after
being infected by pests. Infected Larix spp. I(t) can be cured and transformed back
into susceptible Larix spp. S(t). The process of curing requires a certain amount of
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time, taking into account practical considerations; thus, we introduce τ as the curing
duration. The rate at which cured infected trees change is denoted as γI(t − τ).

(c) In the conventional infectious disease model, the infection rate is constant, but the
infection ability of Ips subelongatus Motschulsky is stronger when the canopy density
of the trees is lower, indicating that pests have a stronger ability to infect as more
trees die. Therefore, we establish an infection rate function f (β2 I) = kβ2 I, where
k represents the infection rate coefficient and β2 I represents the rate of change in
infected trees that have died. This function reflects that the infection rate is directly
proportional to β2 I. At this point, the infectiousness of the pest is denoted kβ2 IX.
Thus, the transmission rate from susceptible trees S(t) to infected trees I(t) can be
denoted kβ2 IXS. Since the forest is not isolated, new Larix spp. trees will be planted at
a certain rate R. Based on the above analysis, we can establish a relationship between
susceptible and infected trees.

Remark 1. As for system (1), several scholars have also conducted research on similar models, such
as the infectious disease model. Majee et al. [29] assumed a constant infection rate, while we assume
the infection rate as a function considering the biological characteristics of Ips subelongatus.
Additionally, Majee et al. treated the cure rate as a saturation function, while we treat it as a
constant. Li et al. [30] considered the infection rate to be a saturation function, whereas we regard it
as directly proportional.

3. Stability Analysis of Equilibrium and Existence of Hopf Bifurcation

In this section, we discuss the system (1). We sequentially analyze the existence and
stability of the equilibrium point, as well as the existence of Hopf bifurcation.

3.1. The Existence of Equilibrium

We make the following assumption:

(A1) r > β1 + M.

Remark 2. r represents the proliferation rate of pests, β1 represents the natural mortality rate of
pests, and M represents the mortality rate caused by pests being preyed upon by natural enemies.
Assumption (A1) implies that the proliferation rate of the pest exceeds its mortality rate. This is a
universal law of nature, because if a population wants to exist, it must meet this condition, otherwise,
extinction is inevitable.

When (A1) holds, we can obtain the unique and positive equilibrium of system (1):

E∗ = (X∗, S∗, I∗),

where X∗ = N(r−β1−M)
r , S∗ = γ+β2

kβ2X∗ , I∗ = R
β2

.

3.2. The Stability of Equilibrium and Existence of Hopf Bifurcation

For the convenience of the subsequent discussion, we denote a = kRX∗ = kR N(r−β1−M)
r

> 0 under (A1).
We can obtain the characteristic equation of the system (1) at equilibrium E∗, as follows:

(λ − β1 − M + r)[λ2 + (γe−λτ − γ + a)λ + aβ2] = 0. (2)

When τ = 0, the characteristic Equation (2) becomes

(λ − β1 − M + r)(λ2 + aλ + aβ2) = 0. (3)



Axioms 2024, 13, 232 5 of 15

Under the assumption (A1), we can clearly see from Vieta theorem that the Equation (3)
has three roots with negative real parts. The equilibrium E∗ of the system (1) with τ = 0 is
locally asymptotically stable.

Next, we discuss the existence of Hopf bifurcating periodic solutions near equilibrium
E∗ when τ > 0. Under the assumption (A1), we can see that Equation (2) always has a root
with a negative real part:

λ1 = β1 + M − r.

Thus, we only need to consider the following equation:

λ2 + (γe−λτ − γ + a)λ + aβ2 = 0. (4)

Lemma 1. When (a2 − 2aγ − 2aβ2)
2 − 4a2β2

2 > 0 and a2 − 2aγ − 2aβ2 < 0 , Equation (4) has
a pair of pure imaginary roots ±iω.

Proof. We introduce λ = iω into Equation (4), then separate the real and imaginary parts,
and finally obtain the following equations:{

− ω2 + ωγ sin(ωτ) + aβ2 = 0,

ωγ cos(ωτ)− ωγ + aω = 0.

Thus, we have 
sin(ωτ) =

ω2 − aβ2

γω
,

cos(ωτ) =
γ − a

γ
.

(5)

Let z = ω2, we obtain

h(z) = z2 + (a2 − 2aγ − 2aβ2)z + a2β2
2 = 0. (6)

When (a2 − 2aγ − 2aβ2)
2 − 4a2β2

2 < 0, Equation (6) has no real root. When (a2 −
2aγ − 2aβ2)

2 − 4a2β2
2 > 0, Equation (6) has two distinct real roots:

z1,2 =
−(a2−2aγ−2aβ2)∓

√
(a2−2aγ−2aβ2)2−4a2β2

2
2 ,

z1,2 < 0, when a2 − 2aγ − 2aβ2 > 0. z1,2 > 0, when a2 − 2aγ − 2aβ2 < 0.

Thus, when (a2 − 2aγ − 2aβ2)
2 − 4a2β2

2 > 0 and a2 − 2aγ − 2aβ2 < 0, z1,2 > 0, ω is a
real number, Equation (4) has a pair of pure imaginary roots ±iω.

Assume that Equation (6) has two roots z2 > z1 > 0, and h
′
(z1) < 0, h

′
(z2) > 0. Then,

by substituting ωk =
√

zk (k = 1, 2) into the Equation (5), we obtain the expression for τ:

τ
(j)
k =


1

ωk
[arccos(Pk) + 2jπ], Qk ≥ 0,

1
ωk

[2π − arccos(Pk) + 2jπ], Qk < 0.
k = 1, 2, j = 0, 1, 2, · · · . (7)

where

Qk = sin(ωkτ
(j)
k ) =

ω2
k − aβ2

ωkγ
,

Pk = cos(ωkτ
(j)
k ) =

γ − a
γ

.
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Lemma 2. Under the assumption (A1), system (1) satisfies the transversal condition for generating
Hopf bifurcation; that is,

Re(
dλ

dτ
)|

τ
(j)
k

=
γ2ω2

h′(z)
̸= 0, k = 1, 2, j = 0, 1, 2, · · · .

Proof. Take the derivative of λ on both sides of Equation (4).
We have

(2λ + γe−λτ − τλγe−λτ − γ + a)dλ = γλ2e−λτdτ.

dτ

dλ
=

2λ + γe−λτ − τλγe−λτ − γ + a
γλ2e−λτ

=
2λ + γe−λτ − γ + a

γλ2e−λτ
− τ

λ
.

Because when τ = τ
(j)
k , τ

λ is purely imaginary, k = 1, 2, j = 0, 1, 2 · · · . Thus,

Re(
dτ

dλ
)|

τ
(j)
k

= Re(
2λ + γe−λτ − γ + a

γλ2e−λτ
)|

τ
(j)
k

= Re[
(a − γ)cos(ωτ)− 2ωsin(ωτ) + γ

−γω2 ]|
τ
(j)
k

.

According to Equation (5), we obtain

Re(
dτ

dλ
)|

τ
(j)
k

= Re(
2ω2 + a2 − 2aγ − 2aβ2

γ2ω2 )|
τ
(j)
k

=
h
′
(z)

γ2ω2 .

When z2 > z1 > 0, h
′
(z1) < 0, h

′
(z2) > 0. Thus,

Re(
dλ

dτ
)|

τ
(j)
k

=
γ2ω2

h′(z)
̸= 0, k = 1, 2, j = 0, 1, 2, · · · .

Based on the above, we obtain the following conclusions:

Theorem 1. When (A1) holds, considering system (1), we draw the following conclusions:

(i) If (a2 − 2aγ − 2aβ2)
2 − 4a2β2

2 < 0 or (a2 − 2aγ − 2aβ2)
2 − 4a2β2

2 > 0, a2 − 2aγ −
2aβ2 > 0, the equilibrium E∗ is locally asymptotically stable when τ ≥ 0.

(ii) If (a2 − 2aγ − 2aβ2)
2 − 4a2β2

2 > 0 and a2 − 2aγ − 2aβ2 < 0, the Equation (6) has
two roots z2 > z1 > 0, and h

′
(z1) < 0, h

′
(z2) > 0. Then, ∃ n ∈ N make 0 <

τ
(0)
2 < τ

(0)
1 < τ

(1)
2 < τ

(1)
1 < · · · < τ

(n−1)
1 < τ

(n)
2 < τ

(n+1)
2 < · · · . When τ ∈

[0, τ
(0)
2 ) ∪⋃n

l=1(τ
(l−1)
1 , τ

(l)
2 ), the equilibrium E∗ of the system (1) is locally asymptotically

stable. And when τ ∈ ⋃n−1
l=0 (τ

(l)
2 , τ

(l)
1 ) ∪ (τ

(n)
2 ,+∞), the equilibrium E∗ is unstable, where

τ
(j)
k (k = 1, 2, j = 0, 1, 2 · · · ) is given in Equation (7).

4. Normal Form of Hopf Bifurcation

In this section, we derive the normal form of the Hopf bifurcation of the system (1)
using the multiple-time-scales method. In order to reflect the actual situation, we study the
delay required for curing trees and the impact of this delay. We consider the time-delay τ as
a bifurcation parameter. We make τ = τc + εµ, where τc = τ

(j)
k is given in the Equation (7),

which is the Hopf bifurcation critical value, ε is the dimensionless scale parameter, and
µ is the perturbation parameter. When τ = τ

(j)
k , Equation (4) has the eigenvalue λ = iω,

and the system (1) undergoes a Hopf bifurcation at equilibrium E∗. Then, we transform the
equilibrium E∗ to the origin and change the time scale; that is, let t → t

τ . Finally, we obtain
the following form:

Ż = τAZ(t) + τBZ(t − 1) + τF(Z(t), Z(t − 1)), (8)
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where

Z(t) = (X(t), S(t), I(t))T ,

Z(t − 1) = (X(t − 1), S(t − 1), I(t − 1))T ,

F(Z(t), Z(t − 1))

= (
rX2

N
,−kβ2(IXS + S∗ IX + X∗ IS + I∗XS), kβ2(IXS + S∗ IX + X∗ IS + I∗XS))T ,

and

A =

 r − 2rX∗
N − β1 − M 0 0
−kβ2S∗ I∗ −kβ2X∗ I∗ −kβ2S∗X∗

kβ2 I∗S∗ kβ2 I∗X∗ kβ2S∗X∗ − β2

, B =

 0 0 0
0 0 γ
0 0 −γ

.

We set h as the eigenvector corresponding to the eigenvalue λ = iωτ of the linear sys-
tem of Equation (8), and h∗ as the eigenvector corresponding to the eigenvalue λ = −iωτ of
the adjoint matrix of the linear system of Equation (8), and satisfy the following conditions:

⟨h∗, h⟩ = h̄∗Th = 1.

Through calculation, we obtain that

h = (0, b, 1)T , h∗ = d(p, 1, c)T , (9)

where

b = −1 − β2i
ω

, c = 1 − ωi
a

, p =
ωRi

[kRβ2(x∗)2](iw + β1 + M − r)
, d =

1
b + c

.

We assume that the solution of the Equation (8) is in the following form:

Z(t) = Z(T0, T1, T2 · · · ) =
+∞

∑
k=1

εkZk(T0, T1, T2 · · · ), (10)

where

Z(T0, T1, T2, · · · ) = (X(T0, T1, T2, · · · ), S(T0, T1, T2, · · · ), I(T0, T1, T2, · · · ))T ,

Zk(T0, T1, T2, · · · ) = (Xk(T0, T1, T2, · · · ), Sk(T0, T1, T2, · · · ), Ik(T0, T1, T2, · · · ))T .

The derivative of t is transformed into

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · ,

where Di is a differential operator, and

Di =
∂

∂Ti
, (i = 0, 1, 2, · · · ).

we have

Ż(t) = εD0Z1 + ε2D1Z1 + ε3D2Z1 + ε2D0Z2 + ε3D1Z2 + ε3D0Z3 + · · · . (11)

By using Taylor expansion I(T0 − 1, ε(T0 − 1), ε2(T0 − 1), · · · ) at I(T0 − 1, T1, T2, · · · ) ,
we obtain

I(t − 1) = εI1,τc + ε2 I2,τc + ε3 I3,τc − ε2D1 I1,τc − ε3D2 I1,τc − ε3D1 I2,τc + · · · , (12)
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where Ij,τc = Ij(T0 − 1, T1, T2, · · · ), j = 1, 2, · · · .
By substituting the Equations (10)–(12) into Equation (8) and separating the coefficients

of ε, ε2, and ε3, we obtain the following equations:
D0X1 − τcrX1(1 −

2X∗

N
− β1 − M) = 0,

D0S1 − τc[γI1,τc − kβ2(X∗S∗ I1 + I∗S∗X1 + I∗X∗S1)] = 0,

D0 I1 − τc[kβ2(X∗S∗ I1 + I∗S∗X1 + I∗X∗S1)− γI1,τc − β2 I1] = 0.

(13)



D0X2 − τcX2(r −
2rX∗

N
− β1 − M)

=µX1(r −
2rX∗

N
− β1 − M)− τc

r
N

X2
1 − D1X1,

D0S2 − γτc I2,τc + τckβ2(X∗ I∗S2 + X∗S∗ I2 + S∗ I∗X2)

=µγI1,τc − τcγD1 I1,τc − τckβ2(S∗ I1X1 + X∗ I1S1 + I∗X1S1)

− µkβ2(S∗ I∗X1 + X∗ I∗S1 + X∗S∗ I1)− D1S1,

D0 I2 − τckβ2(X∗S∗ I2 + X∗ I∗S2 + I∗S∗X2) + γτc I2,τc + τcβ2 I2

=τckβ2(S∗ I1X1 + X∗ I1S1 + I∗X1S1) + µkβ2(S∗ I∗X1 + X∗ I∗S1 + X∗S∗ I1)

− µγI1,τc + τcγD1 I1,τc − µβ2 I1 − D1 I1.

(14)



D0X3 − τc(r −
2X∗r

N
− β1 − M)X3

=µ(r − 2X∗r
N

− β1 − M)X2 −
µr
N

X2
1 −

2τcr
N

X1X2 − D2X1 − D1X2,

D0S3 + kβ2τc(I∗S∗X3 + X∗S∗ I3 + I∗X∗S3)− γτc I3,τc

=− τckβ2[S∗(I1X2 + I2X1) + X∗(I1S2 + I2S1) + I∗(X1S2 + X2S1)]

− µkβ2(S∗ I1X1 + I∗S1X1 + X∗S1 I1 + X∗S∗ I2 + I∗S∗X2 + I∗X∗S2))

− kβ2τc I1X1S1 − D2S1 − D1S2 − τcγ(D2 I1,τc − D1 I2,τc) + µγ(I2,τc − D1 I1,τc),

D0 I3 − kβ2τc(I∗S∗X3 + X∗S∗ I3 + I∗X∗S3) + γτc I3,τc + τcβ2 I3

=τckβ2[S∗(I1X2 + I2X1) + X∗(I1S2 + I2S1) + I∗(X1S2 + X2S1)]

+ µkβ2(S∗ I1X1 + I∗S1X1 + X∗S1 I1 + X∗S∗ I2 + I∗S∗X2 + I∗X∗S2)

+ kβ2τc I1X1S1 − µβ2 I2 − D2 I1 − D1 I2 − µγ(I2,τc − D1 I1,τc)

+ τcγ(D2 I1,τc − D1 I2,τc).

(15)

The form of the solution to Equation (13) is as follows:

Z1 = GheiωτcT0 + Ḡh̄e−iωτcT0 , (16)

where h is given by Equation (9). We substitute solution (16) into the right part of
Equation (14), denote the coefficient of eiωτcT0 as m1, and then use ⟨h∗, m1⟩ = 0 to obtain
the expression of ∂G

∂T1
as follows:

∂G
∂T1

= KµG, (17)

where

K = v[e−iωτc γ − kβ2(X∗ I∗b + X∗S∗)− e−iωτc γc̄ + kβ2 c̄(X∗ I∗b + X∗S∗)− β2 c̄],

with
v = (e−iωτc τcγ + b − e−iωτc τcγc̄ + c̄)−1.
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Because µ represents a very small disturbance, it has little impact on higher-order
terms. So, we ignore the parts of high-order terms with µ. We assume that the form of the
solution to Equation (14) is as follows:

X2 = g0e2iωτcT0 + ḡ0e−2iωτcT0 + l0,

S2 = g1e2iωτcT0 + ḡ1e−2iωτcT0 + l1,

I2 = g2e2iωτcT0 + ḡ2e−2iωτcT0 + l2,

(18)

where

g0 = 0, g2 =
kβ2X∗G2b

2iω + β2 + γe−2iωτc − kβ2X∗[I∗(−1 + β2i
2ω ) + S∗]

, g1 = (−1 +
β2

2ω
i)g2,

l0 = 0, l1 =
−(b + b̄)GḠ

I∗
, l2 = 0.

Then, we substitute solution (18) into the right part of Equation (15), denote the
coefficient of eiωτcT0 as m2, and then use ⟨h∗, m2⟩ = 0 to obtain the expression of ∂G

∂T2
,

as follows:
∂G
∂T2

= HG2Ḡ, (19)

where

H = v
τckβ2X∗(1 − c̄)(b + b̄)

I∗
,

where v is given in Equation (17).
Then, we obtain the normal form of the Hopf bifurcation of system (1) truncated by

the cubic-order terms:
Ġ = KµG + HG2Ḡ, (20)

where K and H are given in Equations (17) and (19), respectively. We replace the polar
coordinates in Equation (20) with G = ρeiθ , and then obtain the normal form of Hopf
bifurcation in polar coordinates:{

ρ̇ = Re(K)µρ + Re(H)ρ3,

θ̇ = Im(K)µ + Im(H)ρ2.
(21)

According to the normal form of Hopf bifurcation in polar coordinates, we only need
to consider the first equation in system (21). Thus, the following theorem holds:

Theorem 2. When Re(K)µ
Re(H)

< 0, there is an equilibrium point r∗ =
√
−Re(K)µ

Re(H)
in the first equation

of the system (21), and system (1) has periodic solutions.

(i) If Re(K)µ < 0, the periodic solution reduced on the center manifold is unstable, when
µ > 0 (µ < 0), the Hopf bifurcating periodic solution is forward (backward).

(ii) If Re(K)µ > 0, the periodic solution reduced on the center manifold is stable, when µ > 0
(µ < 0), the Hopf bifurcating periodic solution is forward (backward).

Proof. A non-trivial equilibrium of system (21) corresponds to the periodic solution of
system (8). When Re(K)µ

Re(H)
< 0, the non-trivial equilibrium for the first equation of system (21)

is ρ̂ =

√
−Re(K)µ

Re(H)
, and (Re(K)µ + 3Re(H)ρ2)|ρ=ρ̂ = −2Re(K)µ. According to the stability

theory of equilibrium, if Re(K)µ < 0, the non-trivial equilibrium ρ̂ for the first equation of
system (21) is unstable, and the periodic solution is unstable. If Re(K)µ > 0, the non-trivial
equilibrium ρ̂ for the first equation of system (21) is asymptotically stable, and the periodic
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solution is stable. And when µ > 0 (µ < 0), the Hopf bifurcating periodic solution is
forward (backward).

5. Numerical Simulations

In this section, we provide numerical simulations to verify the results of theoretical
analysis using MATLAB R2023a and its built-in DDE (dde23) drawing command. Here, we
used the Da Hinggan range as an example to conduct a simulation analysis. Due to the
distance from the ocean, it is difficult for the humid climate to reach this area, resulting
in dry conditions and less rainfall. This arid climate is unsuitable for the growth of Ips
subelongatus, leading to a lower reproductive rate r and a higher mortality rate β1. Moreover,
due to the abundant forest resources in the Da Hinggan range, many natural enemies of
larch beetles such as birds and moths reside here, who can exert a certain predation rate M
on the pests. In addition, people have implemented a certain artificial planting rate R to
plant new trees in the forest. According to the definitions of the cure rate γ and mortality
rate β2, γ + β2 = 1.

Based on the above analysis, we adopted the following parameters for simulation:

r = 0.78, N = 45, β1 = 0.33, β2 = 0.12, γ = 0.88, k = 0.15, M = 0.2, R = 0.15.

For this group of parameters, we calculated the equilibrium E∗ = (14.4231, 3.8519, 1.25)
of system (1). According to Equation (6), we find (a2 − 2aγ − 2aβ2)

2 − 4a2β2
2 = 0.2896 > 0

and a2 − 2aγ − 2aβ2 = −0.5437 < 0, so Equation (6) has two positive real roots z1 = 0.0028,
z2 = 0.5409, and we obtain ω1 = 0.0529, ω2 = 0.7355. Then, we substitute the parameters
into Equation (7) to obtain τ

(0)
1 = 101.9012, τ

(0)
2 = 1.2069, τ

(1)
2 = 9.7500, so τ

(0)
2 < τ

(1)
2 <

τ
(0)
1 < · · · . According to Theorem 1, the equilibrium E∗ is local asymptotically stable for

τ ∈ [0, τ
(0)
2 ) = τ ∈ [0, 1.2069) and unstable for τ > τ

(0)
2 .

Then, we select the initial function [X(θ), S(θ), I(θ)] = [14.2, 3.7, 1.2](θ ∈ [−τ, 0])
and τ = 1.1 < 1.2069. Obviously, the equilibrium E∗ is locally asymptotically stable,
the simulation results are shown in the following Figure 2.
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0 10 20 30 40 50 60 70 80 90 100

t
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t

1

1.2

1.4

I

Figure 2. Equilibrium E∗ of the system (1) is locally asymptotically stable when τ = 1.1.

Biological explanation 1: In Figure 2, X, S, and I undergo a brief period of change
before stabilizing. During the initial stages, there is a sudden increase in the population
of susceptible trees S, followed by a rapid decline, eventually stabilizing gradually. We
speculate that this is due to the low number of pests in the early stages and people curing
diseased trees, which leads to a rampant increase in the number of healthy trees. As time
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goes on, pests reproduce to their maximum capacity, infecting abundant tree resources and
limiting the growth of healthy trees, resulting in a significant decrease in the number of
healthy trees. Ultimately, through continued efforts in disease management and artificial
reforestation activities, after undergoing some fluctuations, both S and I converge towards
a certain value. Therefore, we infer that when the healing process is relatively short-term,
both pests and trees will stabilize after an initial period.

When τ > 1.2069, according to the Theorem 1, the equilibrium E∗ is unstable.
By calculating the normal form of Hopf bifurcation, from Equations (17) and (19), we
obtain K = 0.7548 + 0.2360i, H = 0.1734 − 0.5544i. According to Theorem 2, when
µ < 0, Re(K)µ

Re(H)
< 0, Re(M)µ < 0, the periodic solution is backward and unstable.

Next, we demonstrate the situation when τ = 1.22 > 1.2069, and the simulation result
is shown in Figure 3.

0 10 20 30 40 50 60 70 80 90 100

t

14.2

14.3

14.4

X

0 10 20 30 40 50 60 70 80 90

t

3

4

5

S

0 10 20 30 40 50 60 70 80 90 100

t

1

1.5

2

I

Figure 3. Equilibrium E∗ of the system (1) is unstable when τ = 1.22.

Biological explanation 2: From Figure 3, X is asymptotically stable, showing that the
number of pests is stable at a certain number, and we can see that the amplitude of S and
I fluctuations is increasing, indicating an unstable trend. We speculate that this may be
due to a prolonged healing duration, resulting in many infected trees not being able to
heal in time and eventually dying. The large number of dead trees increases the ability
of pests to infect healthy trees. When the number of healthy trees is reduced to a certain
extent, the pest’s ability to infect gradually declines due to the decrease in available hosts
for the pest. Meanwhile, since the rate of artificial planting exceeds the mortality rate of
trees, the number of healthy trees slowly recovers until it surpasses its original count. Due
to insufficient control over the pest population, when there are enough healthy trees again,
their ability to invade will recover and they initiate a new infestation, thus continuing the
unstable trend.

Planted forests play a crucial role in addressing global climate change and are also
valued globally for their numerous ecosystem services. The contributions of stand charac-
teristics to carbon sequestration potential are triple that of climate variables for Larix spp.
plantations in northeast China [31]. Increasing the artificial planting rate R is beneficial for
carbon sequestration. The following discussion focuses on the impact of increasing this
rate on the system (1).

With other parameters remaining constant, through calculation, we find that when
R ∈ (0, 0.81], the Equation (6) has two positive real roots. We choose R ∈ [0.15, 0.8] to
explore the impact of changing R on τ

(0)
2 . Figure 4 shows the impact of changing R on τ

(0)
2 .
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Figure 4. τ
(0)
2 varies with R.

Biological explanation 3: From Figure 4, we can see that as the planting rate R in-
creases, the critical τ

(0)
2 also increases. This indicates that the critical time required for

healing trees becomes longer. We speculate that this phenomenon can be attributed to the
“resistant stability" of the forest system. When there are a large number of trees, even if
some become sick or die, other healthy trees can still perform necessary ecological functions
and maintain their functional and structural capabilities. Individual sick trees will not
have a significant impact on the entire ecosystem. Therefore, with an increase in artificial
planting rate R, the number of trees in the forest increases and prolongs the critical time
for healing.

When R > 0.81, Equation (6) does not have positive roots. We take R = 0.85 for the
simulation, to re-simulate again using the following parameters:

r = 0.78, N = 45, β1 = 0.33, β2 = 0.12, γ = 0.88, k = 0.15, M = 0.2, R = 0.85.

We calculate the equilibrium E∗ = (14.4231, 3.8519, 7.0833) of system (1). According
to Equation (6), we find (a2 − 2aγ − 2aβ2)

2 − 4a2β2
2 = −0.1071 < 0 and a2 − 2aγ − 2aβ2 =

−0.2962 < 0, Equation (6) does not have positive real roots, so the Hopf bifurcation does
not occur near the equilibrium E∗ of system (1) at this time. The equilibrium E∗ of system (1)
is always locally asymptotically stable for ∀ τ ≥ 0. The equilibrium E∗ stability result is
depicted in Figure 5 when τ = 2.2.

Biological explanation 4: From Figure 5, we can see that X, S, and I eventually stabilize,
even after increasing the time to cure the trees. We speculate that this is due to the strong
resistance stability of the forest system under extremely high artificial planting rates R,
ensuring that the system can reach a stable state.

After the above simulation results, we give some suggestions: by controlling the
healing time within the critical time, the forest will eventually stabilize. However, if the
healing time exceeds the critical time, this may lead to instability in the forest system.
Increasing the rate of artificial planting of trees not only extends the critical time and
reduces pressure on trees for recovery but also enhances carbon sequestration in forests.
Therefore, people should pay more attention to and invest in artificial tree planting.
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Figure 5. Equilibrium E∗ of the system (1) is locally asymptotically stable when τ = 2.2.

6. Conclusions

In this paper, we established a delayed differential equation model for the damage
caused by Ips subelongatus Motschulsky to Larix spp. based on its biological characteristics.
We investigated the stability of the equilibrium and the existence of Hopf bifurcation in the
system, calculated the normal form of Hopf bifurcation by using the multiple time scale
method, and analyzed the stability of the periodic solutions.

We simulated the changing trends of pests and trees using a group of parameters
and confirmed our theoretical analysis. We used two different time delays τ to simulate
what happens when the curing time is larger or smaller than the critical time delay τ

(0)
2 ,

and provided corresponding biological explanations. It was found that when τ < τ
(0)
2 ,

the equilibrium of system eventually tends to stabilize, while when τ > τ
(0)
2 , the equilib-

rium of the system eventually becomes unstable. Due to the significant role of the artificial
planting of trees in carbon sequestration, we found that increasing the artificial planting
rate can prolong the critical time delay τ

(0)
2 , thereby alleviating pressure on tree curing

time for people. Moreover, when the artificial planting rate is very high, regardless of
the duration required for curing, the system will eventually reach stability. Finally, we
provided suggestions based on the simulation results, which suggest that people should
increase their attention and investment in artificial tree planting.

Our model solely considered the temporal variable and only established the relation-
ship among pests, susceptible trees, and infected trees. However, in reality, the infestation
ability of pests is also influenced by spatial factors. Moreover, not all pests are capable
of reproduction, and these non-reproducible pests have an impact on pest populations.
Some scholars have provided mathematical foundations for enhancing the model with
these aspects [32,33]. Next, we could incorporate spatial variables to construct a bivariate
model or divide pest populations into reproducible and non-reproducible to establish a
four-component multi-component system. These improvements would enable a more
detailed investigation into the impact of pests on trees and allow accurately proposing
control measures.
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