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Abstract: We develop the concept of covariance for waves and show that it plays a fundamental role
in understanding the evolution of a propagating pulse. The concept clarifies several issues regarding
the spread of a pulse and the motion of the mean. Exact results are obtained for the time dependence
of the covariance between position and wavenumber and the covariance between position and group
velocity. We also derive relevant uncertainty principles for waves.
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1. Introduction

For waves governed by a linear differential equation of the form

Nx

∑
n=0

bn
∂nu
∂xn −

Nt

∑
n=0

an
∂nu
∂tn = 0 (1)

one substitutes eikx−iωt into Equation (1) to obtain [1–4] the dispersion relation

Nx

∑
n=0

bn(ik)n −
Nt

∑
n=0

an(−iω)n = 0 (2)

Generally, there is more than one solution to the dispersion relation, and the solutions
may be complex. Each solution is called a mode. In this paper, we deal with the propagation
of a single mode, and we write

ω = ω(k) (3)

Furthermore, we assume that ω(k) is real, which implies that there is no damping.
The solution to the wave equation for each mode is [1]

u(x, t) =
1√
2π

∫
S(k, 0) eikx−iω(k)t dk (4)

where S(k, 0) is the initial spatial spectrum, which is obtained from the initial pulse, u(x, 0) ,
by way of

S(k, 0) =
1√
2π

∫
u(x, 0) e−ikx dx (5)

If one defines the time-dependent spectrum, S(k, t), by [5–7]

S(k, t) = S(k, 0)e−iω(k)t (6)
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then u(x, t) and S(k, t) form Fourier transform pairs between x and k for all time

u(x, t) =
1√
2π

∫
S(k, t) eikx dk (7)

S(k, t) =
1√
2π

∫
u(x, t) e−ikx dx (8)

Our aim is to study the dynamics of the modes and, in particular, to study the concept
of covariance and uncertainty principles as they apply to wave propagation.

Because of the fact that u(x, t) and S(k, t) are Fourier transform pairs, one can calcu-
late averages in either the position representation or the k-representation. For example,
the moments of the pulse at time t are given by

⟨ xn ⟩t =
∫

x n|u(x, t)|2 dx (9)

but may also be calculated in the k-representation by way of

⟨ xn ⟩t =
∫

S∗(k, t)X n S(k, t) dk (10)

where the position operator, X , in the k-representation, is given by

X =− 1
i

∂

∂k
(11)

Similarly, the k moments

⟨ kn ⟩t =
∫

k n|S(k, t) |2 dk (12)

may be calculated by way of

⟨ kn ⟩t =
∫

u∗(x, t)Kn u(x, t) dx (13)

where K is the wavenumber operator in the position representation

K =
1
i

∂

∂x
(14)

Notation: Operators will be denoted by calligraphic letters. Commutators and
anticommutators are denoted by the usual notation,

[A,B] = AB −BA (15)

and
[A,B]+ = AB + BA (16)

respectively. Indefinite integrals imply integration from −∞ to ∞, unless otherwise noted.
Time-dependent moments, such as, for example, the mean, will be denoted as ⟨ x ⟩t. For the
case of time-dependent standard deviation for a quantity x, it will be denoted by σ2

x(t), and
similarly for the covariance.

2. Motion of Mean and Spread

In Appendix A, we show that the mean of a pulse propagates with constant velocity

⟨ x ⟩t = ⟨ x ⟩0 + Vt (17)
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where V is given by

V =
∫

∂W(k)
∂k

|S(k, 0)|2 dk (18)

We define, as standard, the group velocity, v(k), by

v(k) =
∂W(k)

∂k
(19)

The velocity, V, is the average of the group velocity at time zero,

V = ⟨v(k)⟩0 (20)

If we define the group velocity operator by v(K), then V may also calculate the velocity
in the position representation by way of

V =
∫

u∗(x, 0) v(K) u(x, 0) dx

Comments:
1. It should be noted that the group velocity, v(k), enters in a straightforward way,

namely in the calculation of ⟨ x ⟩t.
2. V not only depends on the group velocity, but also the initial spectrum. Thus, how

a medium is disturbed affects the velocity of propagation of the mean and other quantities.
The spread of the pulse is defined in the usual way

σ2
x(t) = ⟨ x2 ⟩t − ⟨ x ⟩2

t (21)

is calculated to be
σ2

x(t) = σ2
x(0) + 2 t Covxv(0) + t2σ2

v (0) (22)

where
Covxv(0) = 1

2 ⟨ vX +X v ⟩0 − ⟨v ⟩0⟨ x ⟩0 (23)

and σv is the standard deviation of the group velocity

σ2
v = ⟨ v2 ⟩ − V2 (24)

The properties and meaning of Covxv(0) will be discussed in the next section.

3. Covariance for Waves

In standard probability theory, the covariance between two random variables a and b
is given by

Covab = ⟨ab ⟩ − ⟨a⟩⟨ b ⟩ (25)

where ⟨ab ⟩ is the first mixed moment between a and b. An important property of covari-
ance is that

σ2
a σ2

b ≥ Cov2
ab (26)

where σa and σb are the standard deviations of a and b.
For the case of operators, we define the covariance by

Covab = 1
2 ⟨ AB + BA ⟩ − ⟨A ⟩⟨ B ⟩ (27)

and, when the quantities are time-dependent, we shall generally use the notation

Covab(t) = 1
2 ⟨ AB + BA ⟩t − ⟨A⟩t⟨ B ⟩t (28)
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Also, we define the first mixed moment by

⟨ ab ⟩t =
1
2 ⟨ AB + BA ⟩t =

1
2

∫
S∗(k, t)(AB + BA )S(k, t) dk (29)

To show that the operator definition of covariance, Equation (27), also satisfies
Equation (26), we consider the operator

C =A−cB (30)

where c is a real number. The standard deviation of C is

σ2
c = ⟨ C2 ⟩ − ⟨C ⟩2 (31)

= ⟨ (A−cB)2 ⟩ − ⟨A−cB ⟩2 (32)

which simplifies to

σ2
c = σ2

a + c2σ2
b − c((AB +AB)⟩ − 2c⟨ A ⟩⟨ B ⟩) (33)

Using the operator definition of Cov, Equation (27), we have

σ2
c = σ2

a + c2σ2
b − 2cCovab (34)

Now, we take

c =
Covab

σ2
b

(35)

and substitute it into Equation (34) to obtain

σ2
c =

σ2
a σ2

b − Cov2
ab

σ2
b

(36)

Since all the standard deviations are positive, we must have

σ2
a σ2

b ≥ Cov2
ab (37)

This shows that the operator definition of covariance, Equation (27), satisfies the
standard condition for covariance, Equation (26).

3.1. Covariance between Position and Group Velocity

For the first mixed moment of position and group velocity, we have

⟨ x v ⟩t =
1
2 ⟨ vX +X v ⟩t =

1
2

∫
S∗(k, t)(vX +X v)S(k, t) dk (38)

Writing S(k, t) in terms of its amplitude and phase

S(k, t) = |S(k, t)| eiψ(k,t) (39)

we obtain that

⟨ xv ⟩t = −
∫

v(k)
∂ψ(k, t)

∂k
|S(k, t)|2 dk (40)

This is true in general. But, for pulse propagation, we have

S(k, t) = |S(k, 0)| eiψ(k,0)−iW(k)t (41)
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where ψ(k, 0) is the phase of the spectrum at time zero. The phase at time t is, therefore,
given by

ψ(k, t) = ψ(k, 0)− W(k)t (42)

Hence,
∂ψ(k, t)

∂k
=

∂ψ(k, 0)
∂k

− v(k)t (43)

Substituting Equation (43) into Equation (40), we have

⟨xv ⟩t = ⟨x v ⟩0 + ⟨ v2 ⟩t (44)

where
⟨ v2 ⟩ =

∫
v2(k) |S(k, 0)|2 dk (45)

The covariance between position and group velocity at time t is, then,

Covxv(t) = ⟨ xv ⟩t − V⟨ x ⟩t (46)

= ⟨x v ⟩0 + ⟨ v2 ⟩t − V(⟨ x ⟩0 + Vt) (47)

which gives
Covxv(t) = Covxv(0) + t σ2

v (48)

This shows that the covariance increases linearly in time. It also shows that, irrespec-
tive of the sign of the initial covariance, eventually, the covariance becomes positive and
remains so.

3.2. Covariance between Position and Wave Number

Let us first consider the evolution of the first mixed moment

⟨ xk ⟩t =
1
2 ⟨ kX +X k ⟩t (49)

= 1
2

∫
S∗(k, t)(kX +X k)S(k, t) dk (50)

Using Equation (39), direct calculation gives

⟨ xk ⟩t = −
∫

k
∂ψ(k, t)

∂k
|S(k, t)|2 dk (51)

This is true in general. But, for Equation (42),

∂ψ(k, t)
∂k

=
∂ψ(k, 0)

∂k
− ∂W(k)

∂k
t (52)

and, therefore,

⟨ xk ⟩t = −
∫

k
(

∂ψ(k, 0)
∂k

− ∂W(k)
∂k

t
)
|S(k, t)|2 dk (53)

which gives
⟨x k ⟩t = ⟨x k ⟩0 + ⟨k v(k) ⟩0t (54)

The covariance between x and k at time t is

Covxk(t) = ⟨x k ⟩t − ⟨x ⟩t⟨ k ⟩t (55)

Putting Equation (54) into Equation (55), we obtain

Covxk(t) = Covxk(0) + t Covkv(0) (56)
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4. Uncertainty Principle for Waves

For any two operators, A and B, the usual textbook result for the uncertainty product
is that [8,9]

σ2
a σ2

b ≥ 1
4 | ⟨ [A,B ] ⟩ |2 (57)

However, there is a stronger version [10,11]

σ2
a σ2

b ≥ 1
4
| ⟨ [A,B ] ⟩ |2 + Cov2

ab (58)

where
Covab =

1
2
⟨ AB + BA ⟩ − ⟨A ⟩⟨ B ⟩ (59)

For completeness, a proof of Equation (58) is given in Appendix B.

4.1. Uncertainty Principle for Position and Wavenumber

For position and wavenumber, we have that

[X ,K ] = i (60)

Therefore, the uncertainty product inequality is

σ2
x(t)σ

2
k (t) ≥

1
4
+ Cov2

xk(t) (61)

Using Equation (56), we may write

σ2
x(t)σ

2
k (t) ≥

1
4
+ Cov2

xk(0) + 2tCovkv(0)Covxk(0) + t2 Cov2
kv(0) (62)

Since we know the exact standard deviations, given by Equations (22) and (24), we
have that

σ2
x(t)σ

2
k (t) = σ2

x(0)σ
2
k (0) + 2tCovxv(0)σ2

k + t2σ2
v σ2

k (exact) (63)

Using Equation (37), we have that

σ2
x(t)σ

2
k (t) ≥

1
4
+ Cov2

xk(0) + 2tCovkv (0)Covxk(0) + t2 σ2
v σ2

k (64)

which shows that the uncertainty principle is an approximate estimation of the uncertainty
product, but gives the exact answer for time going to infinity.

4.2. Uncertainty Principle for Position and Group Velocity

For position X and group velocity v(K), the commutator is

[X , v(K) ] = iv′(K) (65)

and, therefore, the uncertainty product for position and group velocity is given by

σ2
x(t)σ

2
v (t) ≥

1
4
| ⟨ v′(K) ⟩ |2 + Cov2

xv(t) (66)

Using Equation (48), we have

σ2
x(t)σ

2
v (t) ≥

1
4
| ⟨ v′(K) ⟩ |2 + Cov2

xv(0) + 2tσ2
v Covxv(0) + t2σ4

v (67)
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The exact uncertainty product is given by

σ2
x(t)σ

2
v (t) = σ2

x(0)σ
2
v (0) + 2 t Covxv(0)σ2

v + t2σ4
v (68)

In comparing the exact answer, Equation (68) with Equation (67), we see that the
time-dependent terms are identical

5. Meaning of Group Velocity and Covariance

What is generally called the group velocity, v(k), is a misnomer as it is not the velocity
of the group of waves. The velocity of the group is V. The group velocity indicates what
frequencies exist and their individual speeds. To ascertain the contribution of a particular
k-frequency, it is weighted by the energy density spectrum |S(k, 0)|2. The average of all
frequencies is the velocity, V, as given by the integral in Equation (18).

To understand the meaning of covariance for waves, we consider a pulse that, for the
moment, is traveling to the right, and has a spatial extension. Let us suppose that the
k-frequencies are distributed within the spatial extension of the pulse in a random manner.
In such a case, the covariance between the position x and v(k) would be zero. On the
other hand, let us suppose that the high k-frequencies are concentrated on the right-
hand side of the pulse, and the low k-frequencies on the left side of the pulse. In such
a case, the covariance between v(k) and x would be positive and would indicate the
relative relation between high k-frequency velocities and the front of the pulse. Conversely,
the covariance would be negative if the high-frequency values are on the left side of the
pulse. Hence, the reason that the covariance is fundamental is that it indicates whether the
high k- frequencies are on the right or left side of the pulse. If the covariance is positive,
the high frequencies are to the right of the low frequencies, but, if it is negative, it means
that they are arranged the opposite way. Now, according to Equation (48),

Covxv(t) = Covxv(0) + t σ2
v (69)

the evolution of the covariance is such that for large times, it is always positive, irrespective
of the sign of the initial covariance

Covxv(t) → ∞ for t → ∞ (70)

That is, the pulse evolves so that the high velocity frequencies are at the front of the
pulse. The reason is that, if the high frequencies are initially on the left side of the pulse,
they will eventually catch up to the front and remain so.

6. Arbitrary Waves

In the above discussion, we have assumed a special type of motion, namely dispersive
motion governed by Equation (4). It is of interest to consider what aspects of the previous
results apply to an arbitrary pulse where we do not specify a particular equation of motion.
Let us suppose the wave u(x, t) and its Fourier transform S(k, t) are written in terms of
their respective amplitudes and phases,

u(x, t) = |u(x, t)| eiφ(x,t) = A(x, t) eiφ(x,t) (71)

S(k, t) = |S(k, t)| eiψ(k,t) = B(k, t) eiψ(k,t) (72)
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If one calculates the first two moments and standard deviations, one obtains

⟨ x ⟩t = −
∫

∂ψ

∂k
B2(k, t)dk (73)

⟨ x2 ⟩t=
∫ (( 1

B
∂B
∂k

)2
+

(
∂ψ

∂k

)2
)

B2(k, t)dk (74)

σ2
x|t =

∫ (( 1
B

∂B
∂k

)2
+

(
∂ψ

∂k
+ ⟨ x ⟩

)2
)

B2(k, t)dk (75)

and

⟨ k ⟩t =
∫

∂φ

∂x
A2(x, t)dx (76)

⟨ k2 ⟩t =
∫ [( 1

A
∂A
∂x

)2
+

(
∂φ

∂x

)2
]

A2(x, t)dx (77)

σ2
k|t =

∫ [( 1
A

∂A
∂x

)2
+

(
∂φ

∂x
− ⟨ k ⟩

)2
]

A2(x, t)dx (78)

Now, let us consider the first mixed moment of x and k:

⟨ xk ⟩ = 1
2
⟨ [X ,K ]+ ⟩ (79)

We calculate ⟨ xk ⟩ in the position representation by way of

⟨ xk ⟩t =
1
2

∫
u∗(x, t)(xK+Kx)u(x, t) dx (80)

resulting in

⟨ x k ⟩t =
∫

x
∂φ

∂x
| u(x, t) |2dx (81)

However, if one calculates it in the k representation using

⟨ xk ⟩t =
1
2

∫
S∗(k, t)(kX +X k)S(k, t) dk (82)

then
⟨ x k ⟩t = −

∫
k

∂ψ

∂k
| S(k, t) |2dk (83)

is obtained. Equating the two expressions, we have∫
x

∂φ

∂x
| u(x, t) |2dx = −

∫
k

∂ψ

∂k
| S(k, t) |2dk (84)

This is an interesting relation because it shows a connection between amplitudes and
phase of the pulse and its spectrum.

The covariance, therefore, may be written as

Covxk =

〈
x

∂φ

∂x

〉
− ⟨x ⟩⟨ k ⟩ (85)

or

Covxk = −
〈

k
∂ψ

∂k

〉
− ⟨x ⟩⟨ k ⟩ (86)

This shows that, in the x representation, the wavenumber, k, acts as ∂φ
∂x and that, in the

wavenumber representation, x acts as − ∂ψ
∂k .



Axioms 2024, 13, 242 9 of 15

In addition, we speculate that the minimum uncertainty relation takes the form

σ2
x|tσ

2
k|t ≥

{∫ ( 1
B

∂B
∂k

)2
B2(k, t)dk

}{∫ ( 1
A

∂A
∂x

)2
A2(x, t)dx

}
(87)

7. Quasi-Probability Approach

The concept of covariance implies the existence of a joint distribution of the two vari-
ables. In the past sections, we have defined it in terms of operators without consideration
of a possible joint distribution. In the quantum mechanical case, Cartwright [12] was the
first to define covariance in terms of a joint distribution of position and momentum. She
used the Wigner distribution [13–15] for the joint distribution. In the case of position and
wavenumber, the Wigner distribution is defined by

W(x, k, t) =
1

2π

∫
u∗(x − 1

2 τ, t) u(x + 1
2 τ, t) e−iτkdτ (88)

which, in terms of the spectrum, may be written as

W(x, k, t) =
1

2π

∫
S∗(k + 1

2 θ, t) S(k − 1
2 θ, t) e−iθxdθ (89)

Because the Wigner and other similar distributions are not manifestly positive, they
are often called quasi-distributions. The Wigner distribution satisfies the marginals∫

W(x, k, t)dk = |u(x, t)|2 (90)

∫
W(x, k, t)dx = |S(k, t)|2 (91)

Therefore, all functions of position or wavenumber are given correctly by the Wigner
distribution. In particular, the moments ⟨xn⟩ and ⟨kn⟩ are correctly given by

⟨xn⟩ =
∫∫

xnW(x, k, t)dkdx (92)

⟨kn⟩ =
∫∫

knW(x, k, t)dkdx (93)

Following Cartwright [12], we define the first mixed moment by

⟨xk⟩ =
∫∫

xkW(x, k, t)dxdk (94)

Straightforward calculation leads to Equation (81) and/or Equation (83).
We now specialize to the case of pulse propagation, where

S(k, t) = S(k, 0) e−iω(k)t (95)

We have

W(x, k, t) =
1

2π

∫
S∗(k + 1

2 θ, 0) S(k − 1
2 θ, 0)e−iθxei[ω(k+θ/2)−ω(k−θ/2)]tdθ (96)

At t = 0,

W(x, k, 0) =
1

2π

∫
S∗(k + 1

2 θ, 0) S(k − 1
2 θ, 0)e−iθxdθ (97)

and inverting yields

S∗(k + 1
2 θ, 0) S(k − 1

2 θ, 0) =
∫

W(x, k, 0) eiθxdx (98)
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Inserting Equation (98) into Equation (96), we have

W(x, k, t) =
1

2π

∫∫
W(x′, k, 0) e−iθ(x′−x)ei[ω(k+θ/2)−ω(k−θ/2)]tdθdx′ (99)

which expresses the Wigner distribution at time t in terms of the Wigner distribution at
time zero.

Now, we consider the first mixed moment at time t,

⟨xk⟩t =
1

2π

∫∫
xkW(x′, k, 0) eiθ(x′−x)ei[ω(k+θ/2)−ω(k−θ/2)]tdθdx′dxdk (100)

Simplification leads to

⟨xk⟩t =
∫∫

xkW(x, k, 0) dxdk + t
∫∫

kv(k)W(x, k, 0) dxdk (101)

and, therefore, we have
⟨xk⟩t = ⟨xk⟩0 + t⟨kv(k)⟩0 (102)

which is the answer obtained by the operator method, namely Equation (54).
For the case of position and group velocity, the mixed moment is

⟨xv(k)⟩t =
∫∫

xv(k)W(x, k, t)dxdk (103)

which, for pulse propagation, is given by

⟨xv(k)⟩t =
1

2π

∫∫
xv(k)W(x′, k, 0) eiθ(x′−x)ei[ω(k+θ/2)−ω(k−θ/2)]tdθdx′dxdk (104)

Simplification leads to

⟨xv(k)⟩t =
∫∫

xv(k)W(x, k, 0) dxdk + t
∫∫

v2(k)W(x, k, 0) dxdk (105)

and, therefore,
⟨xv(k)⟩t = ⟨xv(k)⟩0 + t

〈
v2(k)

〉
0

(106)

which is the same as Equation (44).

Other Quasi-Distributions

Cartwright [12] pointed out that there are an infinite number of distributions that
give the same result as the Winger distribution. All quasi-distributions may be expressed
as [10,12,16]

C(x, k, t) =
1

4π2

∫∫∫
u∗(q − 1

2 τ, t)u(q + 1
2 τ, t)Φ(θ, τ) e−iθx−iτk+iθq dθ dτ dq (107)

where Φ(θ, τ) is the kernel function that characterizes the distribution. If we want the
covariance calculated with C(x, k, t) to be the same as that with Wigner, that is,∫∫

xkC(x, k, t)dxdk =
∫∫

xkW(x, k, t)dxdk (108)

then the kernel must satisfy
∂2

∂θ∂τ
Φ(θ, τ)

∣∣∣∣
θ,τ=0

(109)
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There are an infinite number of distributions that satisfy Equation (109). Among them
are the Choi–Williams [17,18], the Margenau–Hill [19], and Rihackek [20] distributions,
among others [10].

8. Dual Case

In the previous sections, we considered the physical case where we have a spatial
wave at a given time and allow it to evolve. An example is plucking a string and letting
go at time zero. The dual case is where, at a fixed position, we create a pulse as a function
of time, and examine its evolution as a function of position. Examples are radar, sonar,
and a fiber optics pulse. For the fundamental solution, we take e−ikx+iωt instead of eikx−iωt

because that will make the results mathematically and physically similar to the previous
case. We sbstitute e−ikx+iωt into Equation (1) to obtain

Nx

∑
n=0

bn(−ik)n −
Nt

∑
n=0

an(iω)n = 0 (110)

In this case, we solve for k as a function of ω

k = k(ω) (111)

For the case where we generate a signal at position x = 0, the general solution is then

u(x, t) =
1√
2π

∫
F(ω, 0) e−ik(ω)x+iωtdω (112)

where F(ω, 0) is the spectrum at x = 0, given by

F(ω, 0) =
1√
2π

∫
u(0, t) e−iωtdt (113)

Analogous to Equation (6), we define

F(ω, x) = F(ω, 0) e−ik(ω)x (114)

in which case,

u(x, t) =
1√
2π

∫
F(ω, x) eiωtdω (115)

F(ω, x) =
1√
2π

∫
u(x, t) e−iωtdt (116)

which shows that u(x, t) and F(ω, x) form Fourier transform pairs between frequency and
time at position x.

Analogous to group velocity, one defines the “group slowness” or the “unit transit
time” by

τ(ω) =
d

dω
k(ω) (117)

All the equations in the previous sections may be written down by analogy. Here, we
give just the main ones relevant to the concept of covariance.

The time moments at position x are given by

⟨ tn ⟩x =
∫

tn |u(x, t)|2 dt =
∫

F∗(ω, x)T nF(ω, x) dω (118)

where T is the time operator in the frequency domain

T = i
∂

∂ω
(119)
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If we write
F(ω, x) = |F(ω, x)|eiη(ω,x) (120)

then, in general,

⟨ τt ⟩x = 1
2 ⟨ τT + T τ ⟩x = −

∫
τ(ω)

∂η

∂ω
|F(ω, t)|2 dω (121)

The covariance between time and transit time at position x is given by

Covtτ(x) = ⟨ tτ ⟩x − ⟨ τ ⟩x⟨ t ⟩x (122)

If we write the spectrum in terms of amplitude and phase

F(ω, x) = |F(ω, x)| eiη(ω,x) = |F(ω, 0)| eiη(ω,0)e−ik(ω)x (123)

then
η(ω, x) = η(ω, 0)− k(ω)x (124)

and
∂η(ω, x)

∂ω
=

∂η(ω, 0)
∂ω

− τx (125)

Substituting Equation (125) into Equation (121), the mixed moment is

⟨t τ ⟩x = ⟨t τ ⟩0 + ⟨ τ2 ⟩x (126)

from which it follows that

Covtτ(x) = Covtτ(0) + x σ2
τ (127)

For the covariance between time and frequency at position x, defined by

Covtω(x) = ⟨t ω ⟩x − ⟨t ⟩x⟨ω ⟩x (128)

we have

⟨ tω ⟩x = 1
2 ⟨ωT + T ω ⟩x = −

∫
ω

∂η(ω, x)
∂ω

|F(ω, x)|2 dω (129)

and
⟨t ω ⟩x = ⟨t ω ⟩0 + ⟨ω τ ⟩x (130)

One obtains
Covtω(x) = Covtω(0) + x Covωτ(0) (131)

Funding: This research received no external funding.
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Appendix A. Dynamics of Modes

We first obtain the differential equation for a mode, u(x, t), characterized by ω(k). We
differentiate Equation (4) with respect to time to have

i
∂

∂t
u(x, t) =

1√
2π

∫
ω(k)S(k, 0) eikx−iW(k)t dk (A1)

=
1√
2π

∫
ω

(
1
i

∂

∂x

)
S(k, 0) eikx−iω(k)t dk (A2)
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which we write as
i

∂

∂t
u(x, t) = ω(K)u(x, t) (A3)

This equation is of the form of the Schrödinger equation with W(K) acting as the
Hamiltonian. Since we are taking W to be real, W(K) is Hermitian, and, further e−i W(K) t

is unitary. The symbolic solution to Equation (A3) is

u(x, t) = e−i ω(K) t u(x, 0) (A4)

The equation of motion for S(k, t) is obtained from Equation (6),

i
∂

∂t
S(k, t) = ω(k)S(k, t) (A5)

Appendix A.1. Dynamical Variable

Starting with

⟨A⟩t =
∫

u∗(x, t)A(0) u(x, t)dx (A6)

The usual derivation of the Heisenberg equation of motion leads to [8,9]

A(t) = ei ω(K) tA(0) e−i ω(K) t (A7)

and
dA
dt

=
1
i
[A, ω(K)] (A8)

Appendix A.2. Equations of Motion for Position and Wave Number

In Equation (A8), we take A = K, and since K and W(K) commute, we have

dK
dt

=
1
i
[K, ω(K)] = 0 (A9)

and, therefore,
K(t) = K(0) (A10)

Also, any function of K(t) will not change in time. In particular, all the moments are
time-independent:

⟨kn ⟩t = ⟨k n⟩0. (A11)

Now, we consider the position operator X . Using Equation (A8), we have

dX
dt

=
1
i
[X , ω(K)] (A12)

The commutator works out to be

[X , ω(K)] = −1
i

d
dk

ω(K) =− 1
i

v(K) (A13)

Hence,
dX
dt

= v(K) (A14)

But
v(K(t) ) = v(K(0) ) (A15)

and, therefore,
X (t) = X (0) + v(K(0))t (A16)
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Taking the expectation values of both sides, we have

⟨ x ⟩t = ⟨ x ⟩0 + Vt (A17)

where
V =

∫
v(k) |S(k, 0)|2 dk (A18)

For the second moment, we square Equation (A16) to obtain

X 2(t) = X 2(0) + [X (0)v(K) + v(K)X (0)]t+v2(K)t2 (A19)

Taking expectation values gives

⟨ x2 ⟩t = ⟨ x2 ⟩0 + t ⟨ vX +X v ⟩0 + t2 ⟨ v2 ⟩ (A20)

where
⟨ v2 ⟩ =

∫
v2(k) |S(k, 0)|2 dk (A21)

and
⟨ vX +X v ⟩0 =

∫
S∗(k, 0)( vX +X v) |S(k, 0) dk (A22)

For the standard deviation, one obtains

σ2
x|t = σ2

x|0 + 2 t Covxv(0) + t2σ2
v (A23)

where
Covxv(0) = 1

2 ⟨ vX +X v ⟩0 − ⟨ v ⟩0⟨ x ⟩0 (A24)

and where σ2
v is the dispersion of the group velocity

σ2
v =

∫
(v(k)− V)2 |S(k, 0)|2 dk (A25)

Appendix B. Proof of the Uncertainty Principle with Covariance

We consider two Hermitian operators A and B and, without loss of generality, we
can assume that their means are zero. The uncertainty product in a state ψ(x) is

σ2
a σ2

b =
∫

ψ∗(x)A2 ψ(x) dx ×
∫

ψ∗(x)B2 ψ(x) dx (A26)

Since the operators are Hermitian, we have that

σ2
a σ2

b =
∫

| A ψ(x) |2 dx ×
∫

| B ψ(x) |2 dx (A27)

Since the means are zero, the covariance is given by

Covab =
1
2
⟨ [A,B ]+ ⟩ (A28)

Applying the Schwartz inequality to Equation (A27), we have

σ2
a σ2

b ≥
∣∣∣∣ ∫ {A ψ(x) }∗{Bψ(x) } dx

∣∣∣∣2 (A29)

=

∣∣∣∣ ∫ ψ∗(x)ABψ(x) dx
∣∣∣∣2 (A30)

giving that
σ2

a σ2
b ≥| ⟨AB⟩ |2 (A31)
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The product of two operators may be written as

AB=
1
2
[A,B]+ +

1
2

i [A,B ]/i (A32)

where both [A,B]+ and [A,B ]/i are Hermitian. Taking the expectation value of both
sides, we have

⟨ AB ⟩= 1
2
⟨ [A,B]+ ⟩+ 1

2
i⟨ [A,B ]/i ⟩ (A33)

= Covab +
1
2

i⟨ [A,B ]/i ⟩ (A34)

Since [A,B]+ and [A,B ]/i are Hermitian, the expectation values on the right-hand
side are real and, therefore,

| ⟨A B⟩ |2 =
1
4
| ⟨ [A,B ] ⟩ |2 + Cov2

ab (A35)

Therefore, Equation (A31) gives that

σ2
a σ2

b ≥ 1
4
| ⟨ [A,B ] ⟩ |2 + Cov2

ab (A36)
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