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Abstract: Modal logic S5, which isan important knowledge representation and reasoning paradigm,
has been successfully applied in various artificial-intelligence-related domains. Similar to the random
propositional theories in conjunctive clause form, the phase transition plays an important role in
designing efficient algorithms for computing models of propositional S5 theories. In this paper, a
new form of S5 formula is proposed, which fixes the number of modal operators and literals in the
clauses of the formula. This form consists of reduced 3-3-S5 clauses of the form l1 ∨ l2 ∨ ξ, where ξ

takes the form □(l3 ∨ l4 ∨ l5), ♢(l3 ∧ l4 ∧ l5), or a propositional literal, and li (1 ≤ i ≤ 5) is a classical
literal. Moreover, it is demonstrated that any S5 formula can be translated into a set of reduced 3-3-S5
clauses while preserving its satisfiability. This work further investigates the probability of a random
3-c-S5 formula with c = 1, 2, 3 being satisfied by random assignment. In particular, we show that the
satisfiability threshold of random 3-1-S5 clauses is − ln 2

(1−Pd−Ps) ln 7
8 +Ps ·ln 3

4
, where Ps and Pd denote the

probabilities of different modal operators appearing in a clause. Preliminary experimental results on
random 3-1-S5 formulas confirm this theoretical threshold.

Keywords: modal logic; phase transition; satisfiability

MSC: 03B45

1. Introduction

Phase transition, which is a special process of transition between two distinct phases of
a system, is a common phenomenon in thermodynamics, chemistry, biological systems and
other related fields [1].

In the field of theoretical computing, phase transition has been observed in many NP-
hard problems, such as the k-satisfiability problem (k-SAT) [2]. Let N be the total number of
propositional variables and M the number of clauses in a k-SAT instance. Kirkpatrick et al.
provided an annealed estimate of the threshold for random k-SAT, with α = 2k ln 2, where
α represents the ratio of M to N [3]. That is, when α = 2kln2, the k-SAT problem changes
from satisfiable to unsatisfiable, while it is intractable to determine whether the formula
is satisfiable if we are not aware of this phase transition beforehand. This also means that
when α < 2kln2, almost all k-SAT instances can be solved in polynomial time, while when
α > 2kln2, almost all k-SAT instances are difficult to solve.

Based on this, Xu Daoyun et al. [4] considered the occurrences of variables as factors
influencing the phase transition in the SAT problem and further investigated the impact
of positive and negative literals on it [5]. This has significantly advanced the research on
phase transitions in the SAT problem [6,7].

In nonmonotonic reasoning, Xu Ke et al. demonstrated the existence of phase transi-
tions in the random Constraint Satisfaction Problem (CSP) and provided the corresponding
transition thresholds [8]. In the field of answer set programming (ASP), Wang Kewen et al.
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used the correspondence between the existence of answer sets for negative 2-literal pro-
grams and the “kernel” as the theoretical basis for reasoning and proved the existence of
phase transition and the corresponding transition threshold in ASP [9].

Modal logic has been applied in numerous fields such as database theory [10], formal
verification [11], distributed computing [12], and game theory [13]. However, to the best
of our knowledge, there is currently no quantitative evaluation of the phase transition
phenomenon of the satisfiability problem in modal logic. The first conjectureof a phase
transition phenomenon in modal logic, similar to the one already known for SAT and other
NP-hard problems, is proposed in the work of Giunchiglia et al. [14].

Modal logic S5, which has recently been used extensively in knowledge compila-
tion [15], contingent planning [16], and epistemic planners [17], is an important formalism
for epistemic reasoning in agent domain, and its satisfiability problem is NP-complete [18].
There are several kinds of excellent algorithms to solve this problem, such as sequent
calculus [19], tableaux methods [20], natural deduction [21], resolution methods [22], graph
coloring [23], and encoding in ASP [24]. However, these algorithms also face challenges
when computing complex S5 formulas, such as slow computation or inability to compute.

In the contemporary era dominated by large-scale models, including artificial in-
telligence and formal verification, the imperative to manage vast volumes of data and
intricate logical relationships is becoming increasingly pronounced. Yet, the computational
intricacy inherent in the existing S5 model frequently results in substantial time and re-
source consumption when addressing these challenges, thereby constraining the scalability
and efficacy of applications. Consequently, enhancing the computational efficiency of the
S5 model holds the potential to expedite research and applications across domains like
artificial intelligence and formal verification, catalyzing advancements and innovations
in technology.

Exploring the phase transition phenomenon of the satisfiability problem in S5 (S5-SAT)
can provide further insights into the reasons behind these issues. However, conventional
studies on satisfiability phase transitions often concentrate on specific form. For instance,
in the investigation of satisfiability phase transitions in random k-SAT, the primary focus
lies on the k-CNF (conjunctive normal form). Within the domain of modal logic S5, the
quintessential form, the MCNF (modal conjunctive normal form), displays a variable clause
structure, wherein the number of modal operators and literals remains unspecified. This
implies that solving its satisfiability phase transitions is impossible. Consequently, there
arises a need to propose a paradigm conducive to researching satisfiability phase transitions
in S5, which forms the central focus of this paper: the 3-c-S5 formula.

In this paper, we analyze the phase transition phenomenon of S5-SAT quantitatively.
The major contributions of this paper are as follows:

• It proves that any S5 formula can be translated into a reduced 3-c-S5 formula, which is
proposed in this paper as a new form of S5 formula maintaining the satisfiability.

• It shows that the frequency of modal operators occurring in each reduced k-S5 clause
is a key factor affecting the phase transition in a random reduced k-S5 formula.

• It presents the phase transition threshold, i.e.,

α =
− ln 2

(1− Pd − Ps) ln 7
8 + Ps · ln 3

4

where Ps, Pd are the probability of □ and ♢ occurring in a random reduced 3-1-S5 clause,
and α represents the ratio of clause quantity to atom quantity in a random 3-1-S5 formula,
and its correctness has been proved with a large number of random experimental results
which are consistent with this result.

2. Preliminaries

In this section, we shall give definitions and important results that are helpful in
solving the problem.
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2.1. Modal Logic S5

LetA be a set of propositional atoms and L be the set of modal S5 formulas. A formula
φ ∈ L is defined as follows:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | ♢φ

where ⊤ denotes a propositional constant that represents a tautology, p ∈ A, and ♢ is the
modal operator “possibly”. The logical operators→ and ∨, as well as the modal operator
□ (“necessary”), can be defined similarly. In particular, the formula for □φ is defined as
¬♢¬φ. We denote Var(φ) as the set of atoms appearing in φ.

A Kripke structure is a triple S = (W, R, L), where:

• W is a nonempty set of states,
• R ⊆W ×W is a state transition relationship on W,
• L : W → 2A is a labeling function that maps each state s ∈W into a subset of A.

A Kripke interpretation, called K-interpretation, is a tuple M = (S, w) with w ∈ W.
Recall that the state transition relationship R is an equivalence relation on W in S5. In this
case, a K-interpretation is reduced to M = (W, w) [25], where W denotes a set of all possible
worlds, each world is a set of propositions, and w ∈W is referred to as the actual world.

Let φ be an S5 formula and (W, w) be a K-interpretation. The relation (W, w) |= φ,
called (W, w) satisfies φ and is recursively defined as follows:

(W, w) |= ⊤
(W, w) |= p iff p ∈ w, where p ∈ A
(W, w) |= ¬φ iff (W, w) ̸|= φ

(W, w) |= φ1 ∧ φ2 iff (W, w) |= φ1 and (W, w) |= φ2

(W, w) |= ♢φ iff ∃w′ ∈W s.t. (W, w′) |= φ

For a given formula φ, if there is a K-interpretation (W, w) such that (W, w) |= φ, then
φ is said to be satisfiable, and we call (W, w) a model of φ. The problem of determining
whether an S5 formula is satisfiable is called the S5 satisfiability problem, denoted as S5-SAT.
For convenience, let Mod(φ) denote the set of models of the formula φ. We use Σ to denote∧

φ∈Σ φ whenever Σ is a finite set of formulas. If Mod(φ) ⊆ Mod(ψ), then φ logically
implies ψ, denoted as φ |= ψ. Moreover, φ is equivalent to ψ, denoted as φ ≡ ψ, whenever
Mod(φ) = Mod(ψ). If φ is satisfiable iff ψ is, then we call φ and ψ are equisatisfiable, denoted
as φ∼ψ.

In modal logic S5, a concept similar to the conjunctive normal form (CNF) in classical
propositional logic (PL) is the modal conjunctive normal form (MCNF) [26], which is the
conjunction of S5 clauses in the following form:

φ0 ∨♢φ1 ∨□φ2 ∨ · · · ∨□φn (1)

where φi (0 ≤ i ≤ n) are PL formulas, and any φi, including its preceding modal operators,
may be missing.

Next, we introduce a method that can convert S5-SAT to SAT, which will make it more
convenient to calculate the probability of random S5 instances being satisfied.

2.2. From S5-SAT to SAT

Caridroit and Goranko showed that an S5 formula is satisfiable if and only if a corre-
sponding propositional formula is satisfiable [27]. The corresponding propositional formula
for a given S5 formula is obtained according to the following translation function tr.
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Definition 1 (Translation function tr [27]). Let φ, θ ∈ L, p and pi be atoms and n be a
positive integer.

tr(φ, n) = tr′(φ, 1, n)

tr′(p, i, n) = pi tr′(¬p, i, n) = ¬pi

tr′((φ ∨ · · · ∨ θ), i, n) = tr′(φ, i, n) ∨ · · · ∨ tr′(θ, i, n)

tr′((φ ∧ · · · ∧ θ), i, n) = tr′(φ, i, n) ∧ · · · ∧ tr′(θ, i, n)

tr′(□φ, i, n) =
n∧

j=1

(tr′(φ, j, n)) tr′(♢φ, i, n) =
n∨

j=1

(tr′(φ, j, n))

It was shown that a formula φ is satisfiable if and only if tr(φ, n) is with sufficient
n. In particular, n can be nm(φ) + 1 [18] or dd(φ) + 1 [27], where nm(φ) is the number of
modalities occurring in φ, and dd(φ) is recursively defined below:

dd(⊤) = dd(¬⊤) = dd(p) = dd(¬p) = 0,

dd(φ ∧ ψ) = dd(φ) + dd(ψ), dd(□φ) = dd(φ),

dd(φ ∨ ψ) = max(dd(φ), dd(ψ)), dd(♢φ) = 1 + dd(φ).

3. The Satisfiability Threshold of Random Reduced 3-S5 Formulas

In this section, we prove that any S5 formula φ can be transformed into a reduced
3-S5 formula (defined below) ψ in such a way that its satisfiability is preserved, i.e., φ is
satisfiable if and only if ψ is.

The study of satisfiability phase transitions typically focuses on specific paradigms,
such as the CNF in propositional logic, or the negative two-literal logic program in answer
set programming. However, in classical modal logic, the number of modal operators and
literals in the clauses of the modal conjunctive normal form (MCNF) is variable, making it
unsuitable for phase transition research. Therefore, the introduction of the reduced 3-S5
formula is necessary.

3.1. Reduced k-S5 Formulas

Recall that a literal is an atom p or its negation ¬p. A clause is a disjunction of literals.
A term is a conjunction of literals. A modal clause is of the form □β or ♢γ where β is a clause
and γ is a term. A reduced k-S5 clause is of the form

l1 ∨ · · · ∨ lk−1 ∨ ζ (2)

where li (1 ≤ i ≤k−1) are literals, and ζ is either a literal or a modal clause. A reduced k-S5
clause of form (2) is called a reduced k-c-S5 clause if ζ contains c literals when ζ is a modal
clause or a literal. A reduced k-S5 (resp. k-c-S5) formula is a conjunction of reduced k-S5 (resp.
k-c-S5) clauses.

To prove that any S5 formula can be transformed into a reduced 3-S5 formula, the
following theorem needs to be applied:

Lemma 1. Let φ, ψ be S5 formulas and p be a fresh atom not occurring in φ ∨ ψ. We have that
φ ∨ ψ is satisfiable iff (φ ∨ p) ∧ (ψ ∨ ¬p) is satisfiable.

Proof. (⇐) It is evident since (φ ∨ p) ∧ (ψ ∨ ¬p) |= φ ∨ ψ.
(⇒) φ ∨ ψ is satisfiable
⇒ (W, w) |= φ ∨ ψ for some (W, w)
⇒ (W, w) |= φ or (W, w) |= ψ.

In the case (W, w) |= φ, we have

(W ′, w′) |= (φ ∨ p) ∧ (¬p ∨ ψ)
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where w′ = w \ {p} and W ′ = W ∪ {w′}. Similarly, when (W, w) |= ψ, we have

(W ′′, w′′) |= (φ ∨ p) ∧ (¬p ∨ ψ)

where w′′ = w ∪ {p} and W ′′ = W ∪ {w′′}.
Thus, (φ ∨ p) ∧ (ψ ∨ ¬p) is satisfiable.

In fact, φ ∨ ψ is a result of forgetting p from (φ ∨ p) ∧ (ψ ∨ ¬p) [25,28]. With this
theorem, it is possible to prove that any MCNF formula can be translated into a reduced
3-S5 formula while preserving satisfiability consistency.

Proposition 1. For any S5 formula ψ, there is a set Σ of reduced 3-S5 clauses such that ψ is
satisfiable if and only if Σ is satisfiable.

Proof. Suppose that

φ ≡
∧

1≤j≤m
αj, ψ ≡

∨
1≤j≤t

γj, φi ≡
∧

1≤j≤mi

β
j
i (1 ≤ i ≤ n)

where αj (1 ≤ j ≤ m) and β
j
i (1 ≤ i ≤ n, 1 ≤ j ≤ mi) are clauses; and γj (1 ≤ j ≤ t) are

terms; and m,n,t and mi are both positive integers. Since every propositional formula φ
can be transformed into a 3-CNF (conjunctive normal form) or 3-DNF (disjunctive normal
form) formula while preserving its satisfiability, we further assume these clauses and terms
have at most 3 literals.

We have

φ ∨□φ1 ∨ · · · ∨□φn ∨♢ψ

≡
∧

1≤j≤m
αj ∨

∨
1≤i≤n

□
∧

1≤j≤mi

β
j
i

 ∨♢ ∨
1≤j≤t

γj

≡
∧

1≤j≤m
αj ∨

∨
1≤i≤n

 ∧
1≤j≤mi

□β
j
i

 ∨ ∨
1≤j≤t

♢γj

≡
∧

1≤j≤m

αj ∨
∧

1≤i≤n,1≤ji≤mi

(
□β

j1
1 ∨ · · · ∨□β

jn
n

)
∨

∨
1≤jt≤t

♢γjt


≡

∧
1≤j≤m

∧
1≤i≤n,1≤ji≤mi

αj ∨□β
j1
1 ∨ · · · ∨□β

jn
n ∨

∨
1≤jt≤t

♢γjt

.

where we use ∧
1≤i≤n,1≤ji≤mi

(
□β

j1
1 ∨ · · · ∨□β

jn
n

)
to express the following formula:

(□β1
1 ∨ · · · ∨□β1

n) ∧ · · · ∧ (□β1
1 ∨ · · · ∨□βmn

n )∧
· · · ∧
(□βm1

1 ∨ · · · ∨□β1
n) ∧ · · · ∧ (□βm1

1 ∨ · · · ∨□βmn
n ).

Let ({p1, . . . , pn} ∪ {q1, . . . , qt−1} ∪ {r1, r2}) be pairwise different fresh propositions
not occurring in ψ, viz., ({p1, . . . , pn} ∪ {q1, . . . , qt−1} ∪ {r1, r2}) ∩ (Var(Ψ)) = ∅ and
αj = l j

1 ∨ l j
1 ∨ l j

3, l j
1,l j

1,l j
3 are literals. By Lemma 1, we have

αj ∨□β
j1
1 ∨ · · · ∨□β

jn
n ∨♢γj1 ∨ · · · ∨♢γt is satisfiable

iff l j
1 ∨ l j

2 ∨ l j
3 ∨□β

j1
1 ∨ · · · ∨□β

jn
n ∨♢γj1 ∨ · · · ∨♢γt is satisfiable
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iff (l j
1 ∨ l j

2 ∨ r1) ∧ (¬r1 ∨ l j
3 ∨□β

j1
1 ∨ · · · ∨□β

jn
n ∨♢γj1 ∨ · · · ∨♢γt is satisfiable

iff (l j
1 ∨ l j

2 ∨ r1) ∧ (¬r1 ∨ l j
3 ∨ r2) ∧ (¬r2 ∨□β

j1
1 ∨ · · · ∨□β

jn
n ∨♢γj1 ∨ · · · ∨♢γt is satisfiable

iff (l j
1 ∨ l j

2 ∨ r1) ∧ (¬r1 ∨ l j
3 ∨ r2) ∧ (¬r2 ∨□β

j1
1 ∨ p1) ∧ (¬p1 ∨□β

j2
2 ∨ · · · ∨□β

jn
n ∨ ♢γ1 ∨

· · · ∨♢γt) is satisfiable
iff (l j

1 ∨ l j
2 ∨ r1)∧ (¬r1 ∨ l j

3 ∨ r2)∧ (¬r2 ∨□β
j1
1 ∨ p1)∧ (¬p1 ∨□β

j2
2 ∨ p2)∧ (¬p2 ∨□β

j3
3 · · · ∨

□β
jn
n ∨♢γ1 ∨ · · · ∨♢γt) is satisfiable

iff (l j
1 ∨ l j

2 ∨ r1) ∧ (¬r1 ∨ l j
3 ∨ r2) ∧ (¬r2 ∨ □β

j1
1 ∨ p1) ∧

∧
1≤j≤n−1(¬pj ∨ □β

jj+1
j+1 ∨ pj+1) ∧

(¬pn ∨♢γ1 ∨ · · · ∨♢γt) is satisfiable

iff (l j
1 ∨ l j

2 ∨ r1) ∧ (¬r1 ∨ l j
3 ∨ r2) ∧ (¬r2 ∨ □β

j1
1 ∨ p1) ∧

∧
1≤j≤n−1(¬pj ∨ □β

jj+1
j+1 ∨ pj+1) ∧

(¬pn ∨♢γ1 ∨ q1) ∧ (¬q1 ∨♢γ2 ∨ · · · ∨♢γt) is satisfiable

iff (l j
1 ∨ l j

2 ∨ r1) ∧ (¬r1 ∨ l j
3 ∨ r2) ∧ (¬r2 ∨ □β

j1
1 ∨ p1) ∧

∧
1≤j≤n−1(¬pj ∨ □β

jj+1
j+1 ∨ pj+1) ∧

(¬pn ∨♢γ1 ∨ q1) ∧
∧

1≤j≤t−2(¬qj ∨♢γj+1 ∨ qj+1) ∧ (¬qt−1 ∨♢γt) is satisfiable.
This completes the proof.

In the following, we consider the satisfiable probability of random reduced 3-c-S5
formulas. The detailed random generation model is described in Algorithm 1 of Section 4.
The detailed random generation model is described in Algorithm 1 below.

Algorithm 1 generate a random reduced 3-S5 formula

Input: Pd: the probability of ♢ appearing in a modal clause,
Ps: the probability of □ appearing in a modal clause,
n: the number of atoms,
m: the number of clauses,
c: the number of literals occurring in modality.

Output: A 3-c-S5 formula φ
Let φ = ⊤;
Let L = {pi,¬pi | 0 ≤ i ≤ n− 1};

1: for j←1 to m do
2: Let q, r, x, y and z be five randomly chosen distinct literals from L;
3: Generator a random p∈ [0, 1];
4: if p ≤ Ps then
5: o ← □, ∗ ← ∨;
6: else if Ps < p ≤ Ps + Pd then
7: o ← ♢, ∗ ← ∧;
8: end if
9: if c == 1 and p ≤ Ps + Pd then

10: φ← φ ∧ (q ∨ r ∨ o x);
11: else if c == 2 and p ≤ Ps + Pd then
12: φ← φ ∧ (q ∨ r ∨ o (x ∗ y));
13: else if c == 3 and p ≤ Ps + Pd then
14: φ← φ ∧ (q ∨ r ∨ o (x ∗ y ∗ z));
15: else
16: φ← φ ∧ (q ∨ r ∨ x);
17: end if
18: end for
19: return φ;

Given a randomly generated 3-c-S5 formula Σ, we suppose that it has n variables and
m reduced 3-c-S5 clauses, and the probability that □ (resp., ♢) occurs in each reduced 3-c-S5
clause of Σ is Ps (resp., Pd). It is clear that 0 ≤ Ps + Pd ≤ 1. Now, in the reduced 3-c-S5
formula Σ, the overall number of (classical) clauses is m× (1− Ps − Pd), and the number of
reduced 3-c-S5 clauses mentioning □ (resp., ♢) is m× Ps (resp., m× Pd).
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Now, we translate Σ into a set of (classical) clauses ψ. Note that the overall number
of modalities occurring in Σ is m× (Pd + Ps), while dd(Σ) = m× Pd. Let z = m× Pd + 1.
Then, we have that Σ is satisfiable if and only if tr(Σ, z) is satisfiable.

Note that tr′(□(
∨c

t=1 lt), i, n)
=
∧

1≤j≤n tr′(
∨c

t=1 lt, j, n)
=
∧

1≤j≤n(
∨c

t=1 tr′(lt, j, n), j, n)
=
∧

1≤j≤n(
∨c

t=1 lt,j),
where lt are literals, and t and j are positive integers.

Similarly, we have tr′(♢(
∧c

t=1 lt)), i, n) =
∨

1≤j≤n(
∧c

t=1 lt,j)).

Proposition 2. The probability that a random 3-c-S5 formula Σ is satisfied by random assignment is(
7
8

)z1

×
[

1− 1
4

(
1−

(
1−

(
1
2

)c)z
)]z2

×
[

1− 1
4

(
1−

(
1
2

)c)z
]z3

(3)

where z = m× Pd + 1, z1 = m× (1− Pd − Ps), z2 = m× Ps, and z3 = m× Pd, n, m are the
number of atoms and 3-c-S5 clauses of Σ, Ps, Pd and are the probability of □ and ♢ occurring in
each 3-c-S5 clause of Σ.

Proof. For convenience, all probabilities in this proof are based on randomly assigning
assignments to the formulas to make them satisfiable.

(1) When a clause contains neither □ nor ♢ in Σ, meaning the disjunction of three
classical literals, there is only one assignment out of 23 assignments that would render it
unsatisfiable, specifically when all literals are false. Therefore, its satisfiability probability
is 7

8 .The probability of the random 3-c-S5 clauses which contain neither □ nor ♢ in Σ is
(7/8)z1 .

(2) Based on the previous discussion, it is evident that a random 3-c-S5 clause which
only contain ♢ in Σ can be translated into

∨
1≤j≤n(

∧c
t=1 lt,j)), where lt are literals, and t and

j are positive integers. Given that there are z2 such clauses, conjoining all z2 of these clauses
yields a satisfiability probability of[

1− 1
4

(
1−

(
1−

(
1
2

)c)z
)]z2

.

(3) Similarly, the probability of the random 3-c-S5 clauses which only contain □ in Σ is[
1− 1

4

(
1−

(
1
2

)c)z
]z3

.

Thus, the probability of Σ is satisfied with probability:(
7
8

)z1

×
[

1− 1
4

(
1−

(
1−

(
1
2

)c)z
)]z2

×
[

1− 1
4

(
1−

(
1
2

)c)z
]z3

.

3.2. The Satisfiability Threshold Analysis

We will research the satisfiability threshold by applying the first moment method
and the second moment method. Both of these methods require calculating the expected
number of satisfying models for a random reduced 3-S5 formula. Let X be the number of K-
interpretations which only include the atoms in a random reduced 3-c-S5 formula, Ω(X) be
the number of K-interpretations that satisfy a random reduced 3-c-S5 formula, E[Ω(X)] be
its expectation, and Pr be the satisfiability probability of a random reduced 3-c-S5 formula,
i.e., the Pr is the probability referred to in Proposition 2. Then, E[Ω(X)] = X · Pr.



Axioms 2024, 13, 241 8 of 15

Next, we will consider how to obtain the value of X. We know that a random reduced
3-c-S5 formula φ is satisfiable if and only if the propositional formula obtained using tr on
φ, i.e., tr(φ, dd(φ) + 1) is.

Given a reduced 3-1-S5 formula φ, let Var(φ) = p1, p2, · · · , pn, then □pi,□¬pi,♢pi,
♢¬pi (1 ≤ i ≤ n) are all modal clauses appearing in φ. We translate all literals and modal
literals appearing in φ into a set of classical clauses ψ. Let w = dd(φ) + 1, and according to
Definition 1,

tr(pi, w) = tr′(pi, 1, w) = pi1(1 ≤ i ≤ n),

tr(□pi, w) = tr′(□pi, 1, w) =
w∧

j=1

(tr′(pi, j, w)) =
w∧

j=1

pij

tr(♢pi, w) = tr′(♢pi, 1, w) =
w∨

j=1

(tr′(pi, j, w)) =
w∨

j=1

pij

Considering that □¬pi = ¬♢pi and ♢¬pi = ¬□pi, we can obtain

tr(□¬pi, w) = ¬
w∨

j=1

pij and tr(♢¬pi, w) = ¬
w∧

j=1

pij.

When w is sufficient and pij does not occur separately in other expressions, randomly
assigning assignments to pij, it is evident that

∧w
j=1 pij is almost unsatisfiable, and

∨w
j=1 pij is

almost satisfiable. Therefore, we can disregard them, so in 3-c-S5, the value of X corresponds
to the assignment of propositional atoms, which is 2n.

Constraint density [2], which is the ratio of the number of clauses m to the number of
atoms n in a reduced 3-S5 formula, i.e., α = m

n , is important to measure the critical threshold
for the phase transition of a random reduced 3-S5 formula. Subsequently, we will analyze
the property of satisfiability threshold in randomly generated reduced 3-S5 formulas.

Theorem 1. When α > − ln 2
(1−Pd−Ps) ln 7

8+Ps ·ln 3
4

, the random reduced 3-1-S5 formula is unsatisfiable

with high probability, where Ps, Pd is the probability of □ and ♢ occurring in a random reduced
3-1-S5 clause.

Proof. Recall that Ω(X) is the number of K-interpretations that satisfy the given reduced
3-S5 formula translated by tr with X number of K-interpretations, and then P[Ω(X) > 0]
denotes the satisfiability probability of the given formula. We have

P[Ω(X) > 0] = P[Ω(X) ≥ 1] ≤ E[Ω(X)]
1

(4)

When E[Ω(X)] ≤ 1, P[Ω(X) ≥ 1] will be less than 1. It implies that the formula is
unsatisfiable with high probability, which means that we obtain the critical threshold for
the satisfiability of a random reduced 3-c-S5 formula.

Let function g(α) = lnE[Ω(X)]
n . We know that g(α) and E share the same monotonicity,

and when E < 1, g(α) < 0 because E ≥ 0. For a random reduced 3-1-S5 formula, we know
that E[Ω(X)] = X · Pr. Therefore, we have

lnE[Ω(X)]
n

=
ln X + ln Pr

n

=

n ln 2 + z1 ln 7
8 + z2 ln

(
3
4 +

(
1
2

)z+2
)

n
+

z3 ln
(

1−
(

1
2

)z+2
)

n
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where z = m× Pd + 1, z1 = m× (1− Pd − Ps), z2 = m× Ps and z3 = m× Pd. When m is
sufficient, z is too. We can simplify the equation as:

lnE[Ω(X)]
n

≈
2n ln 2 + z1 ln 7

8 + z2 ln 3
4 + z3 ln 1

n

=
n ln 2 + m · (1− Pd − Ps) ln 7

8 + m · Ps · ln 3
4

n

= ln 2 + α

[
(1− Pd − Ps) ln

7
8
+ Ps · ln

3
4

]
Recall that g(α) ≈ lnE[Ω(X)]

n . There is

g(α) ≈ ln 2 + α

[
(1− Pd − Ps) ln

7
8
+ Ps · ln

3
4

]
g′(α) ≈ (1− Pd − Ps) ln

7
8
+ Ps · ln

3
4

≈ −1.335 + 1.335Pd + 1.047Ps

since Pd + Ps < 1, g′(α) < 0. Therefore, g(α) is monotonically decreasing. Further-
more, when α = − ln 2

(1−Pd−Ps) ln 7
8+Ps ·ln 3

4
, g(α) = 0. Hence, when α > − ln 2

(1−Pd−Ps) ln 7
8+Ps ·ln 3

4
,

g(α) < 0; that is, E[Ω(X)] < 1 . Combining this with Equation (4), when E[Ω(X)] <
1, P[Ω(X) ≥ 1] will be less than 1. According to this, we can conclude that when
α > − ln 2

(1−Pd−Ps) ln 7
8+Ps ·ln 3

4
, the random reduced 3-1-S5 formula is unsatisfiable with high

probability.

By using the first moment method, we have proved that when α > − ln 2
(1−Pd−Ps) ln 7

8+Ps ·ln 3
4

,

reduced 3-1-S5 formulas are highly unsatisfiable. Next, we will apply the second moment
method to prove that when α < − ln 2

(1−Pd−Ps) ln 7
8+Ps ·ln 3

4
, they are highly satisfiable.

Theorem 2. When α < − ln 2
(1−Pd−Ps) ln 7

8+Ps ·ln 3
4

, the reduced 3-1-S5 formula is highly satisfiable.

Proof. To prove this, the Chebyshev’s Inequality is referred to.
Chebyshev’s Inequality: Let X be a random variable with finite expectation E(X) and

variance Var(X). For any positive number ξ:

P(|X−E(X)| ≥ ξ) ≤ Var(X)

ξ2 (5)

Let Ω(X) be the number of K-interpretations that satisfy the given reduced 3-1-S5
formula with X number of K-interpretations. We have

P[Ω(X) = 0] ≤ P{|Ω(X)−E[Ω(X)]| ≥ E[Ω(X)]} ≤ Var[Ω(X)]
E2[Ω(X)]

(6)

When P[Ω(X) = 0] = 0, which means that P[Ω(X) ≥ 0] = 1, it indicates that the
random reduced 3-S5 formula has a a high probability of being satisfiable. If Var[Ω(X)] =
o(E2[Ω(X)]), then lim

X→∞
P[Ω(X) ≥ 0] = 1. That is, the random reduced 3-S5 formula has a

high probability of being satisfiable.
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Var[Ω(X)] =E[Ω2(X)]−E2[Ω(X)]

E[Ω2(X)] =E[(Ω1 + Ω2 + · · ·+ ΩX)
2]

=E
[

X

∑
i=1

Ω2
i + 2 ·E[ ∑

1≤i<j≤X
(Ωi ·Ωj)]

]

=
X

∑
i=1

E(Ω2
i ) + 2 ∑

1≤i<j≤X
E(Ωi) ·E(Ωj)

=
X

∑
i=1

[
02 × (1− Pr) + 12 × Pr

]
+ 2 ∑

1≤i<j≤X

[
02 × (1− Pr) + 12 × Pr

]2

=X · Pr + 2
(

2
X

)
· (2n − 1)(Pr)2

=X · Pr + X · (X− 1)(Pr)2

Var[Ω(X)]
E2[Ω(X)]

=
E[Ω2(X)]
E2[Ω(X)]

− E2[Ω(X)]
E2[Ω(X)]

=
E[Ω2(X)]
E2[Ω(X)]

− 1

When lim
X→∞

E[Ω2(X)]
E2[Ω(X)] = 1, lim

X→∞
P[Ω(X) ≥ 0] = 1. That is, the random reduced 3-1-S5

formulas have a high probability of being satisfiable.

E[Ω2(X)]
E2[Ω(X)]

=
X · Pr + X · (X− 1)(Pr)2

(X · Pr)2

=
1

X · Pr
+ 1 +

1
X

lim
X→∞

E[Ω2(X)]
E2[Ω(X)]

= lim
X→∞

1
X · Pr

+ 1

where X = 2n, m = α · n. If lim
X→∞

1
X·Pr = 0, we can obtain lim

X→∞
P[Ω(X) ≥ 0] = 1. That is

lim
n→∞

1

2n ·
( 7

8
)z1 ·

[
3
4 −

(
1
2

)z]z2
·
[
1− 1

4

(
1
2

)z]z3
= 0,

where z = m× Pd + 1, z1 = m× (1− Pd − Ps), z2 = m× Ps, and z3 = m× Pd, Ps, Pd is the
probability of □ and ♢ occurring in a random reduced 3-1-S5 clause. When m is sufficient,
z is too. We can simplify the formula:

lim
n→∞

1

2n ·
( 7

8
)m(1−Pd−Ps) ·

( 3
4
)m·Ps · 1m·Pd

= 0

⇒ lim
n→∞

1

2n ·
[( 7

8
)(1−Pd−Ps) ·

( 3
4
)Ps ·

(
1− 1

4

)Pd
]α·n = 0

In other words,
[( 7

8
)(1−Pd−Ps) ·

( 3
4
)Ps ·

(
1− 1

4

)Pd
]α

> 1
4 . After calculating,

α < − ln 2
(1−Pd−Ps) ln 7

8+Ps ·ln 3
4

. Thus, when α < − ln 2
(1−Pd−Ps) ln 7

8+Ps ·ln 3
4

, the reduced 3-1-S5 formula

has a high probability of being satisfiable. It also proves the correctness of the phase
transition threshold.
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Obviously, the phase transition threshold of the satisfiability of random reduced 3-S5
formulas is related to the frequencies of the two operators “possibly” and “necessarily”.
The phase transition threshold decreases monotonically as Ps decreases, and the phase
transition threshold increases monotonically as Pd increases.

4. Experiment

This part aims to validate the theoretical results obtained in the preceding sections. To
achieve this goal, we propose a random modal propositional S5-SAT instance generation
model to generate numerous reduced 3-S5 formulas, and then we solve those formulas by
the Modal logic S5 solver S5PY [24]. We observe a clear phase transition phenomenon and
validate the threshold of a reduced 3-S5 formula, which is given in the previous section.

4.1. Random Instance Generation Model for S5-SAT

To observe the phase transition phenomenon of satisfiability in modal propositional
S5-SAT, a random modal propositional S5-SAT instance generation model is essential. The
random k-SAT model is a basic and classical model, and its instance generation method is
relatively simple: when the clause length is k, n atoms can form Cn

k types of clauses, and
with the negative literals, 2k · Ck

n types of clauses can be generated. Then, uniformly and
independently select m clauses from them to form a k-CNF.

However, in modal propositional S5-SAT, we need to add two modal operators, □
and ♢, each with its own generation probability. Therefore, we need to consider the gener-
ation of random reduced 3-c-S5 formulas with different modal operators and different c
values for different probabilities. Algorithm 1 is used to generate random modal proposi-
tional reduced 3-S5 formulas.Algorithm 1 in Section 3 is used to generate random modal
propositional reduced 3-S5 formulas.

4.2. Experimental Results

In order to complement these theoretical insights with empirical findings, the S5PY
solver is used to analyzing the satisfiability of reduced 3-S5 formulas randomly generated
using Algorithm 1.

Let Ps and Pd be the probability of □ and ♢ occurring in a modal clause, respectively.
During the experiment, Pd and Ps in Algorithm 1 are in the range of [0.1, 0.5], and the
number of atoms n is taken as 20, 30, 50, or 80. The number of clauses m is equal to n, and
m is increased by 5 after generating every 80 instances of reduced 3-S5 formulas.

The dataset utilized in our study was exclusively generated by Algorithm 1. It is struc-
tured based on the number of atoms n, with variations in size and composition depending
on different values of c. Specifically, the dataset comprises three distinct experimental
groups corresponding to different values of c. Within each group, further categorization
is performed based on varying probabilities of generating modal operators. Due to the
varying values of the constraint density α associated with different c values when phase
transitions occur, the dataset sizes are adjusted accordingly. For instance, when c = 1, the
dataset size is defined as 192n, with n taking values of 20, 30, 50, and 80. Consequently,
with different probabilities of generating modal operators, this yields 103680 random 3-1-S5
formulas. Similarly, for c = 2, there are 120,960 random 3-2-S5 formulas, and for c = 3,
there are 207,360 random 3-3-S5 formulas.

The experimental results are shown in Figures 1–3. In these figures, the horizontal axis
represents the value of constraint density α, and the vertical axis represents the fraction
of unsatisfiable expressions ( f u), i.e., the proportion of unsatisfiable formulas in the total
number of instances.
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Figure 1. Threshold data for 3-1-S5 formulas where Ps, Pd ∈ [0.1, 0.5], n = 20 to 80. The trend of
threshold data for 3-1-S5 formulas for different Pd and Ps are shown in (a–c).The value of α at the
dotted lines represents the theoretical result.
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Figure 2. Threshold data for 3-2-S5 formulas where Ps, Pd ∈ [0.1, 0.5], n = 20 to 80. The trend of
threshold data for 3-2-S5 formulas for different Pd and Ps are shown in (a–c).
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Figure 3. Threshold data for 3-3-S5 formulas where Ps, Pd ∈ [0.1, 0.5], n = 20 to 80. The trend of
threshold data for 3-3-S5 formulas for different Pd and Ps are shown in (a–c).

In Figures 1–3, we show the variation in the fraction of unsatisfiable expressions of
formulas in random reduced 3-c-S5 formulas with c ∈ {1, 2, 3} and Pd, Ps ∈ {0.1, 0.3, 0.5},
respectively. The trends are presented as a function of the constraint density α.

According to these figures, we notice that the critical α value for the phase transition
is closely related to the values of Ps and Pd when the f u is fixed. In addition, the number
of literals following the modal operator is also one of the influencing factors. In Figure 1,
as Pd increases and Ps decreases, the phase transition threshold of random reduced 3-1-S5
formulas increases, e.g., α = 4.1 when Pd = 0.3 and Ps = 0.5, while α = 6.1 when Pd = 0.5
and Ps = 0.3 can be observed for the phase transition threshold of random reduced 3-1-S5
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formulas. This experimental result is consistent with the theoretical proof given in the
previous section.

Figures 2 and 3 illustrate the satisfiability phase transition phenomena for random
3-c-S5 formulas with c = 2 and c = 3, respectively. Due to the complexity in calculating
the total number of K-interpretations, only experimental results are available for their
theoretical phase transition values. Both figures clearly demonstrate the phase transition of
satisfiability, with the constraint density α increasing with the increase in c. Furthermore, it
can be observed that the lower bound for generating satisfiability phase transitions increases
with n. This suggests that the phase transition of satisfiability is not solely determined by
the ratio of clause to atom numbers, which may contribute to the difficulty in theoretically
calculating its satisfiability phase transition. This aspect will be explored further in future
research endeavors.

5. Discussion

Our study fills a gap in the research on satisfiability phase transitions within the field
of modal logic. By proposing the reduced 3-c-S5 formula, we offer a novel approach to
studying satisfiability phase transitions in modal logic, particularly in cases where the tra-
ditional paradigms like MCNF fall short due to their variable clause structures. Our results
demonstrate the feasibility of transforming any S5 formula into a 3-c-S5 formula while
maintaining satisfiability consistency, thus providing a valuable tool for researchers in this
domain. After focusing the study of satisfiability phase transitions of S5 on random reduce
3-c-S5, the utilization of first and second moment methods has led to the determination
of the satisfiability phase transitions of random reduced 3-1-S5 formulas. Experimental
validation of this threshold’s accuracy has filled a gap in research on satisfiability in modal
logic S5 regarding phase transitions, contributing to enhancing effective computation in
modal logic S5.

The current study has limitations in the calculation of satisfiability thresholds, which
have been exclusively focused on when c = 1. The expected number of models for c > 1
remains uncomputable presently, impeding the utilization of first and second moment
methods to determine their satisfiability thresholds. Future research will explore alternative
methods to address this issue.

6. Conclusions

In this paper, we proposed a new form of reduced 3-S5 formulas in modal logic S5.
Reduced 3-S5 formulas can fix the clause form of a modal propositional formula to at most
three forms. Consequently, this reduction significantly simplifies the investigation of the
phase transition phenomenon in modal logic S5. On the other hand, we proved that any
S5 propositional formula model can be translated to an equivalent reduced 3-S5 formula.
Based on this, used the function tr to convert random S5-SAT to random SAT and calculated
the satisfiable probability of random reduced 3-c-S5 formulas. Then, the first moment and
expected value methods were used to prove that α > − ln 2

(1−Pd−Ps) ln 7
8+Ps ·ln 3

4
, the random

reduced 3-1-S5 formula is high, and the probability is unsatisfiable. Using Chebyshev’s
Inequality, we proved that α < − ln 2

(1−Pd−Ps) ln 7
8+Ps ·ln 3

4
, and the random reduced 3-c-S5 formula

has a high probability of being satisfiable, where α is the ratio of the number of clauses m to
the number of atoms n in a reduced 3-1-S5 formula, and Pd and Ps represent the probabilities
of ♢ and □ appearing in a random 3-c-S5 clause, respectively. The experimental results
also confirm the phenomenon of phase transitions in random reduced 3-S5 formulas and
validate the correctness of the phase transition threshold for random 3-1-S5 formulas.

This paper has focused on determining the satisfiability threshold of random 3-c-S5
formulas but only provides the threshold for random 3-1-S5 formulas in theory. This
limitation arises from the current inability to accurately calculate the total number of K-
interpretations for 3-c-S5 formulas when c = 2 and c = 3. However, employing Kripke
semantics may offer a solution by providing more accurate counts of K-interpretations.
Another area for future research is investigating the impact of modal operators and literal
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frequencies on the satisfiability phase transition thresholds in random 3-c-S5 formulas.
Understanding this relationship could lead to phase transition thresholds being derived for
random 3-c-S5 formulas as a whole, rather than specific divisions of c.
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