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Abstract: Lower strict monotonicity points and lower local uniform monotonicity points are consid-
ered in the case of Musielak–Orlicz function spaces LΦ endowed with the Mazur–Orlicz F-norm. The
findings outlined in this study extend the scope of geometric characteristics observed in F-normed
Orlicz spaces, as well as monotonicity properties within specific F-normed lattices. They are suitable
for the Orlicz spaces of ordered continuous elements, specifically in relation to the Mazur–Orlicz
F-norm. In addition, in this paper presents results that can be used to derive certain monotonicity
properties in F-normed Musielak–Orlicz spaces.
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1. Introduction and Preliminaries

It is worth noting that quasi-Banach spaces have been extensively studied over the
last century (see [1–6]). As we know, in the realm of quasi-Banach spaces, the geometry is
heavily influenced by the significant role played by monotonicity properties. Therefore, it
is essential to characterize different points of monotonicity in classical quasi-Banach spaces.

This study aims to examine the basic properties in Musielak–Orlicz function spaces
that equipped with the Mazur–Orlicz F-norm. Due to the parameterization of generating
functions in Musielak–Orlicz function spaces, proving monotonicity in this space is much
more complicated than in Orlicz function spaces. We provide several methods for deter-
mining lower monotonicity. Some proof methods or ideas mentioned in the paper, such
as [3,4,7–9], have reference value.

In this document, we define the set N to represent all natural numbers, and the set R
to represent all real numbers. Additionally, we denote R+ := [0, ∞).

Definition 1 (see [3]). In a real vector space X, an F-norm is a function ∥·∥ :X 7→ R+ that fulfills
the following requirements.

(i) The F-norm of x is equal to zero if and only if x equals zero;
(ii) For all x ∈ X, the F-norm of x is equal to the F-norm of −x;
(iii) For any y, x ∈ X, the F-norm of their sum, ∥x + y∥F, is always less than or equal to the sum

of their individual F-norms, ∥x∥F + ∥y∥F;
(iv) For all x ∈ X, λ ∈ R, and λm limit λ, ∥λmxm − λx∥F tends to zero as ∥xm − x∥F approaches

zero, where (xm)
∞
m=1 is a sequence belongs to X, and (λm)

∞
m=1 is a sequence belongs to R.

If a space X = (X, ∥·∥F) with the F-norm is topologically complete, we can refer to it
as an F-space. A lattice Z = (Z,≤, ∥ · ∥F) is referred to as an F-lattice where the complete
and “≤” represents the partial order relation.
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In this paper, we denote

S(X) = {x ∈ X : ∥x∥F = 1}

and
B(X) = {x ∈ X : ∥x∥F ≤ 1}.

We also suppose that (T, Σ, m) is a space that possesses and non-atomic measure, and
finite and complete characteristics. L0 = L0(T, Σ, m) is a space that possesses the set of
measurable and real-valued functions. Similarly, L1 = L1(T, Σ, m) is a space that possesses
Σ−integrable and real-valued functions.

Definition 2 (see [3]). If an F-space(X, ∥·∥F) has a linear subspace L0, which satisfies the following
requirements, the F-space is referred to as a Köthe space endowed with an F-norm.

(i) If y ∈ X, x ∈ L0 , and |y| ≥ |x|, then x ∈ X and ∥y∥F ≥ ∥x∥F;
(ii) There is a positive strictly x ∈ X.

It is important to mention that, in the case where m is non-atomic, X is an F-normed
Köthe function space.

The set
supp x = {t ∈ T : x(t) ̸= 0}

is defined for a function x(t) that can be measured.

Definition 3 (see [3]). If x belongs to the F-normed Köthe space, for any y ∈ X satisfying the
inequality x ̸= y, and x ≥ y ≥ 0, then the inequality ∥x∥F > ∥y∥F holds (equivalently, if y ̸= 0
and x ≥ y ≥ 0, then ∥x∥F > ∥x − y∥F). We consider x as a lower strict monotonicity point
(abbreviated as LSM point). If every point in X has this characteristic, the spaces X is said to be
lower strictly monotone.

Definition 4 (see [3]). If x belongs to the F-normed Köthe space, for any sequence, {xm}∞
m=1 belongs

to X, and if the inequality x ≥ xm ≥ 0 holds for all natural numbers m, and lim
m→∞

∥xm∥F = ∥x∥F,

then ∥ − x∥F = 0 holds. In this case, we consider x as a lower local uniform monotonicity point
(abbreviated as LLUM point). If every point in X has this characteristic, we can classify X as having
lower local uniform monotone.

Definition 5. Φ : T × [0,+∞) → [0,+∞] is a function that satisfies the following conditions,
which are referred to as a monotone Musielak–Orlicz function.

(1) Φ(t, 0) = 0;
(2) Φ(t, .) is continuous (left continuity at bΦ(t)), and non-decreasing in the interval [0, bΦ(t))

for a.e. t ∈ T; that is to say,

(i) lim
u→bΦ(t)

Φ(t, u) = Φ(t, bΦ(t)) is a finite positive value whenever bΦ(t) < +∞.

(ii) lim
u→bΦ(t)

Φ(t, u) = +∞ when bΦ(t) = +∞, where

bΦ(t) = sup{u ≥ 0 : Φ(t, u) < ∞}.

(3) There exists a positive value ut, such that Φ(t, ut) > 0 for a.e. t ∈ T, and for any u ∈ R+,
Φ(t, u) is Σ−measurable.

In addition to that, we also define

S−
Φ(t) = {u : for u > v ≥ 0, Φ(t, u) > Φ(t, v)}.
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and
aΦ(t) = sup{u ≥ 0 : Φ(t, u) = 0}

As we know, bΦ(.) and aΦ(.), as mentioned above, are Σ−measurable functions.
The methods used to prove this statement are similar to [7] or [5].

Definition 6 (see [5]). If there exists a set T1 ⊂ Σ with measure m(T1) = 0, a positive constant
K and a non-negative function h(t) in the Lebesgue space L1(T, Σ, m) for which the inequality
Φ(t, 2u) ≤ KΦ(t, u)+ h(t) holds for all t ∈ T\T1, then we say that the monotone Musielak–Orlicz
function Φ is said to satisfy the ∆2−condition (Φ ∈ ∆2 for short).

Remark 1. For a.e. t ∈ T, when Φ ∈ ∆2, bΦ(t) = +∞.
Otherwise, there is a non-empty set T1 ∈ Σ with a positive measure, and the function bΦ(t)

less than positive infinity for t ∈ T1. We thus see that

+∞ = Φ(t, 2 · 2
3

bΦ(t))

≤ KΦ(t,
2
3

bΦ(t)) + h(t)

< +∞

and t ∈ T1, a contradiction.
The mapping IΦ : L0 → [0, ∞] is a modular in L0, which can be computed by the

integral expression

IΦ(x) =
∫

T
Φ(t, |x(t)|)m(dt).

The Musielak–Orlicz space LΦ, its subspace EΦ, and the Mazur–Orlicz F-norm are defined
with the above module.

The space
LΦ = {x ∈ L0 : IΦ(λx) < ∞ for some λ > 0}

is referred to as a Musielak–Orlicz space (see [10,11]). Define the subspace EΦ of LΦ using
the formula

EΦ = {x ∈ L0 : IΦ(λx) < ∞ for any λ > 0}.

For any x ∈ LΦ, the Mazur–Orlicz F-norm is defined as follows (see [10,11]):

∥x∥F = inf{λ > 0 : IΦ(
x
λ
) ≤ λ}.

Lemma 1 (see [7], Theorem 5.5). If Φ does not satisfy△2, then the set DΦ = {t ∈ T : bΦ(t) < ∞}
is non-empty, and this holds true for any sequence of natural numbers

qm > 0 , 1 < p1 ≤ p2 ≤ · · · , 1 ≤ · · · ≤ b2 ≤ b1,

in Σ, there exist mutually disjoint sets {Fm}∞
m=1 and measurable functions {xm(t)}∞

m=1 such that,
for natural number m, 0 ≤ xm(t) < ∞ on the set Fm, and

pmΦ(t, xm(t)) ≤ Φ(t, bmxm(t)),
∫

Fm
Φ(t, xm(t)m(dt) = qm, (t ∈ Fm).

Lemma 2. For a non-zero element x ∈ LΦ and a monotone Musielak–Orlicz function Φ, all the
statements mentioned below hold true.

(i) IΦ

(
x

∥x∥F

)
< +∞⇔ IΦ

(
x

∥x∥F

)
≤ ∥x∥F;

(ii) Whenever there exists some λ > 1 such that IΦ

(
λ x
∥x∥F

)
< +∞, then IΦ

(
x

∥x∥F

)
= ∥x∥F;

(iii) If IΦ
( x

λ

)
= λ, for some x > 0 ,then ∥x∥F = λ.
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Proof. The evidence follows a similar pattern as the evidences presented in [3,4]; for con-
venience, we only prove the statement (i).

The necessity is obvious.
Now, we will show the sufficiency.
Let f (λ) = IΦ(

x
λ ), using the definition of the F-norm and for a non-zero x ∈ LΦ, in the

interval (0, ∞), IΦ(
x
λ ) is non-increasing, we can establish the following inequality for any

positive real number ε

IΦ

(
x

ε + ∥x∥F

)
≤ ε + ∥x∥F.

We can find a sequence (εm)∞
m=1 that satisfies εm = 1

m , and

IΦ

(
x

1
m + ∥x∥F

)
≤ 1

m
+ |x∥F,

for any natural number m. According to Beppo Levi’s theorem, the inequality

IΦ

(
x

∥x∥F

)
≤ ∥x∥F

holds.

Lemma 3. For any positive value of λ, lim
m→∞

IΦ(λxm) = 0, if and only if lim
m→∞

∥xm∥F = 0.

It is clear, so we omit the proof in here.

2. Conclusions in Musielak–Orlicz Space

Theorem 1. A non-zero element x ∈ LΦ is an LSM point if and only if it satisfies the follow-
ing conditions.

(i) There exists λ > 1 that satisfies IΦ(λ
x

∥x∥F
) < +∞;

(ii) m({t ∈ T : aΦ(t) >
x(t)
∥x∥F

> 0}) = 0;

(iii) There exists α ∈ (0, 1), such that m({t ∈ T : x
∥x∥F

≤ αbΦ(t)}) = 0;

(iv) m({t ∈ supp x, x(t)
∥x∥F

/∈ S−
Φ(t)}) = 0.

Proof. Necessity: Let us begin by establishing the validity of condition (i). Assuming that,
for any λ in the interval (0, 1), it holds true that∫

T1

Φ(t,
x(t)

λ∥x∥F
)m(dt) = +∞.

We will divided the proof in following into two cases.
Case 1: There exists a positive constant A for which

m({t ∈ supp(x) :
x(t)
∥x∥F

= A}) = 0.

Take disjoint sets T1, T2 such that supp x = T1 ∪ T2, where both T1 and T2 have positive
measures. Then, it holds true that, for any λ in the interval (0, 1), we have∫

T1

Φ(t,
x(t)

λ∥x∥F
)m(dt) = +∞

or ∫
T2

Φ(t,
x(t)

λ∥x∥F
)m(dt) = ∞
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holds. Otherwise,∫
supp x

Φ(t,
x(t)

λ∥x∥F
)m(dt) =

∫
T1

Φ(t,
x(t)

λ∥x∥F
)m(dt) +

∫
T2

Φ(t,
x(t)

λ∥x∥F
)m(dt) < +∞.

Suppose that there is a sequence λm ∈ (0, 1) with λm → 1 for which∫
T1

Φ(t,
x(t)

λm∥x∥F
)m(dt) = +∞,

and put y(t) = xχT1(t). Next, we have ∥x∥F ≥ ∥y∥F. Thanks to the equality IΦ(
y

λm∥x∥F
) = ∞,

it follows that ∥y∥F ≥ λm∥x∥F. By lim
m→∞

λm = 1, we have ∥x∥F ≤ ∥y∥F. Therefore, ∥x∥F =

∥y∥F, a contradiction.
Case 2: For any positive constant A,

m({t ∈ supp(x) :
x(t)
∥x∥F

= A}) < m(supp(x)).

Take a positive constant c > 0 that satisfies this condition

m({t ∈ T : c >
x(t)
∥x∥F

> 0}) > 0, m(supp(x)|Tc) > 0,

where

Tc = {t ∈ T : c >
x(t)
∥x∥F

> 0}.

Put y(t) = xχsupp x\Tc(t).
Using the equality IΦ(

x
λ∥x∥F

) = ∞, for any λ in the interval (0, 1), we can obtain
λ∥x∥F ≤ ∥y∥F. As we let λ → 1, so ∥x∥F ≤ ∥y∥F holds. Obviously, ∥x∥F ≥ ∥y∥F.
Therefore, we have ∥x∥F = ∥y∥F. This contradicts that x is an LSM point.

Let us demonstrate the validity of condition (ii). Suppose that

m({t ∈ T : aΦ(t) >
x(t)
∥x∥F

> 0}) > 0.

Denote by T0 = {t ∈ T : aΦ(t) >
x(t)
∥x∥F

> 0} and put y(t) = xχT\T0
(t). Then, ∥x∥F ≥ ∥y∥F and

IΦ(
y

∥x∥F
) =

∫
T\T0

Φ(t,
x(t)
∥x∥F

)m(dt)

=
∫

T
Φ(t,

x(t)
∥x∥F

)m(dt)

= ∥x∥F.

According to Lemma 2 (iii), we can conclude that the F-norm of x is equal to the F-norm of
y. This contradicts that x is an LSM point.

Now, we will provide evidence to validate condition (iii).
Case 1: There is a subset A ⊂ supp x, and it has positive measure such that x(t)

∥x∥F
=

bΦ(t), t ∈ A. Let bΦ(t) =
x(t)
∥x∥F

for all t ∈ A. Divide A into T3 and T4 such that m(T3) =

m(T4) =
1
2 m(A) and T3 ∩ T4 = ∅. Put

y(t) = χT3(t) · bΦ(t) · ∥x∥F.
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For any λ in the interval (0, 1), we have∫
T3

Φ(t,
y(t)

λ∥x∥F
)m(dt) = +∞,

which implies λ∥x∥F ≤ ∥y∥F. Because λ can take any value of (0, 1), we have that
∥x∥F ≤ ∥y∥F holds. Obviously, ∥x∥F ≥ ∥y∥F. Hence, ∥x∥F = ∥y∥F. This contradicts that x
is an LSM point.

Case 2: For any subset A ⊂ supp x, we have bΦ(t) >
x(t)
∥x∥F

for a.e. t ∈ A. Let

Tm = {t ∈ T : bΦ(t) >
x(t)
∥x∥F

> (1 − 1
m
)bΦ(t)}.

Then, T1 ⊃ T2 ⊃ T3 ⊃ · · · .
Denoted by

e1 = T1\T2,

e2 = T2\T3,

· · ·

and y(t) = ∑∞
m=1 xχem(t), without sacrificing the generalizability, it is reasonable to assume

that m(em) > 0. We obtain that

IΦ(
y

(1 − 1
k )∥x∥F

) =
∞

∑
m=1

∫
em

Φ(t,
x(t)

(1 − 1
k )∥x∥F

)m(dt)

≥
∞

∑
m=1

∫
em

Φ(t,
(1 − 1

m )bΦ(t)
(1 − 1

k )
)m(dt).

For any k ∈ N, we take m ∈ N with k < m. Further, we obtain 1 − 1
m > 1 − 1

k , hence

∫
em

Φ(t,
(1 − 1

m )bΦ(t)
(1 − 1

k )
)m(dt) = +∞.

We can yield that (1 − 1
k )∥x∥F ≤ ∥y∥F. Let k → ∞, we observe that the inequality

∥x∥F ≤ ∥y∥F is satisfied. Hence, the F-norm of x is equal to the F-norm of y, a contradiction.
We aim to demonstrate the indispensability of condition (iv). Assuming that there exists

m({t ∈ supp x :
x(t)
∥x∥F

/∈ S−
Φ(t)}) > 0,

we will establish the existence of a, b ∈ R+,where b < a, such that

Φ(t, b) = Φ(t, a), t ∈ Tb,a,

where

Tb,a = {t ∈ T : a ≥ x(t)
∥x∥F

> b}.

Since positive rational numbers are countable sets, we denote them as {r1, r2, · · · } and put

Am,n = {t ∈ T : Φ(t, rm) = Φ(t, rn)}.

Hence,

A = {t ∈ T :
x(t)
∥x∥F

/∈ S−
Φ(t)} =

∞⋃
m,n=1

(Am,n ∩ A).
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By m(A) > 0 and m(A) ≤ ∑∞
m,n=1 m(Am,n ∩ A), there exist rm0, rn0 such that m(Am0,n0 ∩ A) > 0.

Let us set a = rm0 , b = rn0 , with the assumption that a > b.
Then,

m({t ∈ T : a ≥ x(t)
∥x∥F

> b}) > 0.

Put
y(t) = xχT\Tb,a

(t) + b∥x∥FχTb,a(t).

We have

IΦ(
y

∥x∥F
) =

∫
T\Tb,a

Φ(t,
x(t)
∥x∥F

)m(dt) +
∫

Tb,a

Φ(t, b)m(dt)

=
∫

T\Tb,a

Φ(t,
x(t)
∥x∥F

)m(dt) +
∫

Tb,a

Φ(t,
x(t)
∥x∥F

)m(dt)

=
∫

T
Φ(t,

x(t)
∥x∥F

)m(dt)

= IΦ(
x

∥x∥F
)

= ∥x∥F.

Thus, the F-norm of x is equal to the F-norm of y, a contradiction.
Sufficiency: Assume x(t) ≥ y(t) ≥ 0 and ∃ e ⊂ T with positive measure, where for all

t ∈ e, the inequality y(t) < x(t) holds. We need to prove ∥x∥F > ∥y∥F. Assuming that it is
false. Under condition (i), there is value λ > 1 such that

IΦ(λ
x

∥x∥F
) < +∞,

we have
IΦ(λ

y
∥y∥F

) < +∞.

According to condition (ii) stated in Lemma 2, it is evident that the equation IΦ(
y

∥y∥F
) =

∥y∥F holds.
Then,

∥y∥F =
∫

T
Φ(t,

y(t)
∥x∥F

)m(dt)

=
∫

T\e
Φ(t,

y(t)
∥x∥F

)m(dt) +
∫

e
Φ(t,

y(t)
∥x∥F

)m(dt)

=
∫

T\e
Φ(t,

x(t)
∥x∥F

)m(dt) +
∫

e
Φ(t,

y(t)
∥x∥F

)m(dt)

<
∫

T\e
Φ(t,

x(t)
∥x∥F

)m(dt) +
∫

e
Φ(t,

x(t)
∥x∥F

)m(dt)

= IΦ(
x

∥x∥F
)

= ∥x∥F,

a contradiction.

Corollary 1. x ∈ EΦ is an LSM point only when these conditions are satisfied.

(i) m({t ∈ T : aΦ(t) >
x(t)
∥x∥F

> 0}) = 0;

(ii) For a.e. t ∈ supp x, x(t)
∥x∥F

∈ S−
Φ(t).



Axioms 2024, 13, 243 8 of 13

Proof. By considering x as a member of the set EΦ, it follows that for any positive λ,
the value of IΦ(λx) is finite. Therefore, condition (i) stated in Theorem 1 remains valid.
Based on the definition of bΦ(t), it can be observed that for a.e. t ∈ suppx, bΦ(t) equals
positive infinity. Therefore, condition (iii) stated in Theorem 1 is satisfied.

Corollary 2. LΦ has an LSM property if and only if

(i) For a.e. t ∈ T, aΦ(t) = 0;
(ii) Φ ∈ △2;
(iii) The function Φ(t, u) is strictly increasing for a.e. t ∈ T;.

Proof. Necessity:
(i) It is obvious.
(ii) If Φ /∈ △2, based on Lemma 1, we can select sequences

qm =
1

2m , pm = 2m, bm = 1 +
1
m

, f or m ∈ N,

{xm(t)}∞
m=1 are ∑−measurable functions, and mutually disjoint sets {Fm} in ∑, such that∫
Fm

Φ(t, xm(t))m(dt) =
1

2m , pmΦ(t, xm(t)) ≤ Φ(t, bmxm(t)) (t ∈ Fm, m ∈ N).

Denoted by

x(t) =
∞

∑
m=1

χFm(t)xm, y(t) =
∞

∑
m=2

χFm(t)xm.

Thus,

IΦ(x) =
∞

∑
m=1

∫
Fm

Φ(t, xm(t))m(dt) =
∞

∑
m=1

1
2m = 1,

that is, the F-norm of x equals 1. For any λ within the range of (0, 1), there exists n ∈ N,
n ≥ 2, such that, for all m ≥ n, the inequality 1

λ > 1 + 1
m holds. Then,

IΦ(
y
λ
) ≥

∞

∑
m=n

∫
Fm

Φ(t,
xm(t)

λ
)m(dt)

≥
∞

∑
m=n

∫
Fm

Φ
(

t, (1 +
1
m
)xm(t)

)
m(dt)

≥
∞

∑
m=n

2m
∫

Fm
Φ(t, xm(t))m(dt)

=
∞

∑
m=n

1

= ∞.

Hence, we have λ ≤ ∥y∥F. Due to the arbitrariness of λ, it can be inferred that 1 ≤ ∥y∥F, the
F-norms of both x and y are equal to 1, which does not qualify as an LSM point. Therefore,
it can be concluded that LΦ does not exhibit strict monotonicity.

(iii) If there is a non-empty subset T0 ⊂ T with a positive measure, such that Φ(t, u)
does not strictly monotonically increase, then there exists a subset T1 ⊂ T, where m(T) >
m(T1) > 0 and b > a > 0, such that Φ(t, u) remains constant for all (t, u) ∈ T1 × [a, b].
To ensure generality, for all t ∈ T, it can be assumed that lim

u→∞
Φ(t, u) = +∞ holds.

Take a positive number M satisfying

1 −
∫

T1

Φ(t, b)m(dt) < M · 1
3

m(T \ T1).
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For t ∈ T, let δ(t) = inf{u ≥ 0 : M ≤ Φ(t, u)}. On the basis of the limit lim
u→∞

Φ(t, u) tends

to infinity, we see that δ(t) is well-defined and δ(t) is a measurable function.
Using the condition lim

m→∞
m({t ∈ T\T1 : m < δ(t)}) = 0, there exists a m0 ∈ N

such that
1
3

m(T\T1) > m({t ∈ T\T1 : m0 < δ(t)}).

Put T2 = {t ∈ T\T1 : m0 < δ(t)} and T3 = T\(T1 ∪ T2). Then,

m(T3) = m(T\(T1 ∪ T2))

= m(T\T1)− m(T2)

≥ 1
3

m(T\T1).

So, we have
1 −

∫
T1

Φ(t, b)m(dt) < M · m(T3).

It is clear that Φ(t, m0)χT3 is a measurable function with finite values almost everywhere.
Hence, a subset T4 is present within T3 such that

1 −
∫

T1

Φ(t, b)m(dt) < M · m(T4).

and Φ(t, m0)χT4 is an integrable function. So, we posses

1 −
∫

T1

Φ(t, b)m(dt) <
∫

T4

Φ(t, m0)m(dt).

Since (T, Σ, m) is a measure space without atoms, there exists a subset T5 is present within
T4 such that

1 −
∫

T1

Φ(t, b)m(dt) =
∫

T5

Φ(t, m0)m(dt).

This is denoted by x(t) = bχT1 + m0χT5 . Then, IΦ(x) equals 1, indicating that ∥x∥F is equal
to 1. Based on the given condition

m({t ∈ T :
x(t)
∥x∥F

/∈ S−
Φ(t)}) > 0,

we are aware that x does not qualify as a point of strict monotonicity. Hence, the strict
monotonicity of LΦ is not established.

Sufficiency: For any x ∈ LΦ, if aΦ(t) = 0, then

m({t ∈ T : aΦ >
x(t)
∥x∥F

}) = 0.

Because of Φ ∈ △2 , we have IΦ(λ
x(t)
∥x∥F

) < ∞ for any λ > 0 and bΦ(t) is equal to
positive infinity for nearly all values of t ∈ T. Then, x is an LSM point, further LΦ has
strict monotonicity.

With the utilization of the evidence provided in Corollary 2, it becomes feasible to
derive the subsequent outcomes effortlessly.

Corollary 3. EΦ has LSM property when all of the following criteria are satisfied.

(i) For a.e. t ∈ T, aΦ(t) = 0;
(ii) For a.e. t ∈ T, the function Φ(t, u) has strict monotonicity and continuity.

Theorem 2. x ∈ LΦ\{0} is an LLUM point when all of the following criteria are met.
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(i) For a.e. t ∈ supp x, x(t)
∥x∥F

> aΦ(t) holds;

(ii) For a.e. t ∈ supp x, x(t)
∥x∥F

∈ S−
Φ(t) holds;

(iii) x ∈ EΦ.

Proof. Necessity: We only need to prove condition (iii).
Suppose x does not belong to the set EΦ. Let θ(x) = in f {λ > 0 : IΦ(

x
λ ) < +∞}. We

can obtain
lim

m→∞
∥x − xm∥F = θ(x),

where Tm = {t ∈ T : m ≥ x(t)}, xm(t) = xχTm(t).
In fact, according to θ(x), we can achieve this for any positive value of ε.

IΦ(
x

θ(x)− ε
) = +∞, IΦ(

x
θ(x) + ε

) < +∞.

So,

IΦ(
x − xm

θ(x) + ε
) =

∫
T\Tm

Φ(t,
x(t)

θ(x) + ε
)m(dt).

hold true.
By the condition m(T\Tm) → 0, we have lim

m→∞

∫
T\Tm

Φ(t, x(t)
θ(x)+ε

)dm(t) = 0. Thus,

there exist a natural number m0 such that IΦ(
x−xm

θ(x)+ε
) ≤ θ(x) + ε; that is to say, ∥x − xm∥F ≤

θ(x) + ε when m ≥ m0.
Similarly, by the condition IΦ(

x−xm
θ(x)−ε

) = +∞, we can deduce that ∥x− xm∥F ≥ θ(x)− ε

for any natural number m. Therefore, for all positive ε, there exists a m0 ∈ N, and we have
θ(x) + ε ≥ ∥x − xm∥F ≥ θ(x) − ε, which means lim

m→∞
∥x − xm∥F = θ(x). Then, we can

easily obtain that if x /∈ EΦ, then θ(x) > 0.
Next, we will prove that lim

m→∞
∥xm∥F = ∥x∥F.

By the conditions 0 ≤ xm ≤ x and x being a point with strict monotonicity, there exists
λ0 ∈ (0, 1) that satisfies IΦ(

x
λ∥x∥F

) < +∞, where λ0 ≤ λ ≤ 1, xm(t)
λ∥x∥F

↗ x(t)
λ∥x∥F

. According to
Levi’s theorem, we have the following inequality:

lim
m→∞

IΦ(
xm

λ∥x∥F
) = IΦ(

x
λ∥x∥F

) ≥ λ∥x∥F.

Hence, lim
m→∞

∥xm∥F ≥ λ∥x∥F. Let λ → 1, we have that the equality lim
m→∞

∥xm∥F = ∥x∥F

holds. However, lim
m→∞

∥x − xm∥F = θ(x) > 0, a contradiction.

Sufficiency: For any x ∈ ŁΦ and a sequence {xm} contained in ŁΦ with 0 ≤ xm ≤ x,
if lim

m→∞
∥xm∥F = ∥x∥F. We want to demonstrate that lim

m→∞
∥x − xm∥F = 0. In virtue of the

property of Φ ∈ ∆2, the following equality

lim
m→∞

IΦ(
x

∥xm∥F
) = ∥x∥F

holds. Hence,

lim
m→∞

( ∫
T

Φ(t,
x(t)

∥xm∥F
)m(dt)−

∫
T

Φ(t,
xm(t)
∥xm∥F

)m(dt)
)
= 0,

lim
m→∞

∫
T

(
Φ(t,

x(t)
∥xm∥F

)− Φ(t,
xm(t)
∥xm∥F

)

)
m(dt) = 0.
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As a matter of fact, Φ(t, x(t)
∥xm∥F

)− Φ(t, xm(t)
∥xm∥F

) ≥ 0, and we can obtain

lim
m→∞

(
Φ(t,

x(t)
∥xm∥F

)− Φ(t,
xm(t)
∥xm∥F

)

)
= 0

in measure. Given a finite measure space (T, Σ, m). and applying Levi’s theorem, it is
possible to find a subsequence {xmk}

+∞
k=1, for a.e. t ∈ T

Φ(t,
x(t)

∥xmk∥F
)− Φ(t,

xmk (t)
∥xmk∥F

) → 0

holds. To maintain the integrity of our analysis, it is reasonable to assume that

lim
k→∞

(
Φ(t,

x(t)
∥xmk∥F

)− Φ(t,
xmk (t)
∥xmk∥F

)

)
= 0 (1)

for each t ∈ T. Since, for a.e. t ∈ T, x(t)
∥x∥F

∈ S−
Φ(t) holds, there exists e0 ⊂ supp x with

m(e0) = 0, such that x(t)
∥x∥F

∈ S−
Φ(t) for any t ∈ supp x\e0. Hence, we have if u < x(t0)

∥x∥F
, then

Φ(t0, u) < Φ(t0,
x(t0)

∥x∥F
)

for any t0 ∈ supp x\e0.

Next, we will prove that lim
k→∞

xmk (t0)

∥xmk ∥F
= x(t0)

∥x∥F
for any t0 ∈ supp x\e0. If not, according

to the Density’s theorem, let us assume that

x(t0)

∥x∥F
> lim

k→∞

xmk (t0)

∥xmk∥F
.

Put

c =
x(t0)

∥x∥F
− lim

k→∞

xmk (t0)

∥xmk∥F
.

There exists an interval [b, a], which is strictly monotonicity interval of Φ(t, u) such that
x(t0)
∥x∥F

∈ (b, a]. Since

lim
k→∞

x(t0)

∥xmk∥F
=

x(t0)

∥x∥F
> b,

there exists m0 ∈ N such that x(t0)
∥xmk ∥F

> b when mk ≥ m0.

The following two cases are being considered in the next proof.
Case 1. There exists k1 ∈ N such that b < x(t0)

∥xmk ∥F
≤ a whenever k ≥ k1. We will next

prove that there is a positive value d, such that

Φ(t0, v) + d ≤ Φ(t0, u) (2)

whenever u ∈ (b, a], u − v ≥ c
2 . Otherwise, there are sequences {um}∞

m=1 and {vm}∞
m=1,

where um ∈ (b, a] and vm ∈ R, with um − vm ≥ c
2 for which

Φ(t0, vm) < Φ(t0, um) ≤ Φ(t0, vm) +
1
m

.

We can make the assumption that um → u0 and vm → v0, as {um}∞
m=1 is a bounded

sequence and using the continuity of Φ(t0, u), we obtain the following equality:

Φ(t0, v0) = Φ(t0, u0).
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Thanks to u0 ∈ (b, a] and u0 > v0, we have the following inequality:

Φ(t0, v0) < Φ(t0, u0).

This is a contradiction.

From lim
k→∞

(
x(t0)

∥xmk ∥F
− xmk (t0)

∥xmk ∥F

)
= c, we are able to determine a positive integer k2 such

that x(t0)
∥xmk ∥F

− xmk (t0)

∥xmk ∥F
≥ c

2 whenever k ≥ k2. In virtue of the inequality (2), there is a positive

value d that satisfies the inequality

Φ(t0,
xmk (t0)

∥xmk∥F
) + d ≤ Φ(t0,

x(t0)

∥xmk∥F
)

holds.
The above inequality contradicts with Equality (1). So, in this case, we have

lim
k→∞

xmk (t0)

∥xmk∥F
=

x(t0)

∥x∥F
.

Case 2. There is k3 > 0, such that x(t0)
∥xmk ∥F

> a whenever k3 ≤ k.

By the conditions lim
k→∞

x(t0)
∥xmk ∥F

= a and lim
k→∞

(
x(t0)

∥xmk ∥F
− xmk (t0)

∥xmk ∥F

)
= c > 0, there exists

k4 > 0 and b1 ∈ (b, a] such that

(
xmk (t0)

∥xmk∥F
,

x(t0)

∥xmk∥F
) ⊇ (b1, a]

whenever k ≥ k4. Using the proof as in Case 1, there is a positive number d1 such that

Φ(t0,
xmk (t0)

∥xmk∥F
) + d1 ≤ Φ(t0,

x(t0)

∥xmk∥F
),

a contradiction again.
Hence, for a.e. t ∈ T, we have

lim
k→∞

xmk (t)
∥xmk∥F

=
x(t)
∥x∥F

.

Using the limit lim
k→∞

∥xmk∥F = ∥x∥F, it can be concluded that as k → ∞, xmk (t) → x(t),

for a.e. t ∈ T. Therefore, for every positive value of λ and almost every t ∈ T, lim
k→∞

Φ(t, λ(x(t)

−xmk(t))) equals to 0. Hence,

Φ(t, λ(x(t)− xmk (t))) ≤ Φ(t, λx(t)) ∈ L1

for all t ∈ T. The convergence theorem of Lebesgue dominated implies that

lim
k→∞

IΦ(λ(x − xmk )) = 0

for any positive value of λ. According to Lemma 3, we can conclude that

lim
k→∞

∥x − xmk∥F = 0.

Ultimately, by utilizing the double extraction subsequence theorem, we can prove this.

Using Corollaries 2, 3 and Theorem 2, we can easily obtain the following results
(see [5]).
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Corollary 4. EΦ has LLUM property if and only if all of the following criteria are satisfied:

(i) aΦ(t) = 0 for a.e. t ∈ T;
(ii) For a.e. t ∈ T, Φ(t, u) is strictly monotonically increasing.

Corollary 5. LΦ has LLUM property if and only if all of the following criteria are satisfied:

(i) aΦ(t) = 0 for a.e. t ∈ T;
(ii) For a.e. t ∈ T, Φ(t, u) is strictly monotonically increasing;
(iii) Φ ∈ △2.
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