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Abstract: We propose a heuristic method to solve polynomial matrix equations of the type ∑m
k=1 ak Xk = B,

where ak are scalar coefficients and X and B are square matrices of order n. The method is based on
the decomposition of the B matrix as a linear combination of the identity matrix and an idempotent,
involutive, or nilpotent matrix. We prove that this decomposition is always possible when n = 2.
Moreover, in some cases we can compute solutions when we have an infinite number of them
(singular solutions). This method has been coded in MATLAB and has been compared to other
methods found in the existing literature, such as the diagonalization and the interpolation methods.
It turns out that the proposed method is considerably faster than the latter methods. Furthermore,
the proposed method can calculate solutions when diagonalization and interpolation methods fail or
calculate singular solutions when these methods are not capable of doing so.

Keywords: polynomial matrix equations; idempotent matrix; involutive matrix; nilpotent matrix
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1. Introduction

A polynomial matrix equation of degree m is an equation of the type

m

∑
k=0

AkXk = 0, (1)

where 0 denotes the null square matrix of order n, and Ak, X are square matrices of order
n, i.e., Ak, X, 0 ∈ Mn(C), where Am ̸= 0. The matrices Ak are given matrices, and X is
the unknown matrix to be solved. In a similar way to the theory of polynomial equations,
polynomial matrix equations have a noncommutative analog of the Vieta theorem [1].

The solution of (1) is fundamental in the analysis of queuing problems modeled by
Markov chains [2], as well as in the interplay between Toeplitz matrices and polynomial
computations (see [3] and the references therein).

A particular problem of (1) that has been examined by many researchers is the calcula-
tion of the m-th roots of a given matrix B ∈ Mn(C) [4–7]:

Xm = B.

Another particular problem arising from (1) is to consider X a scalar matrix, i.e., X = λI,
thus (1) is reduced to so-called lambda matrices

L(λ) =
m

∑
k=1

Akλk = B.

When m = 2, the quadratic matrix polynomial L(λ) arises in a natural way in the study of
damped vibrating systems [8]. Matrix polynomials of arbitrary degree m are studied in [9].
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Newton’s method [10] has been proposed to numerically solve (1). However, the
solution obtained depends on the initial iteration. Also, the solution has to a be a simple root
in order to obtain quadratic convergence. In addition, this method has a high computational
cost per iteration. Therefore, this method will not be considered further here.

When X is a diagonalizable matrix, the solutions of (1) can be obtained for arbitrary
m [11]. The maximum finite number of diagonalizable solutions are (m n

m ). Next, we describe
this method. Let v⃗i be an eigenvector of matrix X, and λi the corresponding eigenvalues,
such that

X v⃗i = λi v⃗i. (2)

According to (1) and (2), we have

0⃗ = 0 v⃗i =

(
m

∑
k=0

AkXk

)
v⃗i =

(
m

∑
k=0

Akλk
i

)
︸ ︷︷ ︸

L(λi)

v⃗i.

Therefore, the eigenvalues λi of X satisfy the polynomial equation:

det L(λi) = 0, (3)

and the eigenvectors v⃗i satisfy
v⃗i ∈ ker L(λi). (4)

Let P be the following matrix:
P = (⃗v1, . . . , v⃗ℓ),

where the eigenvectors v⃗i are set in columns in matrix P, and ℓ ≤ n. If X is a diagonalizable
matrix, then

X = P

 λ1
. . .

λℓ

P−1. (5)

The above method has been coded in MATLAB, and it is available at https://shorturl.
at/oHN15 (accessed on 19 March 2024). However, this method has two main drawbacks:

• It only works when X is a diagonalizable matrix;
• When X is diagonalizable, it is computationally expensive. Note that we have to

solve in (3) a polynomial equation of at most degree m × n. Also, for each eigenvalue
λi, we have to solve in (4) the corresponding eigenvectors v⃗i, but many of these
eigenvectors are redundant. Finally, there are many possibilities to construct the
factorization in (5) in order to obtain all the different solutions for X. Again, there are
many redundant possibilities.

The aim of this paper is to propose a very simple heuristic method to obtain solutions
of (1) when the matrices Ak in (1) are scalar matrices. This heuristic method always works
when the order of the matrices are n = 2, and it is not difficult to program. In the recent
literature, we have found another approach to solve this kind of polynomial matrix equation
with scalar coefficients [12], which is based on an interpolation method. Despite the fact
that this interpolation method is much more complicated, we have coded it in MATLAB
in order to compare it to our heuristic method. In fact, all the examples presented in this
paper have been computed using a MATLAB code available at https://shorturl.at/oHN15.

This paper is organized as follows. Section 2 describes the heuristic method for square
matrices of arbitrary order n when matrix B can be expressed as a linear combination
of the identity matrix and a nilpotent, involutive or idempotent matrix. Whenever this
decomposition is possible, an algorithm to find it is described. Section 3 deals with the
particular case n = 2, since the aforementioned decomposition for matrix B is always
possible in this case. When B is a scalar matrix, we sometimes have an infinite number of

https://shorturl.at/oHN15
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https://shorturl.at/oHN15
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solutions by virtue of the Cayley–Hamilton theorem. We explicitly calculate this kind of
solution for n = 2. As an application, some examples are given from graph theory. Finally,
we present our conclusions in Section 4.

2. Polynomial Matrix Equations of Arbitrary Order

Consider the polynomial matrix equation in X of degree m:

m

∑
k=1

ak Xk = B, (6)

where ak ∈ C, and X, B are square matrices of order n, i.e., X, B ∈ Mn(C). Assume that B
admits the following decomposition:

B = p N + q I, (7)

where p, q ∈ C; I, N ∈ Mn(C), where N is an idempotent, involutive, or nilpotent matrix
with index 2; and I is the identity matrix, i.e.,

N idempotent ⇔ N2 = N,

N involutive ⇔ N2 = I,

N nilpotent with index 2 ⇔ N2 = 0.

Note that if N is a nilpotent matrix, H = p N is also a nilpotent matrix, thus in this case, we
will consider the decomposition

B = H + q I. (8)

We look for solutions of the form:

X = λ N + µ I (9)

or
X = λ H + µ I. (10)

2.1. The Heuristic Decomposition

We want to know when the heuristic decomposition given in (7) is possible. Notice
that the idempotent decomposition is always possible when B is a scalar matrix, when
p = 0 and N is arbitrary (say N = 0). When B is not a scalar matrix, from (7), we have

(B − qI)2 = p2N2,

and
N =

1
p
(B − qI), (11)

thus, defining
Mα,β(B) = B2 − α B + β I, (12)

we have that
Mα,β(B) = 0, (13)

where

N idempotent ⇒
{

α = 2q + p,
β = q(p + q),

(14)

N involutive ⇒
{

α = 2q,
β = q2 − p2.

(15)
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According to (11), if p = 0, the heuristic decomposition does not exist. In this case, we
can look for a nilpotent decomposition B = H + q I. Therefore, if (13) is satisfied for some
calculated parameters α and β, then

H nilpotent index 2 ⇒
{

α = 2q,
β = q2.

In any case, we have to calculate α and β from (13). We will see in Section 3 that this is
always possible when B ∈ M2(C). When B ∈ Mn(C) with n ≥ 3, this is not always
possible. However, when n ≥ 3, we can look for heuristic solutions calculating α and β
in (13) for some matrix elements of Mα,β(B), and then checking if Mα,β(B) = 0 for these
calculated parameters α and β. If this is so, the heuristic decomposition is possible. This
method has been coded in MATLAB, and it is available at https://shorturl.at/oHN15
(accessed on 19 March 2024).

2.2. Idempotent Case

Theorem 1. Consider the polynomial matrix Equation (6), i.e.,

m

∑
k=1

ak Xk = B.

If B admits an idempotent decomposition (7), i.e.,

B = p N + q I,

where N is an idempotent matrix, then the solution is

X = λ N + µ I,

where µ satisfies the polynomial equation:

m

∑
k=1

ak µk = q,

and for each solution of µ, λ satisfies the polynomial equation:

p =
m

∑
ℓ=1

λℓ
m

∑
k=ℓ

ak

(
k
ℓ

)
µk−ℓ.

Proof. Insert (7) and (9) into (6), and consider that N is idempotent, to obtain

p N + q I =
m

∑
k=1

ak (λ N + µ I)k

=
m

∑
k=1

ak

k

∑
ℓ=0

(
k
ℓ

)
λℓµk−ℓNℓ

=
m

∑
k=1

ak

[
µk I + N

k

∑
ℓ=1

(
k
ℓ

)
λℓµk−ℓ

]

= I
m

∑
k=1

ak µk + N
m

∑
k=1

ak

k

∑
ℓ=1

(
k
ℓ

)
λℓµk−ℓ.

Therefore,

https://shorturl.at/oHN15
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m

∑
k=1

ak µk = q, (16)

m

∑
k=1

ak

k

∑
ℓ=1

(
k
ℓ

)
λℓµk−ℓ = p. (17)

Taking into account the discrete Heaviside function, defined as

θ(n) :=
{

1, n ≥ 0,
0, n < 0,

rewrite (17) as follows:

p =
∞

∑
k=1

ak θ(m − k)
∞

∑
ℓ=1

(
k
ℓ

)
λℓµk−ℓ θ(k − ℓ)

=
∞

∑
ℓ=1

λℓ
∞

∑
k=1

ak

(
k
ℓ

)
µk−ℓ θ(m − k) θ(k − ℓ)

=
m

∑
ℓ=1

λℓ
m

∑
k=ℓ

ak

(
k
ℓ

)
µk−ℓ. (18)

Remark 1. Notice that from (16) we have a maximum of m different solutions for µ. According to
(18), for each solution of µ, we have a maximum of m solutions for λ. Therefore, we have a maximum
of m2 different pairs (λ, µ), and, according to (9), a maximum of m2 solutions for X.

Example 1. Consider the matrix

B =

 2 2 2
2 2 2
2 2 2

.

If each matrix element of B denotes the number of paths in one or two steps in a graph, calculate the
adjacency matrix R of the graph.

According to Chapter 2 in [13], the adjacency matrix R satisfies the quadratic ma-
trix equation

R2 + R = B.

The MATLAB 2023b code developed to find heuristic decompositions yields p = −1,
q = 1, and

N =
1
3

 2 −1 −1
−1 2 −1
−1 −1 2

,

so that B = p N + q I, and N is an idempotent matrix. Applying the method described in
Theorem 1, we obtain four different solutions:

R1 = (−1)

 1 1 1
1 1 1
1 1 1

, R2 =
2
3

 1 1 1
1 1 1
1 1 1

,

R3 =

 0 1 1
1 0 1
1 1 0

, R4 = −1
3

 5 2 2
2 5 2
2 2 5

.
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Since the adjacency matrix can only contain 0 or 1 as matrix elements, the solution is
R = R3. It is worth noting that we obtain the same set of solutions R1, . . . , R4 by using both
the diagonalization and interpolation methods. However, when performing 100 tests, the
diagonalization method is ≈3500 times slower on average than the idempotent method, and
the interpolation method is ≈1000 times slower on average than the idempotent method.

Example 2. Calculate the square root matrix of the following matrix:

B =

 4 0 0
0 0 0
0 0 0

.

The MATLAB code developed to find heuristic decompositions yields p = −4, q = 4, and

N =

 0 0 0
0 1 0
0 0 1

,

so that B = pN + qI, and N is an idempotent matrix. Applying the method described in
Theorem 1, we obtain two different solutions:

X =

 ±2 0 0
0 0 0
0 0 0

. (19)

It is worth noting that we also obtain the above solution (19) using the diagonalization
method. However, if we apply the interpolation method to this problem, we will obtain a
“division by zero” error. It is worth noting that none of the methods are able to obtain the
following infinite sets of solutions:

X ∈


 ±2 0 0

0 0 0
0 a 0

,

 ±2 0 0
0 0 a
0 0 0

 : a ∈ C

.

2.3. Involutive Case

Theorem 2. Consider the polynomial matrix Equation (6), i.e.,

m

∑
k=1

ak Xk = B.

If B admits an involutive decomposition (7), i.e.,

B = p N + q I,

where N is an involutive matrix, then the solution is

X = λij N + µij I,

where

λij =
r+i − r−j

2
, µij =

r+i + r−j
2

,

being r±j , j = 1, . . . , m the m roots of the polynomial:

h±(x) =
m

∑
k=1

ak xk − q ∓ p.
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Proof. Insert (7) and (9) into (6), and consider that N is involutive, to obtain

p N + q I

=
m

∑
k=1

ak (λ N + µ I)k

=
m

∑
k=1

ak

k

∑
ℓ=0

(
k
ℓ

)
λℓµk−ℓNℓ

=
m

∑
k=1

ak

[
I
⌊k/2⌋

∑
ℓ=0

(
k

2ℓ

)
λ2ℓµk−2ℓ + N

⌊(k−1)/2⌋

∑
ℓ=0

(
k

2ℓ+ 1

)
λ2ℓ+1µk−2ℓ−1

]
.

Therefore,

q =
m

∑
k=1

ak

⌊k/2⌋

∑
ℓ=0

(
k

2ℓ

)
λ2ℓµk−2ℓ, (20)

p =
m

∑
k=1

ak

⌊(k−1)/2⌋

∑
ℓ=0

(
k

2ℓ+ 1

)
λ2ℓ+1µk−2ℓ−1. (21)

Sum up (20) and (21) to obtain

q + p =
m

∑
k=1

ak

k

∑
ℓ=0

(
k
ℓ

)
λℓµk−ℓ

=
m

∑
k=1

ak(µ + λ)k. (22)

Also, subtracting (21) from (20), we have

q − p =
m

∑
k=1

ak

k

∑
ℓ=0

(
k
ℓ

)
(−λ)ℓµk−ℓ

=
m

∑
k=1

ak(µ − λ)k. (23)

Now, denote as r±j , j = 1, . . . , m the m roots of the polynomial

h±(x) =
m

∑
k=1

ak xk − q ∓ p. (24)

According to (22) and (23), we have

λij =
r+i − r−j

2
, µij =

r+i + r−j
2

, i, j = 1, . . . , m.

Hence we have a maximum of m2 different solutions.

Example 3. Consider the matrix

B =

 1 0 1
0 2 0
1 0 1

.

If each matrix element of B denotes the number of paths in one or two steps in a graph, calculate the
adjacency matrix R of the graph.



Axioms 2024, 13, 239 8 of 17

The adjacency matrix R satisfies the quadratic matrix equation

R2 + R = B.

The MATLAB code developed to find heuristic decompositions yields p = 1, q = 1, and

N =

 0 0 1
0 1 0
1 0 0

,

so that B = pN + qI, and N is an involutive matrix. Applying the method described in
Theorem 2, we obtain four different solutions:

R1 =

 −1 0 −1
0 −2 0
−1 0 −1

, R2 = −1
2

 3 0 1
0 4 0
1 0 3

,

R3 =
1
2

 1 0 1
0 2 0
1 0 1

, R4 =

 0 0 1
0 1 0
1 0 0

.

However, the adjacency matrix can only contain 0 or 1 as matrix elements, therefore the
solution is R = R4. It is worth noting that we obtain the same set of solutions R1, . . . , R4 by
using both the diagonalization and interpolation methods. However, performing 100 tests,
the diagonalization method is ≈3900 times slower on average than the involutive method,
and the interpolation method is ≈1100 times slower on average than the involutive method.

2.4. Nilpotent Case

Theorem 3. Consider the polynomial matrix Equation (6), i.e.,

m

∑
k=1

ak Xk = B.

If B admits a nilpotent decomposition (8), i.e.,

B = H + q I,

where H is an nilpotent matrix with index 2, then the solution is

X = λ H + µ I,

where µ satisfies the polynomial equation:

m

∑
k=1

ak µk = q,

and for each solution of µ, λ is calculated as:

λ =
1

∑m
k=1 akk µk−1 .

Proof. Insert (8) and (10) into (6), and consider that H is nilpotent with index 2, to obtain
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H + q I =
m

∑
k=1

ak (λ H + µ I)k

=
m

∑
k=1

ak

k

∑
ℓ=0

(
k
ℓ

)
λℓµk−ℓHℓ

=
m

∑
k=1

ak

(
µk I + λk µk−1H

)
.

Therefore,

m

∑
k=1

ak µk = q, (25)

λ =
1

∑m
k=1 akk µk−1 . (26)

Remark 2. Notice that we have 1 solution for λ for each solution of µ, thus according to (9), we
have a maximum of m different solutions for X. However, if

m

∑
k=1

akk µk−1 = 0,

then, according to (26), λ does not exist. Therefore, we have to eliminate these cases as solutions of X.

Example 4. Solve the quadratic matrix equation:

X2 − X = B,

where

B =

 1 −1 −1
1 3 1
0 0 2

.

The MATLAB code developed to find heuristic decompositions yields q = 2, and

H =

 −1 −1 −1
1 1 1
0 0 0

,

so that B = H + qI, and H is an nilpotent matrix with index 2. Applying the method
described in Theorem 3, we obtain two different solutions:

X ∈

1
3

 −5 1 1
−1 −7 −1
0 0 −6

,
1
3

 2 −1 −1
1 4 1
0 0 3

.

It is worth noting that the interpolation method provides the same set of solutions for X,
but since X is not a diagonalizable matrix, the diagonalization method does not provide a
solution. Despite this fact, performing 100 tests, the diagonalization method is ≈500 times
slower on average than the nilpotent heuristic method. Also, the interpolation method is
≈1500 times slower on average than the nilpotent method.

Example 5. Compute a matrix A that satisfies the following equation:

A3 − 6A2 + 11A = 6I. (27)



Axioms 2024, 13, 239 10 of 17

Here, matrix B = 6I is a scalar matrix. Since I2 = I (i.e., the identity matrix is
idempotent as well as involutive), B admits infinite ways of idempotent or involutive
decompositions, i.e.,

B = p I + (6 − p)I, ∀p ∈ C.

Also, B admits the following nilpotent decomposition:

B = 0 + 6I.

All the heuristic methods, as well as the diagonalization and interpolation methods, yield
the same set of solutions:

A ∈ {I, 2I, 3I}. (28)

The computational performance of all heuristic methods is very similar. Nevertheless,
when performing 100 tests, the diagonalization method is ≈1200 times slower than the
heuristic method on average, and the interpolation method is ≈9000 times slower than the
heuristic method on average. Note that the solutions given in (28) are “trivial”, since they
are based on the following factorization of (27):

(I − A)(2I − A)(3I − A) = 0.

3. Polynomial Matrix Equation of Order 2

The main drawback of the examples presented above is that matrix B has to admit an
idempotent, involutive, or nilpotent decomposition. In general, this is not always possible,
but in the particular case of n = 2, i.e., X, B ∈ M2(C), the decomposition given in (7)
or (8) for B is always possible. Next, we consider how to calculate the corresponding
decomposition.

3.1. Idempotent Decomposition

For n = 2, (13) reads as(
c11 c12
c21 c22

)
︸ ︷︷ ︸

C=B2

− α

(
b11 b12
b21 b22

)
︸ ︷︷ ︸

B

= −β

(
1 0
0 1

)
. (29)

From the first and last matrix elements of (29), we have

c11 − α b11 = −β = c22 − α b22. (30)

If b11 ̸= b22, we calculate

α =
c11 − c22

b11 − b22
. (31)

However, if b11 = b22, we can solve for α considering the second matrix element in (29).
Therefore, if b11 = b22 and b12 ̸= 0,

c12 − α b12 = 0 ⇒ α =
c12

b12
. (32)

Nevertheless, if b11 = b22 and b12 = 0, we can solve for α considering the third matrix
element in (29). Therefore, if b11 = b22, b12 = 0, and b21 ̸= 0,

c21 − α b21 = 0 ⇒ α =
c21

b21
. (33)

Nonetheless, if b11 = b22 ̸= 0, b12 = 0, and b21 = 0, matrix B is a scalar matrix, thus the
decomposition in (7) is trivial, for instance,
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B = b11 I ⇒


p = 0,
q = b11,

N =

(
0 0
0 0

)
.

(34)

Finally, if b11 = b22 = b12 = b21 = 0, the B matrix is the null matrix, thus the decomposition
is also trivial,

B =

(
0 0
0 0

)
⇒


p = 1,
q = 0,

N =

(
0 0
0 0

)
.

(35)

Once α is calculated, we have from (30)

β = α b11 − c11. (36)

Now, according to (14), we have

α = 2q + p,

β = q(p + q),

that can be solved as

q =
α ±

√
α2 − 4β

2
, (37)

p = α − 2q.

Therefore, from (7), the idempotent matrix is

N =
1
p
(B − q I). (38)

Note that from (37), we may obtain two different decompositions. It will be remembered
that if p = 0, the decomposition is not possible, since N does not exist, according to (38). In
summary, we have proved the following result. If B admits an idempotent decomposition,
(i.e., B = p N + q I, where N is an idempotent matrix), we calculate the parameters p and q
of such a decomposition from the matrix elements of B. However, if the calculation of p
yields p = 0, and B is not a scalar nor a null matrix, such a decomposition is not possible.

3.2. Involutive Decomposition

For the involutive case, (13), taking into account (15), reads as(
c11 c12
c21 c22

)
︸ ︷︷ ︸

B2=C

− 2q︸︷︷︸
α

(
b11 b12
b21 b22

)
︸ ︷︷ ︸

B

= −
(

q2 − p2
)

︸ ︷︷ ︸
β

(
1 0
0 1

)
︸ ︷︷ ︸

I

, (39)

thus we can apply the same result as before for α and β (recalling that B is different from a
scalar matrix or a null matrix). Thereby,

α =


c11 − c22

b11 − b22
, b11 ̸= b22,

c12

b12
, b11 = b22, b12 ̸= 0,

c21

b21
, b11 = b22, b12 = 0, b21 ̸= 0,

(40)

and
β = α b11 − c11. (41)
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When B is a scalar matrix, the decomposition is trivial, thereby for t ̸= 0,

B = t
(

1 0
0 1

)
⇒


p = 0,
q = t,

N =

(
0 0
0 0

)
.

(42)

Also, when B is the null matrix, the decomposition is trivial as well,

B =

(
0 0
0 0

)
⇒


p = 1,
q = −1,

N =

(
1 0
0 1

)
.

(43)

According to (15), we have

q =
α

2
,

p = ±
√

q2 − β, (44)

and the involutive matrix is given by

N =
1
p
(B − q I). (45)

Note that from (44) we may obtain two different decompositions. It will be remembered
that if p = 0, the decomposition is not possible, since N does not exist, according to (45).

Theorem 4. If a matrix B ∈ M2(C) cannot be decomposed as B = p N + q I, where p, q ∈ C;
I, N ∈ M2(C), being N an idempotent or involutive matrix, and I the identity matrix, then B is
of the form

B = a I + H, a ∈ C, (46)

where H ∈ M2(C) is a non-null nilpotent matrix with index 2.

Proof. As previously mentioned, the idempotent or involutive decomposition is not possi-
ble when p = 0 in (38) or (45), respectively. According to (37) and (44), the latter occurs
when α2 − 4β = 0 → α = ±2

√
β. Consequently, according to (29) or (39), B has to satisfy

B2 ∓ 2
√

β B = −β I →
(

B ∓
√

β I
)2

= 0. (47)

Therefore, B ∓
√

β I is a nilpotent matrix with index 2, so that we have the following cases:

• B ∓
√

β I = 0, thus B = ±
√

βI is a scalar matrix. However, according to (34) and (42),
this case is an exception in both decompositions, where p = 0, but the decomposition
is possible.

• B ∓
√

β I = H, where H is a non-null nilpotent matrix with index 2. This is the case
given by (46), as we wanted to prove.

3.3. Nilpotent Decomposition

According to Theorem 4, if B does not admit an idempotent nor involutive decompo-
sition, then B admits a nilpotent decomposition. In this case, from (8) we have
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B − q I = H

⇒ B2︸︷︷︸
C

− 2q︸︷︷︸
α

B = − q2︸︷︷︸
β

I. (48)

Note that if H is the null matrix (thus nilpotent with index 2), then B = q I, i.e., a scalar
matrix, so that the decomposition can be obtained by using the idempotent or the involutive
decomposition. Consequently, we will consider that H is a non-null nilpotent matrix with
index 2. Also, note that H cannot be a scalar matrix since scalar matrices are not nilpotent.
In summary, since B = H + qI , we determine that B is not a scalar nor a null matrix.
Therefore, α and β can be calculated with (40) and (41), and, according to (48), we have

q =
α

2
,

where
α2 − 4β = 0.

Remark 3. Note that this method generalizes the methods given in the existing literature to solve
the square root of a matrix [14], i.e., the equation X2 = B. Unlike the square root of a scalar, the
square root of a matrix may not exist. For example, we may verify with the proposed heuristic
algorithm that the nilpotent matrix with index 2:

B =

(
0 1
0 0

)
,

has no square root, in agreement with [15]. It is worth noting that the diagonalization method does
not yield any solutions either. However, the diagonalization method does not clarify if X exists or
not. Also, the interpolation method yields a “division by zero” error.

3.4. Singular Case: Infinite Number of Solutions

As was mentioned in Example 5, if B is a scalar matrix, then B admits infinite ways
of idempotent or involutive decompositions. However, following the method described
above, all these decompositions yield “trivial” solutions. Nevertheless, according to the
Cayley–Hamilton theorem, if the order of the matrices equals the degree of the polynomial
matrix equation, i.e., n = m, there are infinite solutions. Next, we calculate all these
solutions for the case n = m = 2. For this purpose, consider the quadratic polynomial
equation (thus a2 ̸= 0):

a1X + a2X2 = p I

⇒ X2 +
a1

a2
X − p

a2
= 0. (49)

The characteristic polynomial of matrix X is

p(λ) = |X − λI| = λ2 − tr(X)λ + |X|.

According to the Cayley–Hamilton theorem

X2 − tr(X)X + |X|I = 0. (50)

Consider

X =

(
a b
c d

)
,
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and compare (49) with (50), to obtain

a + d = − a1

a2
:= α, (51)

ad − bc = − p
a2

:= β. (52)

Multiply (51) by −d and add the result to (52) to arrive at

d2 − αd + bc + β = 0

⇒ d =
α ±

√
α2 − 4(bc + β)

2
. (53)

According to (51) and (53), we obtain

a = d − α =
α ∓

√
α2 − 4(bc + β)

2
.

Finally, we obtain the following infinite set of solutions:

X =

( 1
2 (α ∓ ∆) b

c 1
2 (α ± ∆)

)
, b, c ∈ C, (54)

where

α = − a1

a2
, β = − p

a2
, (55)

∆ =
√

α2 − 4(bc + β). (56)

We can generalize the above result for singular polynomial equations of the form(
a0 I + a1X + a2X2

)k
= q I, (57)

where k = 1, 2, . . . Notice that (57) can be reduced to (49) as follows

a1X + a2X2 =
(

q1/k − a0

)
︸ ︷︷ ︸

p

I,

where now we have k different solutions for p = q1/k − a0.

Example 6. Calculate the square root of the identity matrix of order n = 2.

We have to solve the polynomial matrix equation

X2 = B =

(
1 0
0 1

)
.

According to Theorem 1, we obtain two “trivial” solutions:

X = ±
(

1 0
0 1

)
. (58)

However, according to the method described above, we obtain

X =

(
±
√

1 − bc b
c ∓

√
1 − bc

)
, ∀b, c ∈ C. (59)
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Note that the regular solutions obtained in (58) are not contained in (59). When performing
100 tests, the diagonalization and interpolation methods compute the solution in similar
times on average. However, it is worth noting that the diagonalization and interpolation
methods do not calculate the singular solutions (59).

Example 7. Calculate the solutions of the polynomial matrix equation of order n = 2

2X2 + X4 = 3I. (60)

Note that (60) can be rewritten as(
I + X2

)2
= I + 2X2 + X4 = 4I, (61)

thus

I + X2 = ±2I → X2 =

{
I,

−3I.
(62)

Therefore, according to the method described above, the singular solutions of (62) are
∀b, c ∈ C

X =


(

±
√

1 − bc b
c ∓

√
1 − bc

)
,(

±
√
−3 − bc b

c ∓
√
−3 − bc

)
,

and the regular ones are

X ∈
{
±
(

1 0
0 1

)
, ±i

( √
3 0

0
√

3

)}
. (63)

Again, the diagonalization and the interpolation methods calculate the regular solutions,
but not the singular ones. Moreover, the interpolation method provides a slight compu-
tational error in the two last regular solutions of (63). After 10 tests, the computational
performance between the diagonalization and the heuristic methods is quite similar on
average. Nonetheless, the interpolation method is ≈12 times slower on average than the
heuristic method. This is quite significant since the interpolation method does not provide
any of the singular solutions, as mentioned before.

3.5. General Case

According to the above Sections, we propose the following procedure to solve a
polynomial matrix equation

a1X + a2X2 + · · ·+ amXm = B (64)

of order n = 2:

• Attempt the decomposition B = p N + q I, where N is an idempotent or an involutive
matrix, according to Section 3.1. If the decomposition is successful, apply Theorem 1
(if N is idempotent), or Theorem 2 (if N is involutive), in order to solve (64).

• If the idempotent or the involutive decomposition is not successful, then perform the
decomposition B = H + q I (being H a nilpotent matrix with index 2) according to
Section 3.3. Apply Theorem 3 to solve (64).

• Check if there are singular cases, i.e., a polynomial equation of the form(
a0 I + a1X + a2X2

)k
= q I.
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If this is so, we have an infinite number of extra-solutions. This algorithm has been
coded in MATLAB, and it is available at https://shorturl.at/oHN15 (accessed on 19
March 2024).

Despite the fact that this algorithm has been developed for polynomial matrix equa-
tions with scalar coefficients, i.e., (6), we can use it when this is not the case. To illustrate
this, consider the following example.

Example 8. Solve the following polynomial matrix equation

X3 −
(

2 −1
0 2

)
X +

(
1 −1
0 1

)
= 0. (65)

The diagonalization method yields only the following diagonal solutions:

X =

(
1 0
0 1

)
,

( √
5−1
2 0
0 1

)
,

(
−

√
5+1
2 0

0 1

)
.

However, we can obtain other solutions with the heuristic method. Indeed, define

B =

(
1 −1
0 1

)
,

to rewrite (65) as
X3 − (B + I)X + B = 0, (66)

Now, recast (66) as follows

X3 − (B + I)X + B + I = I

⇒ X3 + (B + I)(I − X) = I

⇒ B + I =
(

I − X3
)
(I − X)−1. (67)

Now, apply the partial sum of a matrix geometrical series, which is given by

S = I + X + X2 + · · ·+ Xn =
(

I − Xn+1
)
(I − X)−1,

thus (67) reduces to
B = X + X2. (68)

Applying the heuristic method, we obtain two new non-diagonalizable solutions:

X ∈
{(

− 1+
√

5
2

√
5

5

0 − 1+
√

5
2

)
,

( √
5−1
2 −

√
5

5

0
√

5−1
2

)}
. (69)

Solving (68) with the interpolation method, we obtain the same set of solutions given in (69).

4. Conclusions

We have derived a heuristic method to solve polynomial matrix equations,
i.e., a1X + a2X2 + · · · + amXm = B, where the coefficients ak are scalars and X, B are
square matrices of order n, as long as B admits an idempotent, involutive, or nilpotent
decomposition. Whenever this decomposition is possible, we have described an algorithm
to find it. Moreover, we have proved that this decomposition is always possible when
B ∈ M2(C). Also, for square matrices of order n = 2, we have described an algorithm that
calculates solutions. Further, the algorithm has the capacity to determine the nonexistence
of the solution. In addition, when B is a scalar matrix, and n = 2, the algorithm computes
singular solutions (i.e., infinite sets of solutions), if any exist.

https://shorturl.at/oHN15
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We have compared the proposed heuristic method with other methods found in the
existing literature, such as the diagonalization and interpolation methods. It turns out
that the heuristic method is usually considerably faster than the diagonalization or the
interpolation methods (see Examples 1, 3, and 4). Also, when the diagonalization method
fails (see Example 4 and Remark 3), we do not know if the solution does not exist, or the
solution is not diagonalizable. Further, the interpolation method sometimes fails with
a “division by zero” error (see Example 2 and Remark 3), and we do not know whether
the solution exists or not. Consequently, we have shown some examples for which the
proposed heuristic method is able to compute solutions, even though the diagonalization
or the interpolation methods fail. Moreover, the diagonalization and interpolation methods
are not able to compute singular solutions, as the heuristic method does for n = 2 (see
Examples 6 and 7). The best strength of the diagonalization method is its ability to find
solutions of (1) when Ak are not scalar matrices, unlike the interpolation or the heuristic
methods. However, Example 8 shows how to compute non-diagonalizable solutions with
the proposed heuristic method when some of the coefficients in the polynomial matrix
equation are not scalar matrices.

In a future study, the intention is to prove if the proposed algorithm provides all the
possible solutions for n = 2. Finally, it is worth noting that all the examples have been
computed by using a MATLAB code available at https://shorturl.at/oHN15 (accessed on
19 March 2024).
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7. Lakić, S. On the computation of the matrix k-th root. ZAMM-J. Appl. Math. Mech. 1998, 78, 167–172. [CrossRef]
8. Gohberg, I.; Lancaster, P.; Rodman, L. Quadratic matrix polynomials with a parameter. Adv. Appl. Math. 1986, 7, 253–281.

[CrossRef]
9. Gohberg, I.; Lancaster, P.; Rodman, L. Matrix Polynomials; Springer: Berlin/Heidelberg, Germany, 2005.
10. Kratz, W.; Stickel, E. Numerical solution of matrix polynomial equations by Newton’s method. IMA J. Numer. Anal. 1987,

7, 355–369. [CrossRef]
11. Fuchs, D.; Schwarz, A. matrix Vieta theorem. arXiv 1994, arXiv:math/9410207.
12. Petraki, D.; Samaras, N. Solving the n-th degree polynomial matrix equation. J. Interdiscip. Math. 2021, 24, 1079–1092. [CrossRef]
13. Biggs, N. Algebraic Graph Theory; Cambridge University Press: Cambridge, UK, 1993; p. 67.
14. Deadman, E.; Higham, N.J.; Ralha, R. Blocked Schur algorithms for computing the matrix square root. In Proceedings of the

International Workshop on Applied Parallel Computing, New Orleans, LA, USA, 26 February 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 171–182.

15. Björck, Å.; Hammarling, S. A Schur method for the square root of a matrix. Linear Algebra Its Appl. 1983, 52, 127–140. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://shorturl.at/oHN15
http://doi.org/10.1023/A:1007373114601
http://dx.doi.org/10.1016/S0024-3795(01)00426-8
http://dx.doi.org/10.1016/S0024-3795(01)00341-X
http://dx.doi.org/10.1137/050624790
http://dx.doi.org/10.1016/j.laa.2004.02.010
http://dx.doi.org/10.13001/1081-3810.1071
http://dx.doi.org/10.1002/(SICI)1521-4001(199803)78:3<167::AID-ZAMM167>3.0.CO;2-R
http://dx.doi.org/10.1016/0196-8858(86)90036-9
http://dx.doi.org/10.1093/imanum/7.3.355
http://dx.doi.org/10.1080/09720502.2019.1706863
http://dx.doi.org/10.1016/0024-3795(83)90010-1

	Introduction
	Polynomial Matrix Equations of Arbitrary Order
	The Heuristic Decomposition
	Idempotent Case
	Involutive Case
	Nilpotent Case

	Polynomial Matrix Equation of Order 2
	Idempotent Decomposition
	Involutive Decomposition
	Nilpotent Decomposition
	Singular Case: Infinite Number of Solutions
	General Case

	Conclusions
	References 

