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Abstract: In this paper, we present a survey about the latest results in global stability concerning
the discrete-time evolutionary Ricker competition model with n species, in both, autonomous and
periodic models. The main purpose is to convey some arguments and new ideas concerning the
techniques for showing global asymptotic stability of fixed points or periodic cycles in these kind of
discrete-time models. In order to achieve this, some open problems and conjectures related to the
evolutionary Ricker competition model are presented, which may be a starting point to study global
stability, not only in other competition models, but in predator–prey models and Leslie–Gower-type
models as well.
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1. Introduction

Using the idea of Darwinian evolution [1], Jim Cushing together with some cowork-
ers established the foundation of discrete phenotype evolutionary models in a series of
papers [2–8]. These models are based on evolutionary game theory, which is ruled by three
axioms: variation in trait values, fitness differences, and inheritance.

Clearly, evolutionary game models differ from classical games. While classical games
prioritize strategies that optimize players’ payoffs, evolutionary games prioritize strategies
that endure over time. Through births and deaths, players come and go. However, their
strategies pass on from generation to generation [9].

In 2019, Ackleh et al. [10] studied the local properties of a discrete-time predator–prey
model. The authors established conditions for the existence and stability of the equilibrium
points, and conditions for the persistence of the prey and predator populations in both
non-evolutionary and evolutionary models. It is shown that the evolution of toxicant
resistance allows both predator and prey to persist when, without evolution, both would
go extinct.

In [11], Elaydi et al. studied the effect of evolution in the autonomous Ricker com-
petition model of two species. The authors studied the local stability of the fixed points
and the effect of the evolution in the new model. The theoretical results indicated that
evolution can promote and/or suppress the stability of the coexistence equilibrium de-
pending on the environment. In the case of destabilization, complex dynamics occur
and may lead to either a period-doubling bifurcation, as in the non-evolutionary Ricker
equation, or to a Neimark–Sacker bifurcation. This phenomenon does not happen in the
non-evolutionary model.

In [12], K. Mokni et al. studied the asymptotic stability and presented a bifurcation
analysis on a discrete evolutionary Ricker-type population model with immigration. In [13],
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the authors studied a new approach to a special class of discrete-time evolutionary models
and established a solid mathematical theory to analyze them. The authors also proposed a
new evolutionary competition model for both single and multiple species using the strategy
of evolutionary game theory.

Finally, in [14], M. Ch-Chaoui and K. Mokni presented a derivation of a discrete-time
evolutionary Beverton–Holt model. The authors discussed the existence of the positive
fixed point and explored its asymptotic stability. They also showed that, under certain
parameter conditions, the Neimark–Sacker bifurcation is present, which is a phenomenon
that does not occur in the non-evolutionary model.

The above-mentioned studies are essentially focused on local stability and bifurcation
for autonomous models and mostly for single species.

Dealing with global stability in discrete models is a real challenge even for simple
models. In the case of evolutionary models, Elaydi et al., in [15], were able to show global
stability in a Ricker-type model, in both autonomous and periodic cases, by using the idea
of mixed monotone maps, which were firstly studied by Kulenovic and Merino in [16] and
later popularized by H. Smith in [17,18].

The study of global stability presented in [15] for the evolutionary Ricker-type model
is far from complete since there are a large number of cases, depending on the parameters,
where the authors were not able to show global stability.

Hence, the main goal of this paper is to convey some open problems and conjectures
concerning the evolutionary Ricker competition model for n species (see Section 4) and
promote discussion among researchers in order to develop new techniques for showing
global asymptotic stability for fixed points or periodic cycles. In Section 2, we present the
state of the art concerning the single-species evolutionary Ricker model. The main findings
in both autonomous and periodic evolutionary Ricker-type models for one species are
described. In Section 3, we explore the latest developments in the multi-species Ricker
competition model. In particular, we present some results concerning the global stability in
the model with n species with a single trait.

2. Single-Species Evolutionary Ricker Model

In a recent paper [15], Elaydi et al. studied the global dynamics of the following
evolutionary Ricker model of a single species x (with a single mean trait u and individual
trait v): {

x(t + 1) = x(t)eα(t)− u2(t)
2 −c0x(t)

u(t + 1) = (1 − σ2)u(t)− c1σ2x(t)
, (1)

where α(t) is the sequence of growth rates (which are functions of the trait v), c0 is the
competition coefficient (which depends on both the individual’s trait v and the trait u),
σ2 ≥ 0 is the speed of evolution (which is proportional to the constant variance of the
individual trait v), and the coefficient c1 is the sensitivity of the competition.

Notice that the first equation in (1) is the inherent fertility equation, while the second
equation is the trait equation, more widely known in the literature as the canonical equation
for evolution [19], i.e., Lande’s equation [20,21] or Fisher’s equation [22].

We remark that if
α(t) = α, for all t = 0, 1, 2, . . . ,

then Model (1) is autonomous; whereas if

α(t + p) = α(t), for all t = 1, 2, . . . and some integer p > 1,

then Model (1) is p−periodic.
The details of the derivation of Model (1) when α(t) = α, for all t = 0, 1, 2, . . ., i.e., the

autonomous model, may be found in Cushing [5] and in Elaydi et al. [11].
The global dynamics of the non-trivial fixed point (in the autonomous case) and of the

non-trivial periodic cycle (in the non-autonomous periodic case) are accomplished by the
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idea of mixed monotone mappings introduced by Hal Smith in [18]. The following result is
the main theorem in [15] concerning the global dynamics of the autonomous single-species
Ricker model (1):

Theorem 1 (Global asymptotic stability). Let α(t) = α > 0 for all t = 0, 1, 2 . . . such that
0 < α < 1, 1 < σ2 < 2, and c1 ̸= 0. Then, the interior equilibrium point E∗ = (x∗,−c1x∗) of
Model (1) is globally asymptotically stable if it is locally asymptotically stable, where

x∗ = −c0+
√

c2
0+2αc2

1
c2

1
.

Remark 1. The conditions of local stability required in Theorem 1 are

c0(2 + σ2)x∗ < 2((α − 1)σ2 + 2)

and
c0(1 + σ2)x∗ > (2α − 1)σ2,

with α > 0, σ2 < 2 and c1 ̸= 0 as stated in Theorem 2.1 in [15].

Figure 1 illustrates a region given by the two above conditions, in the parameter space.

S

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

0

2

4

α

c 1

S

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

α

σ

Figure 1. Representation of the local stability region S of the interior fixed point E∗ of Model (1) in the
parameter space bifurcation diagram. In S, the conditions of local stability given in Remark 1 are satisfied
for c0 = 0.9. In the left figure, σ = 1.1, while in the right figure, c1 = −1. When the parameters cross
the curves (solid and dashed), a bifurcation occurs. The period-doubling bifurcation occurs when the
parameters cross the dashed curve, whereas the Neimark–Sacker bifurcation appears when the parameters
cross the solid curve. The fixed point E∗ loses stability and a new phenomenon is born.

Concerning the non-autonomous p−periodic case, i.e., when α(t + p) = α(t) for all
t = 0, 1, . . . and some integer p > 1, Elaydi et al. [15] showed that the origin is a saddle
fixed point of p−periodic System (1) when σ2 ∈ (0, 2) and there exits a p−periodic cycle of
the form

Cp = {(x0, 0), (x1, 0), . . . , (xp−1, 0)}

that is globally asymptotically stable when c1 = 0 and σ2 ∈ (0, 2).
Furthermore, by using a new definition of an associated map, Elaydi et al. were able

to show that non-autonomous p-periodic System (1) is mixed monotone. Thus, from a
perturbation result, the following theorem was proved:

Theorem 2 (Global asymptotic stability of the 2-periodic system). Let α(t + 2) = α(t) > 0
for all t = 0, 1, 2 . . . such that 0 < α(t) < 1, 1 < σ2 < 2, and c1 ̸= 0. Then, for sufficiently small
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δ > 0 and letting α1 = α0 ± δ, there is a 2-periodic cycle that is globally asymptotically stable in
the interior of the first quadrant if c1 < 0 and in the interior of the fourth quadrant if c1 > 0.

Remark 2. A generalization of the previous result is stated in Theorem 3.9 in [15] for general
period p.

3. Multi-Species Ricker Competition Model

The Ricker competition model of n species is given by
x1(t + 1) = x1(t)e

α1(t)−∑n
j=1 c1jxj(t)

x2(t + 1) = x2(t)e
α2(t)−∑n

j=1 c2jxj(t)

...
xn(t + 1) = xn(t)e

αn(t)−∑n
j=1 cnjxj(t)

, (2)

where xi(t), for i = 1, 2 . . . , n, represents the population size of the species xi at time unit t.
The parameters αi, for i = 1, 2, . . . , n, are the inherent growth rates at low densities, and the
coefficients cij are the competition intensity coefficients that measure the effects of intraspe-
cific competition and interspecific competition. More precisely, cii are the intraspecific
competition parameters, while cij, for i ̸= j, are the interspecific competition parameters.
Notice that these parameters are assumed to be positive.

When αi(t) = αi, for all i = 1, 2, . . . , n and t ≥ 0, Model (2) is autonomous, whereas
when αi(t + p) = αi(t) for some i = 1, 2, . . . , n and integer p > 1, Model (2) is p−periodic.

The local properties and the bifurcation scenario of the fixed points of the mapping
representing Model (2) may be found in [23] when n = 2 and in [24] when n = 3. An
illustration of the stability regions is provided in Figure 2 for n = 2 and in Figure 3 for
n = 3.
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Figure 2. Representation of the stability regions Q, S, and R of the equilibrium points in the two-
species Ricker competition model (2) when c12 = c21 = 0.5 and c11 = c22 = 1 in the parameter
space α1Oα2. In region R, the fixed point on the x−axis is locally asymptotically stable, with a
period-doubling bifurcation at α1 = 2 and α2c11 < α1c21, with α1 as a bifurcation parameter. In
region Q, the equilibrium point on the y−axis is locally asymptotically stable, with a period-doubling
bifurcation at α2 = 2 and α2c12 > α1c22, with α2 as a bifurcation parameter. In region S, the interior
fixed point is locally asymptotically stable. On the curve (a hyperbola), a period-doubling bifurcation
occurs with respect to the parameters α1 and α2.
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Figure 3. Stability regions of the seven non-trivial fixed points of the 3D autonomous Ricker competi-
tion model (2) in the parameter space α1Oα2Oα3, when cij = 1 for i = j and cij = 0.5 for i ̸= j. Details
about these regions may be found in [24].

The global stability of the non-trivial fixed points of Model (2) is a real challenge even
in the autonomous case and this subject is far from being concluded. There are some studies
for some particular situations.

When the autonomous model is considered, studies of the global asymptotic stability
of the planar Ricker competition model can be found in [25–28], for the three-dimensional
model, in [29], and for the higher dimension, in [30]. We should mention that the global
stability in the higher dimension is accomplished when Model (2) is monotone.

In the context of periodic situations, there is a scarcity of studies. As far as we know,
the only one present in the literature for the 2−periodic planar Ricker Model is [31] when
the model is monotone.

In a similar way, following Cushing’s methodology used in the single-species case,
we can establish the following evolutionary Ricker competition model for n species with a
single mean trait ui and individual trait vi:

x1(t + 1) = x1(t)e
α1(t)−u2

1(t)/2−∑n
j=1 c1jxj(t)

...

xn(t + 1) = xn(t)e
αn(t)−u2

n(t)/2−∑n
j=1 cnjxj(t)

u1(t + 1) = (1 − σ2
1 )u1(t)− σ2

1 c1x1(t)
...
un(t + 1) = (1 − σ2

n)un(t)− σ2
ncnxn(t)

. (3)

The parameters are as before, such that αi(t) > 0, σ2
i < 2, ci ∈ R, and cij > 0 for all

i = 1, 2, . . . , n.
Notice that the inherent fertility equations are

xi(t + 1) = xi(t)e
αi(t)−u2

i (t)/2−∑n
j=1 cijxj(t), i = 1, . . . , n

while Lande’s equations or Fisher’s equations are

ui(t + 1) = (1 − σ2
i )ui(t)− σ2

i cixi(t), i = 1, . . . , n.
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Now, firstly considering the autonomous system, i.e., when αi(t) = αi for all
i = 1, . . . , n and all t ≥ 0 and setting x = (x1, . . . , xn) and u = (u1, . . . , un), System (3) may
be represented by the map F : R2n → R2n given by

F(x, u) =
(

x1eα1−u2
1/2−∑n

j=1 c1jxj , . . . , xneαn−u2
n/2−∑n

j=1 cnjxj ,

(1 − σ2
1 )u1 − σ2

1 c1x1, . . . , (1 − σ2
1 )un(t)− σ2

1 c1xn

)
. (4)

The mapping F possesses a large number of fixed points, namely, the origin O; fixed
points of the form

(E1)i = ((ei)x∗i , (−ciei)x∗i ), i = 1, . . . , n,

where ei, for i = 1, . . . , n is the canonical basis of Rn (a vector with one in the ith position
and zeros everywhere else), and x∗i is a non-trivial fixed point in the respective xi−axis;
fixed points of the form

(E2)ij = ((. . . , x∗i , . . . , x∗j , . . .), ((. . . ,−cix∗i , . . . ,−cjx∗j , . . .))), i = 1, . . . , n − 1, j = 2, . . . , n,

where (. . . , x∗i , . . . , x∗j , . . .) (resp., (. . . ,−cix∗i , . . . ,−cjx∗j , . . .))) is a vector with x∗i in the ith
position, x∗j in the jth position, and zeros everywhere else (resp., a vector with −cix∗i in the
ith position, −cjx∗j in the jth position, and zeros everywhere else) such that (x∗i , x∗j ) is a
fixed point in the plane xiOxj, etc.; and a fixed point of the form

E∗ = (x∗, u∗) = ((x∗1 , . . . , x∗n), (−c1x∗1 , . . . ,−cnx∗n)),

where (x∗1 , . . . , x∗n) is a fixed point in Rn.
Please be aware that, due to the biological context, our focus lies solely on examining

non-negative fixed points.
The study of the local properties of these fixed points may be conducted via the

characteristic polynomial of the Jacobian matrix evaluated at the fixed point of the map-
ping F [32]. A set of local stability conditions in each case may be obtained via the Jury
conditions [33,34].

Let the auxiliary map f : R2n ×R2n → R2n given by

f ((x, u), (y, v)) = F(x, v).

It is a straightforward computation to show that the map f satisfies the three conditions
of mixed monotonicity [18] when 0 < αi < 1, 1 < σ2

i < 2, and ci < 0 for all i = 1, . . . , n.
Furthermore, the mappings

F(x, u) =
(

x1eα1−u2
1/2−∑n

j=1 c1jxj , . . . , xneαn−u2
n/2−∑n

j=1 cnjxj ,

(1 − σ2
1 )u1 − σ2

1 c1x1, . . . , (1 − σ2
1 )un(t)− σ2

1 c1xn

)
and

G(x, u) =
(

x1eα1−u2
1/2−∑n

j=1 c1jxj , . . . , xneαn−u2
n/2−∑n

j=1 cnjxj ,

(1 − σ2
1 )u1 − σ2

1 ĉ1x1, . . . , (1 − σ2
1 )un(t)− σ2

1 ĉ1xn

)
, (5)

are topologically conjugates by using the homeomorphism h(x, u) = (x,−u) and ĉi = −ci,
ci > 0 for all i = 1, . . . , n.

Hence, we have the following result:
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Theorem 3. The interior fixed point E∗ = (x∗, u∗) of autonomous Model (3) is globally asymptot-
ically stable if it is locally asymptotically stable and 0 < αi < 1, 1 < σ2

i < 2, and ci ̸= 0 for all
i = 1, . . . , n.

Proof. The proof is a generalization of the proof presented in [15] for n = 2 and will be
omitted here.

Remark 3. We should mention that the real challenge in the proof of Theorem 3 is to find a set of
local stability conditions for the interior fixed point. For certain parameter models, such as ours, this
task may be impossible for all the parameters.

In [32], the author presents a survey of local stability conditions, for a n−dimensional
autonomous mapping, via the characteristic polynomial of the Jacobian matrix evaluated
at the fixed point. These conditions are obtained using the Jury test [33,34].

As noticed by Luís in [32], as the dimension increases, the conditions guaranteeing
local stability become increasingly complex, making it potentially impossible to manipulate
algebraically due to the number of parameters involved.

However, the scenario changes significantly in the absence of parameters, as in this
situation, the coefficients of the characteristic polynomial are simply numerical values. In
this scenario, it is a straightforward task to verify the necessary conditions.

Regarding the periodic scenario, where the dynamics of System (3) are governed by
the composition of the following mappings:

Fi(x, u) =
(

x1eα1(i)−u2
1/2−∑n

j=1 c1jxj , . . . , xneαn(i)−u2
n/2−∑n

j=1 cnjxj ,

(1 − σ2
1 )u1 − σ2

1 c1x1, . . . , (1 − σ2
1 )un(t)− σ2

1 c1xn

)
, (6)

where, for each j = 1, . . . , n, we have αj(i + p) = αj(i) for all i = 0, 1, . . . , p − 1, the au-
thors showed that the composition of two mixed monotone evolutionary Ricker maps
is a mixed monotone evolutionary Ricker map when n = 2. Later, this idea was gen-
eralized for the composition of p mixed monotone evolutionary Ricker maps by using
mathematical induction.

Due to the mixed monotonocity of the composition mapping, we can write an exten-
sion of Theorem 3.16 presented in [15] as follows:

Theorem 4. Let 1 < σ2
i < 2, ci ̸= 0 for all i = 1, 2, . . . , n and assume αj(t + p) = αj(t), for

all t = 0, 1, . . . , p − 1 such that 0 < αj(t) < 1, j = 1, 2, . . . , n. Also assume that the interior
fixed point E∗

i = (x∗i , u∗
i ) of each individual mapping Fi is locally asymptotically stable and set

γ(t) = (α1(t), . . . , αn(t)). Then, for sufficiently small δi > 0 and letting γ(i + 1) = γ(i)± δi,
i = 0, 1, . . . , p − 2 such that 0 < αj(0)± ∑

p−2
i=0 δi < 1, for all j = 1, 2, . . . , n, there is a p−periodic

cycle of (3) that is globally asymptotically stable in the interior of Rn
+ ×Rn

+ if cj < 0, for all j and
in the interior of Rn

− ×Rn
− if cj > 0, for all j.

4. Open Problems and Conjectures

In this section, we present some open problems and conjectures concerning the global
stability of the evolutionary Ricker competition model.

4.1. Single Species

In Theorems 1 and 2, the global stability is proven under the hypothesis that the speed
of evolution satisfies the relation 1 < σ2 < 2. We conjecture that the results remain valid
when σ2 < 1.

Conjecture 1. Theorems 1 and 2 are valid when σ2 < 1.
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Theorem 2 is a result of global stability in perturbation theory. We believe that, in this
case, local stability implies the global stability. Hence, we propose the following conjecture
for any period p of the system and an expanded range of values for the speed of evolution:

Conjecture 2. Let α(t+ p) = α(t) > 0 for all t = 0, 1, 2 . . . such that 0 < α(t) < 1, 0 < σ2 < 2,
and c1 ̸= 0. Then, there exists a globally asymptotically stable p-periodic cycle of System (3) if it is
locally asymptotically stable.

In the non-evolutionary case, the non-trivial p−periodic cycle (and the fixed point
when p = 1) of the Ricker equation x(t+ 1) = x(t)eα(t)−c0x(t) can be globally asymptotically
stable when α(t) > 1. See, for instance, Sacker [35] and Liz [36]. Hence, we propose the
following problem:

Problem 1. Investigate whether Theorems 1 and 2 are extendable when the growth rates satisfy
α(t) > 1 for some (but not necessarily all) t > 0.

In [15], the authors showed that the evolutionary autonomous Model (1) does not
exhibit saddle node bifurcation, but a period-doubling bifurcation may occur, as may a
Neimark–Sacker bifurcation. The period-doubling bifurcation takes place when

σ2 =
2(2 − c0x∗)

c0x∗ + 2(1 − α)
,

and the Neimark–Sacker bifurcation takes place when

σ2 =
c0x∗

2α − 1 − c0x∗
.

The period-doubling bifurcation occurs when the parameters cross the dashed curve
in Figure 1, whereas the Neimark–Sacker bifurcation appears when the parameters cross
the solid curve in Figure 1. So, the following problem will present an interesting and
challenging task:

Problem 2. Investigate the bifurcation scenario of p−periodic evolutionary Model (1).

Remark 4. For a general framework in non-autonomous bifurcation theory in difference equa-
tions, we refer to the book [37] and the paper [38], and for bifurcations in a periodic discrete-time
environment, we refer to the paper [39].

The derivation of Model (1) may be achieved using multiple traits. So, we propose the
following problem:

Problem 3. Investigate the local and global stability of the autonomous and the periodic evolution-
ary Ricker model with multiple traits.

4.2. Multiple Species

Because of the intricacy of the computations required, using the same techniques to
analyze the local and global dynamics of Model (2) in higher dimensions is not feasible.
However, based on several simulations, we can observe global stability in both cases:
autonomous and periodic. Hence, this presents a challenging problem that needs to be
addressed. Thus, we propose the following problem:

Problem 4. Study the global dynamics of Model (2) for general values of n, in both cases, au-
tonomous and periodic, for a suitable region of the parameters αi(t).
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As is the case with the single species, we believe that Theorem 3 is valid when σ2 < 1.
Hence, we propose the following conjecture:

Conjecture 3. Theorem 3 is valid when σ2 < 1.

The following problem is a natural observation from several simulations:

Problem 5. Investigate whether Theorem 3 and Theorem 4 are extendable when the growth rates
satisfy αi(t) > 1 for some (but not necessarily all) t > 0.

As is the case with single species, we believe that local stability implies global stability
in Theorem 4:

Conjecture 4. Let 1 < σ2
i < 2, ci ̸= 0 for all i = 1, 2, . . . , n and assume αj(t + p) = αj(t), for

all t = 0, 1, . . . , p − 1 such that 0 < αj(t) < 1, j = 1, 2, . . . , n. Then, there is a p−periodic cycle
of (3) that is globally asymptotically stable in the interior of Rn

+ ×Rn
+ if cj < 0, for all j and in the

interior of Rn
− ×Rn

− if cj > 0, for all j, if it is locally asymptotically stable.

5. Conclusions

Based on previous work on the global asymptotic stability of an evolutionary model
of the Ricker type [15], this paper presents some open problems and conjectures regarding
the global dynamics and bifurcation of the evolutionary Ricker competition model in both
autonomous and periodic cases. The aim is to stimulate discussion and generate new
ideas regarding techniques for demonstrating the global asymptotic stability of fixed points
or periodic cycles in these types of discrete-time models, as the work presented in [15]
remains incomplete.

We believe that solving these problems and conjectures will not only enable us to
complete the study of the evolutionary Ricker competition model but also serve as a starting
point for studying global stability in other competition models, predator–prey models, and
Leslie–Gower-type models as well.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declare no conflicts of interest.

References
1. Darwin, C. The Origin of Species; Avenel Books: London, UK, 1859.
2. Ackleh, A.S.; Cushing, J.M.; Salceanu, P.L. On the dynamics of ecolutionary competition models. Nat. Resurce Model. 2015, 28,

380–397. [CrossRef]
3. Cushing, J.M. An Evolutionary Beverton-Holt Model. In Springer Proceedings in Mathematics & Statistics, Proceedings of the Theory

and Applications of Difference Equations and Discrete Dynamical Systems: ICDEA, Muscat, Oman, 26–30 May 2013; AlSharawi, Z.,
Cushing, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014.

4. Cushing, J.M. Difference Equations as models of evolutionary population dynamics. J. Biol. Dyn. 2019, 13, 103–127. [CrossRef]
[PubMed]

5. Cushing, J.M. A Darwinian Ricker equation. In Springer Proceedings in Mathematics & Statistics, Proceedings of the Progress on
Difference Equations and Discrete Dynamical Systems: 25th ICDEA, London, UK, 24–28 June 2019; Baigent, S., Bhoner, M., Eds.;
Switzerland AG: Zurich, Switzerland, 2020; pp. 231–243.

6. Cushing, J.M.; Stefanko, K. A Darwinian dynamic model for the evolution of post-reproduction survival. J. Biol. Syst. 2021,
29, 433–450. [CrossRef]

7. Cushing, J.M. The evolutionary dynamics of a population model with a strong Allee effect. Math. Biosci. Eng. 2015, 12, 643–660.
[CrossRef]

8. Rael, R.C.; Vincent, T.L.; Cushing, J.M. Competitive outcomes changed by evolution. J. Biol. Dyn. 2011, 5, 227–252. [CrossRef]
9. Vincent, T.; Brown, J. Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics; Cambridge University Press: Cambridge,

UK, 2005.

http://doi.org/10.1111/nrm.12074
http://dx.doi.org/10.1080/17513758.2019.1574034
http://www.ncbi.nlm.nih.gov/pubmed/30714512
http://dx.doi.org/10.1142/S0218339021400088
http://dx.doi.org/10.3934/mbe.2015.12.643
http://dx.doi.org/10.1080/17513758.2010.487160


Axioms 2024, 13, 246 10 of 10

10. Ackleh, A.S.; Hossain, M.I.; Veprauskas, A.; Zhang, A. Persistence and stability analysis of discrete-time predator–prey models:
A study of population and evolutionary dynamics. J. Differ. Equ. Appl. 2019, 25, 1568–1603. [CrossRef]

11. Elaydi, S.; Kang, Y.; Luís, R. The effects of evolution on the stability of competing species. J. Biol. Dyn. 2022, 16, 816–839.
[CrossRef] [PubMed]

12. Mokni, K.; Ch-Chaoui, M. Asymptotic Stability, Bifurcation Analysis and Chaos Control in a Discrete Evolutionary Ricker
Population Model with Immigration. In Springer Proceedings in Mathematics & Statistics, Proceedings of the Advances in Discrete
Dynamical Systems, Difference Equuation and Applications: 26th ICDEA, Sarajevo, Bosnia and Herzegovina, 26–30 July 2021; Elaydi, S.,
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