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Abstract: This study introduces the higher-order unconditionally positive finite difference (HUPFD)
methods to solve the linear, nonlinear, and system of advection-diffusion-reaction (ADR) equations.
The stability and consistency of the developed methods are analyzed, which are necessary and suffi-
cient for the numerical approach to converge to the exact solution. The problem under consideration
is of the Cauchy type, and hence, Von Neumann stability analysis is used to analyze the stability
of the proposed schemes. The HUPFD'’s efficacy and efficiency are investigated by calculating the
error, convergence rate, and computing time. For validation purposes, the higher-order uncondi-
tionally positive finite difference solutions are compared to analytical calculations. The numerical
results demonstrate that the proposed methods produce accurate solutions to solve the advection
diffusion reaction equations. The results also show that increasing the order of the unconditionally
positive finite difference leads an implicit scheme that is conditionally stable and has a higher order
of accuracy with respect to time and space.

Keywords: higher-order unconditionally positive finite difference method; unconditionally positive
finite difference method; advection diffusion reaction equations; convergence rate; absolute error;
computational time; Von Neuman stability analysis; consistency and stability analysis
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1. Introduction

The advection—diffusion-reaction (ADR) equation is important in the application of
various physical and chemical processes, such as absorption of pollutants in soil, exponen-
tial travelling waves, modeling of semiconductors, and modeling of biological processes,
among others [1-3]. The ADR equation is a partial differential equation generally repre-
sented by the equation below:

Jdu Jdu o%u
g—l-llua—Dﬁ:f(t,x,u), (x,t) € [a,b] x [0, T] t >0,
M(O,X) = MO(X) >0, (1)

u(a, t) =us(t)  u(b,t) = uy(t).

where D is the diffusion coefficient, U, represent the advection coefficient, 1, (¢, x) is the
advection term, uyy(t, x) is the diffusion term, u;(f, x) is the rate at which the concentra-
tion of substances changes over time, and f(t, x, u) is the reaction term or the source [4].
The advection-diffusion-reaction equation governs the process of advection and diffusion
simultaneously [5-8].
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In this paper, we develop the higher-order unconditionally positive finite differ-
ence methods (HUPFD) and apply them to solve the ADR equations. These methods
extends to the unconditionally positive finite difference method (UPFD) developed by
Chen-Charpentier and Kojouharov [1] and it has subsequently been utilized by several
other researchers, such as [9-11]. The primary advantage of the UPFD is that it guarantees
the positivity of solutions regardless of time step or mesh size. Numerical techniques
that preserve solution positivity are crucial in physical applications, in quantities such as
chemical species concentration, population sizes, and neutron numbers [1] wherein only
positive solution have meaning. The ADR equations are often difficult to solve exactly, and
hence, the need to develop numerical methods that are good in solving the problem as accu-
rately as possible with less computational time. Benito M et al. studied an unconditionally
positivity-preserving scheme for solving the ADR equation. In this study, they found the
UPFD schme produces good results when solving the ADR equation as compared to Crank-
Nicolson method, and also that the method works for a larger time steps [1]. Appadu A.R.
studied the unconditionally positive schemes for biofilm formation on medical implant
using the Allen—Cahn equation. In this study, he found that the proposed method produced
good results, and that it is stable at all times for all step sizes i, k > 0 [9]. Mahamond et al.
tested and improved a nonconventional UPFD method, in which they found that the UPFD
scheme is convergent time integrator with order 1, which necessitates investigation of the
higher-order UPFD scheme [12]. The study of higher-order numerical methods is of keen
interest in the field of fluid dynamics, mathematical physics, engineering, etc, because they
are known to produce highly accurate solutions [13,14]. Much research effort is put into
developing efficient numerical methods that converge to the solution quickly and with less
computational time [15-17].

The novel HUPFD schemes we developed are validated on the linear, nonlinear, and
system of ADR equations, and its findings are compared with those obtained using the exact
solution, UPFD, Crank-Nicolson, and nonstandard finite difference methods. The efficiency
of the developed approaches is assessed by comparing the errors, convergence rates,
and computing times. In recent years, there has been significant interest in higher-order
finite difference approaches. Kovac et al. (2021) introduced a novel approach for solving the
diffusion or heat equation using explicit numerical methods. These approaches incorporate
Huxley and Fisher’s reaction terms, which proved analytically that the convergence of the
approaches for linear ordinary differential systems occurs at a fourth order in the time step
size. Additionally, it was found that the provided methods are applicable to solve nonlinear
equations in stiff cases. Kovacs et al. (2024) developed a novel two-stage explicit approach
for the solution of partial differential equations that involve a diffusion and two reaction
terms. A large system with random characteristics and discontinuous initial condition
was utilized in this investigation. The researchers demonstrated that in the linear cases,
the accuracy of the approaches follows a second order of accuracy, and it is unconditionally
stable. Gurarslan et al. (2013) introduced a sixth-order compact difference scheme and a
fourth-order Runge-Kutta scheme to generate numerical solutions for the one-dimensional
advection—diffusion equation. In this study, the solutions were found to be highly accurate
in solving the concurrent transport equation for the one-dimensional advection—diffusion
equation. Other examples can be found in [18-33]. The need for the development of
HUPEFED approaches arise from the limitations observed in numerical methods. In order
to achieve accuracy in solutions for solving majority of the partial differential equations,
a significant amount of computational time is required.

This study primarily focuses on the development and evaluation of the HUPFD,
showing that augmenting the order of the UPFD schemes to higher-order results in an
implicit scheme that is unconditionally stable, and progressively improves its accuracy
with respect to time and space.

The subsequent sections of the paper are structured sequentially. Section 2 provides
an introduction to the UPFD, Section 3 focuses on the development of the HUPFD, and
Sections 4-5 include the numerical analysis of the linear advection—diffusion—reaction
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equation using the HUPFD, which include stability analysis and consistency of the methods.
The efficiency and effectiveness of the HUPFD approach in solving the linear advection—
diffusion-reaction equations has been shown by numerical examples in Section 6. These
examples are presented in comparison to the analytical results. The conclusion of the
investigation is presented in Section 7.

2. The Unconditionally Positive Finite Difference Scheme

In this section, we present details of the UPFD schemes [1] as given below:

ut — u’?jl
a 1 Axl 1 (Za)
u
a ~
w - uf b
Ax (2b)
o ®
ot At
Pu ol — 2wl @
ox2 (Ax)?

where the spatial step size is Ax =

al and the grid points are givenas x; = a+ Ax(i — 1),

1 <i < m. The time step size At = %, with the corresponding grid points given as
th=At(n—1),1<n <N.

Note that when approximating the derivatives of the first and second space, the terms
in the finite difference schemes are evaluated at different time levels n and n 4 1. This is
required to preserve the positivity of the solution. Equation (2a) is used when the coefficient
of the first space derivative is negative, while Equation (2b) is used when the derivative is
positive. Conversely, Equation (4) is employed regardless of the positive or negative nature
of the coefficient of the second space derivative. However, when the negative coefficient to
the diffusion term is used, the solution is expected to blow up, which will undoubtedly
impact stability.

3. Development of the Higher-Order Unconditionally Positive Finite Difference Schemes

The development of the higher-order unconditionally positive finite difference (HUPFD)
involves the study of three distinct cases, resulting in the formulation of three different
algorithms, denoted as HUPFD 1, HUPFD 2, and HUPFD 3. The objective is to develop a
robust approach, based on the principles of the UPFD, which preserves the positivity of
solutions. The process of developing finite difference schemes for space derivatives in prac-
tical situations involves a careful consideration of the tradeoffs between accuracy, stability,
consistency, and computing costs. Engineers and scientists employ varying methods in ac-
cordance with the specific demands of their simulations and the limitations imposed by their
computational resources, with a primary focus on attaining accuracy. This study focuses
on the construction of HUPFD schemes utilizing various orders within finite difference
schemes for space derivative schemes. The objective is to explore combinations that yield
improved results. The unconditionally positive finite difference methods are a category of
methods used to approximate the solution of partial differential equations. These methods
are applicable to various real-life problems, including heat transfer, stress/strain mechanics,
fluid dynamics, and electromagnetics.

3.1. HUPFD 1

In this case, the higher-order method is achieved by considering the first-order formula
for the first space derivative and the fourth-order approximation for the second space
derivative, as shown below:
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ult — yntl
) ZTH (52)
u
xS a
e 5b
R (5b)
n+l _ on
a =" : (6)
ot AF
ai‘ ~ ?jzl +16ul, | — 3Ou?+1 +16ul | — u;zj21 o
9x? 1242

where the spatial step size is Ax =
2<i<m-1.

— 111 and the grid points are givenas x; = a+ Ax(i — 1),

3.2. HUPFD 2

In this case, the HUPFD scheme is obtained by considering the second-order formula
for the first space derivative and the fourth-order formula for the second space derivative,
as shown below:

1
“;1:1 — Ui (8a)
du 2Ax
ax !
u?+l - u?jl 8b
2Ax (8b)
ot At
1 1 1
Pu  —uily +16uy —30u +16uf | —ul (10)
9x2 12Ax2 :

where the spatial step size is Ax =
2<i<m-—1.

— 111 and the grid points are givenas x; = a+ Ax(i — 1),

3.3. HUPFD 3

In this case , HUPFD schemes are obtained by considering the fourth-order formula
for the derivatives of the first and second space, as shown below:

n n+1 n n+1
—Ujy, T 8uy — 8wy +u

11
u 12Ax (11a)
a =~

?:21 +8ujly — 8”n+1 +ui, 11b

12Ax ( )

ou _ u?“ —ul "

ot At (12)
o%u ?Izl +16u}, | — 30ul ! + 16u u”+21

Fr 1202 (13)

b—
where the spatial step sizeis Ax = mi—al and the grid points are givenas x;_1 = a + Ax(i — 2),
2<i<m-1.
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4. Implementation of the Higher-Order Unconditionally Positive Finite Difference
Schemes on the Linear ADR Equation

In this section, we set f(t,x,u) = —u, U, = 1,and D = 1 in Equation (1) to obtain the
equation given below:

ou ou d*u
o Tox g W (19

subject to the following initial and boundary conditions:

u(x,0) = e -, 0<x<10
u(0,t) = e, 0<t<085 (15)
(10,t) = —u(10,t), 0<t <085

with the exact solution given by u(x, t) = ett=%) [1].

4.1. Solving the Linear ADR Equation Using the HUPFD 1 Scheme

Jou
Since the coefficient of — in Equation (14) is positive, we use Equations (5b)—(7) to

find the UPFD scheme. Therefore, the HUPFD discretization of Equation (14) is given by
the equation below:

1 +1 +1 +1 +1
ul N u! ™ —ul _ —ully +16uf | —30u; T +16ul | —ui’, _u (16
At Ax 12Ax2 L

which simplifies to the following:

1 1 30
n+1 - 1 Tl+1
128x2 "2 +<At+Ax+12A 2t )

1 a1 116 Y, 16
T oAt T At T (Ax + 12Dx2) i1t a7

Lat 1,1, 30 1 1 L, 16
PL= A T ax " 12ax2 P2 T AP T oA AT Ax T 12Ax2
pr T poul ) 4 pou ) = pauf + pau |+ 16poul,;. (18)

Equation (18) is simplified to the following;:

Au"tl = Bu" + 4", (19)
where:
(b1 0 pp O 0 - 0] [ul™]
. un+1
O pp 0 po 0O - M%H
. . 3
p2 0 p1 0 po :
1 ) :
Aui’l+ — O pZ 0 pl 0 .. O : (20)
0 0 pz 0 Pl PZ
. 1
0 uZ:ll
_0 P2 0 pl_ _MZ1+
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[p3 16p; 0 0 0 -+ 0 ][ uf]
. ult
ps  p3 lépy 0 0 ué
0 p4 p3 16]92 0
Bu" = 0 0 P4 P3 16p2 0 : (21)
0 0 0 pa ps - 0
. . . . . 16ps un
0 0 pa p3 || u” ]
and:
(] 'uSH-
0 0
0 0
d"=ps| | -p2| (22)
Lt ] -”ﬁrll_

where u is the unknown vector of the order m x 1 at any time level t"*! and A and B are
the coefficient square matrix of order m x m with a triangular structure.

4.1.1. Consistency

We investigate the consistency by using the Taylor expansion on the point (i,n).

The Taylor expansions of u?“, u?_l, ul g, ul g, u?le, u?jzl are as follows:
ou  (At)?0%u  (At)3d%u
1jl+1 ~ Al— - ___ e
Y it tat + 2 ot2 6 ot +
22 333
! ot 2 o2 6 ot
ou  (Ax)29%u  (Ax)®d%u
R T N N @)
ou  (Ax)2%u  (Ax)®d%u
R R M R S R
ou ou ou %u  (At)? %u
L~ ul 4 At— — 2Ax— + 2(Ax)?* = — 2(AtAX) —— e
Uiy Rl Mgy =200 +2(A) o S AMA G e T
u ou o%u ?u  (At)?%u
n+1 n 2
Ul 4+ At— +2Ax— +2(Ax) == + 2(AtAx) —— — 4
uigy AU+ At 20 g +2(Ax) TG F2AMAY) GE e T

By substituting Equation (23) into (18), we obtain the following;:
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ou ou o%u Pu | (At)*%u
n ou ou 27 _ . R “ e
P2 (ui At = 28x5 4 2(8x) 55 — 2(AHAX) 5o + S5 o )

2352 3133
—i—pl(u?—l—Atau—i-(At) Pu (A1 Pu )

a2 w6 P

ou ou 0%u u  (At)? %u
n 27 — — DY
+ (ui + At 20x =+ 2(A0) 5 + 2(AAX) g e )

ou  (Ax)?3*u  (Ax)3d%u
" n_ Ay 2H e -4
= P3P (ul Axax Ty e 6 o

ou  (Ax)?9%u n (Ax)3 %u _ >

1 ny AxH s .
+ 6p2<”1+ %2 T e o

(24)

Simplifying Equation (24) leads to the following equation:

ou ou
5t (palx — lépzAx)Axa (25)

(Ax)? \ d*u (AH)? N\ d*u
+ (4(AX)2p2 — 5 P4 @ + (At)sz + > pP1 W =0,

(p1— 14p2 — p3 — pa)uj + (p1At + 2paAt)

Further simplification of Equation (25) leads to the following equation:
du  du ( 1 Ax) 0%u

g (Bh L BRAL L )% (g Ao
i Ax ' 12(Ax)? ot ' ox 2 ) ox2

2 2 2 2 2
+<31<At) Uy (At))&u_ol

12\ Ax 2 (Ax) 2 2 Jorz

(26)

When At — 0 and Ax — 0, Equation (26) is not consistent, and hence, we set
At = (Ax)? to obtain the following equation:

32 ou  Ju Ax\ 0%u
n 2422 3 = il Bl
ul + ((Ax) + 12Ax+(Ax) —I—l) 5 oy <1+ > )E)xZ
(At)*  (Ax)®  30(Ax)*  (Ax)® | (Ax)*\*u
+(2 Pttt ) Y @7)
When Ax — 0, Equation (27) leads to the follow equation:
ou ou du

Therefore, the original Equation (14) is derived, indicating that the scheme exhibits
conditional consistency when At = (Ax)3.

4.1.2. Stability

The Von Neumann stability analysis is used to investigate the stability region for the
finite difference schemes. First, we define the following equation:

2~ —ult = e/, (29)
where I} is exact solution, u!' is numerical solution, ¢ is the amplification factor, and
w = AtAx is a phase angle, where the phase angle ranges from [—7, 77]. The following
results are obtained by applying Fourier series analysis to the terms in Equation (18):
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n _ an,jAtiAx
uj =gt
u?j-zl _ gn-‘rle]At(z—Z)Ax
n+1 — gn+1,jAt(i)Ax
u; = g ?] ( )
u?:zl _ écn+1e]At(z+2)Ax 20)
“;‘1—1 _ gnejAt(i—l)Ax (
u?:ll _ écnfle]At(zfl)Ax
n _ xn,jAt(i+1)Ax
Ui =T
u?il _ gnfle]At(z)Ax’

By substituting Equation (30) into (18), we obtain the following;:
m (§n+1€jAt(i—2)Ax> +p <€n+1ejAt(i)Ax) +p1 (§n+1ejAt(i+2)Ax> = (16p; + ps) (érnejAt(i—l)Ax) @31)
+ps (gn—lejAt(i)Ax) +16p; (énejAt(i-i-l)Ax),
By simplifying Equation (31), we obtain the following;:
é—n+1(ple—2jAAx + ot PlesztAx) _ C”((16p1 + p4)e—jAtAx + 16plejAtAx) + pggn—l, (32)
Further simplification to Equation (32) leads to the following equation
&2 (Pl + s5pe20BY pze—ZjAtAx> _ é(pg + p4e—jAtAx + 16p2ejAtAx) —0, (33)

Since |&|> < 1 from the Von Neuman stability analysis, we have the following:

4(3Ax +8)

—2 < At 34
3Ax2 +6Ax + 16 - (34)

The HUPFD scheme is stable, which implies the scheme is convergence since is stable
and conditionally consistent when At = (Ax)3.

4.2. Solving the Linear ADR Equation Using the HUPFD 2 Scheme

d
Since the coefficient of a—u in Equation (14) is positive, we use Equations (8b)—(10) to

x
find the UPFD scheme. Therefore, the HUPFD discretized Equation (14) is given by the
scheme below:

“?H — U ”?J:rll —uig _”?jzl +16uf, — 30”?“ +16u; | — ”?jzl ntl
AE T 2Aax 12012 —u, (39

which simplifies to the following;:

w4 ( 1, 30 +1)M?+1

12Ax2 2 At T 12Ax2
1 n+1 __ 1 n n n 1 n 36
T a2 = at T a2 (ufpq +ufq) + Ay i1 (36)
1 30 1 1 1
L t —_ - 1, = — = ——F, = —, d th :
U1 = nr T ioaxd Tl 92T gayr %8 T qppr 54 T pyp A0 thus
siul ™+ spul o squl )l 4 sgult = s3(16uf g + 16uf ) + sguf + 16spuf ;. (37)

Equation (36) is simplified to the following equation:

Au"™t = Bu" + 4", (38)
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where: ) o
s1 s s3 0 0 --- 0 M'f“
. un+l
0 S1 Sp S3 0 s . Ll%-H
3
s3 0 s s2 s3 :
Al=10 & 0 & 0 . 0| . | (39)
0 0 s3 0 & S3 :
' so| [umth
i 0 S3 0 51 | _uZ;Ll
[ sy 16s3 0 0 0 0 ][ uf ]
. n
1653 + 52 54 1653 0 0 Z%
3
0 16s3 + s» S4 1653 0 :
Bu" = 0 0 1653 + 5o 54 1653 0 s
0 0 0 16s3+5s, sy . 0 .
: . . .. .. 1653 ul}:lfl—l
i 0 e e PN O 16S3+52 S4__1,[Z1_
and:
(1] [
0 0
0 0
" = S3 — S (40)
43 _”nmill_

where u is the unknown vector of the order m x 1 at any time level t"*! and A and B are
the coefficient square matrix of order m x m with a triangular structure.

4.2.1. Consistency

: n+1 ,,n—1 . n n n+1 , n+1 . :
The Taylor expansion of u} ™", ui’ ™, ul_,, uil Uy, uly s obtained from (23). By sub-

stituting Equation (23) into (18), we obtain the following;:
Ju ou 0’u u  (At)?%u )

n —_— — 27 —_— — — ...
pQ(ul +At8t ZAxax +2(Ax) iy 2(AtAx)atax+ >zt

292 333
—l—pl(u?—l—Atau—l-(At) o“u  (At)° o°u >

a2 et e

Ju ou
ou  (Ax)29%u  (Ax)3d%u

— g n_ Ay¥ oar L.

= p3u; + p4 (ul Axax + 7 92 6 9 + )

ou  (Ax)?d%u N (Ax)3Pu >

n — — .
+ 16p2 <ul —l—Axax + 7 92 6 93

u  (At)?%u
dtox 2 o2

%u
+p2 (u}“—i—At +2(Ax)2@ + 2(AtAX) =—— + =5 T

(41)
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Simplification of Equation (41) leads to the following equation:

ou ou
(p1 — 14py — p3 — pa)ul + (P10t + z;azAt)g + (paBx — 16p2Ax)Ax£ (42)

» (Ax)? ou 2 (At)? %u
+ (—4(AX) P2 P4)axz (@A) 2+ ==p1 ) 55 =0,

Futher simplification of Equation (42) leads to the following equation:

uj + At+ 5241 +At+1 a—”+a—”— 1+g P
' Ax ' 12(Ax)? ot ' ox

ox2
31 2 1(AD2 (AD? (A1)2) 92
+<12< ) t gttt )agzo,

When At — 0 and Ax — 0, Equation (43) is not consistent, and hence, we set
At = (Ax)? to obtain the following equation:

(43)

32 ou du Ax) 0%u
n 2, V- 3 i it I
ui—|—<(Ax) —0—12Ax+(Ax) +1> 5 Ty <1+ 2)83(2
(AP (Ax)®  30(Ax)* | (Ax)® | (Ax)2\Q*u
+<2 Tt Tt e =Y 44
When Ax — 0, Equation (44) leads to the follow equation:
ou ou du

Thus, the original Equation (14) is obtained, which implies the scheme is consistent.

42.2. Stability

The Von Neuman stability analyses is applied to terms in Equation (37). By substituting
Equation (30) into (37), we obtain the following:

gn+l (51 | 5pel MY | 5pp2jANx +5362jAtAx) _ 6”((1653 _‘_Sz)efjAtAx 1 16850/08% +53>, (46)
Since |¢|> < 1 from the Von Neuman stability analysis, we have the following

1
14— <At 47
S “7)

The HUPFD scheme is stable, which implies the scheme is convergence, since it is
stable and conditionally consistent when At = (Ax)3.

4.3. Solving the Linear ADR Equation Using HUPFD 3 Scheme

In this section,the linear ADR equation is solved by the fourth order UPFD scheme.
By substituting Equations (11b)—-(13) into (14), the following equation is obtained:

u?“ —ul N —ull , + Su?jll —8ul' |+ u?jzl ;1121 +16uf, | — 30u?+l +16u’ | + u?_*zl o )
At 12Ax B 12Ax2 P
By simplifying Equation (82), the following is obtained:
1 1 w1 1 30 1 8 1
_ - 1 n+ n+1 n+1 49
(12Ax * 12Ax2) At 12Ax2 + oAyt 12822 "i+2 49)

— (.l +—8 uy +iu”+716 A
T \12Ax2 T 12Ax ) LT AT T 12AX2 7L T 1oAY
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Let s L—|—;s —l+i+1s _ 8 s - L
! 12Ax  12Ax27 2 T AT 1282 TP T 12Ax" TP T 12A0%
s—16+85—16s—1s—i
T 2A2 T 12ax7 70T 12Ax2777 T 12Ax7 0T AF
Equation (83) is simplified to the following equation:
spufy +souf T b syl squllly = ssufl g+ seully +syully + ssuf, (50)
The fourth-order UPFD scheme to solve linear ADR equation is as follows:
Au™ = Bu" +d (51)
where: i i
Sy S3 Sy4 0 0 0 ugH_l
un+1
0 s s3 s34 O u%H
3
S1 0 k) S3 S4 :
1 . :
Au"t = 0 S1 0 Sy S3 T 0 . (52)
0 0 51 0 52 S4 :
: s3 ”Z:lll
_0 51 0 52_ _u;l;'r_
[ss s¢ s 0 0 - O] uf ]
Uy
s5 sg S¢ sy O !
0 S5 S8 Se Ss7 :
Bu" = 0 0 S5 Sg  Se o0 : (53)
0 0 0 S5 S8 S7 :
Teose| Uy
10 0 s5 sg| | um |
and:
(spufl | [ssup™™]
0 0
0 0
d" = —
[saun ] Ls7up )

where u is the unknown vector of the order m x 1 at any time level t"*! and A and B are
the coefficient square matrix of order m x m with a triangular structure.
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4.3.1. Consistency

n+1 un—l ult n n+1

The Taylor expansion of u}™ ", u ™, ul' 4, ull, ,ui"y,
stituting Equation (23) into (84), we obtain the following;:

8 " 9At  8At ou 7 1 \ou d%u
(m“)”f + (um%m@””l)aﬁ <6_6Ax>ax_ax2
N (3(At)2 N 21(At)? (At)2>a2u (At A At ) Pu 0
3Ax  12(Ax)? 2 ) ot? 4  12Ax  12Ax% ) otox

u?jzl is obtained from (23). By sub-

when At — 0, Ax — 0, the original reaction-diffusion equation is not produced, which
implies the fourth order of unconditionally positive on advection diffusion reaction equa-
tion is not consistent.

4.3.2. Stability

The Von Neuman stability analysis is applied to terms in Equation (84). By substituting
Equation (30) into (84), we obtain the following:

51 (gnJrlejAt(ifZ)Ax) tsp (gnJrlejAt(i)Ax) + s (§n+l€jAt(i+1)Ax>
oy <§n+1ejAt(i+2)Ax) — 5 (gnejAt(i—l)Ax) (54)
+sg <€n+1ejAt(i+1)Ax) ts ((:nejAt(i+2)Ax) +sg (é—n—lejAt(i)Ax)’
By simplifying Equation (91), the following is obtained:
&2 (SleijAtAx T 59 4 53elBY 4 S4erAtAx) - g(SSEﬂAtAx 4 sgelMAY 4 S7EZjAtAx) 55 =0, (55)

Since |¢|? < 1 from the Von Neumann stability analysis, the following is obtained:
2 2 2
oM N (7 s NN T
8Ax  3(Ax)? 8Ax  3(Ax)? 12Ax 4Ax  3(Ax)?

7 \? 7 7 \?
2 (==
12Ax 4Ax ' 3(Ax)2

At <

and:
77 . 6 N, |( 77 6 AN N7 N (7 7
24Ax  (Ax)?2 2 24Ax  (Ax)2 2 12Ax 4Ax  3(Ax)?

7 \? 7 7 \?
21— ) - ([——+——
12Ax 4Ax ' 3(Ax)?

The scheme is not consistent but stable, implying that the scheme is not convergent.

At >

(57)

5. Implementation of the Higher-Order Unconditionally Positive Finite Difference
Schemes on the Nonlinear ADR Equation

In this section, we set f(t, x,u) = ru(1 —u), and U, = 0 in Equation (58), which yields
the nonlinear reaction diffusion equation given below:

ou %u

g—Dﬁ =ru(l—u) (58)
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with initial and boundary conditions given by:

0.7¢~0(x—x0)? |x — x| < 0.06
,0) = ! = 59
u(x,0) { 0, otherwise (59)
u(0,) =0, 0<t<T
u(1,t) =0,
where o = 80, xy = 0.5 [1].
With the exact solution given as:
1
u(t,x) = 5 (60)
11—/
1+ u(ch,O) exp (—Zrt + 6%\/ 6Drx)
Vu(x,0)exp <6D\/6Drx>

where D = 0.0002,r = 0.05.

The discretization of the nonlinear ADR Equation (58) using Equation (10) is given below:

utth — it b —M?I; +16ul,  — 30u !+ 16ul | — ult}
2At 12Ax2

= rul — tpaxu Y, (61)

By simplifying Equation (61), the following is obtained:

1 30 +1 D +1, n+l D
<2At + 12(Ax)2 + rumux>u;’ + 12(Ax)2 (u?Jrz +ui, ) = 12(Ax)2 (16”?—%1 + 16”?—1)
1
ny - ,n-1
o+ ol (62)
1 30 D 1
Lets; = o + —— J$3= 53 = ——, and thus:
CL91 = oAr T 2ax T 52T paner 3 T gap AN thus
Szuf-ljzl + slu;“l + szu?jzl = 16spul_ | + rul 4 16spull | + s;:,u?fl, (63)
Equation (63) is simplified to the following equation:
Au™t = By + 4" (64)
where: i o )
s 0 s 0 0 .- 0][uit!
un—H
0 S1 0 S 0 %_H
U3
52 0 51 0 52 :
1 ) :
ATi=10 5 0 s, 0 .o0|| . | (65)
0 0 S2 0 S1 S2 :
: 1
0 u”mtll
_0 S2 51 _u%*
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[r 16, 0 0 0 -+ O [ ut
. u
16, r 16s, 0 0 u%
3
0 16s; r l6s, O .
Bu" =1 o 0 16s, v 16sy . 0 - (66)
0 0 0 16s, 7 0 .
. .. . . 1652 l/l:lnil
|0 0 16s, r || ul |
and:
R
U3
d=s3| | (67)
U1
L

5.1. Consistency

Consistency of the scheme is investigated by using the Taylor expansion on the point
(m, n). By substituting Equation (63) into Equation (23), the following equation is obtained:

ou ou ,0%u u  (At)? %u

ou (A2 %u  (At)d3u y )

n oy A" o U
+51<”1+ a2 o 6 of

$2 (uf + At

ou ou o%u u  (At)?9%u
n 2 e
+5s <ui + At o —|—2Axax +2(Ax) 352 +2(AtAx)atax t et )
ou  (Ax)?9%u  (Ax)3d%u
= T Ax— ~ Z ... n
= 16s; (uZ Ax Y + 7 32 6 93 + + ru;

ou  (Ax)?2%u  (Ax)33u

n —_— —_— DY

+ 16s7 (ui + Ax o + 7 92 T (68)
ou (A2 %u  (At)d3u . )

+S3<M?—Atat+ > ﬁ_'— 6 98

By simplifying Equation (68), we obtain the following:

2

Ju o0“u
_ _ n hiad _ 2 s
(s1 — 30s; 53)1/[1 + (ZAtSZ + Atsy + Ats3) o5 + ( 12(Ax) Sz) 2 (69)

b (B2 (A1) \u
+ <(At> S —+ TS] — TSB ﬁ = 0,

Further simplification of Equation (69) leads to the following outcome:

2AtD N 30At ou aiu
12(Ax)2 "~ 23(Ax) ot ox2

(At)2D  30(At)? | r(At) upex \ Pu
* (12(Ax)2 + 24(Ax) * 2 )atZ =0 (70)

rumaxu? + (1 + + rAtumux>
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When At — 0 and Ax — 0, the scheme becomes:

ou Da2u

5 P32 = U — TUmayU. (71)

Thus, the original PDE is obtained, which implies that the scheme is consistent.

5.2. Stability

The Von Neumann stability analysis will be the one to focus on to obtain the stability
region for the finite difference schemes. Firstly, we define:

2 & iy, — up, = ¢/, (72)

where i}, is the exact solution, u};, is the numerical solution, ¢ is the amplification factor.
and w = AtAx is a phase angle, where the phase angle ranges from [—7t, 7).
By substituting Equation (72) into (58), the following is obtained:

gnJrl (SzefsztAerSl+SZ€2fArAx) _ gn (16szefjAtAx Y+ 1652€jAtAx) + 6117183, (73)

Equation (73) is simplified to the equation below:

(257 cOS(2AtAX) + 51)& — (3257 cos(AtAX) +7)& —s3 = 0, (74)
— Vb2 —
By using the quadratic Equation § = W, we obtain the following:

(32s; cos(AtAx) + 1) + \/(3252 cos(AtAX) + 1)? + 4s3(25, cos(2AtAX) + 57) -
6= 2(2s7 cos(2AtAx) + 1) o @)

By using the Von Neumman condition | ¢ ’< 1 to Equation (75), where
| € |= V(R(2))2+ (3(¢))?, the following is obtained:

(3255 cos(AtAx) + 1) + \/(3252 cos(AtAX) + 1)* + 453 (255 cos(2AtAX) + 57) 76
6= 2(2s7 cos(2AtAx) + 1)  (76)

By simplifying Equation (76), the following equation is obtained:

, (32sycos(AtAx) + 1) = \/(3252 cos(AtAX) + 1)? + 4s3(2s cos(2AtAX) + 57) -
o= 2(2s; cos(2AtAX) + s1) 77

for w = AtAx:

(3255 cos(w) + )+ 1/ (3252 cos(w) + )2 + ds3(252 cos(2w) +51)

HE S
5 cos(2w) + s1)

, (78)

To find the region of stability, we considered an approach followed by Hindmarsh,
and Sousa, where two cases are considered; this the case corresponding with w = 7.
32D

W + 61’1/lmux + 2r

8D, N\, 3D \¥
3(Ax)2 e 12(Ax)?

At < (79)

and:
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>>D + 6ru
72 max
At > 3(8x) 5, (80)
(Ax)2 Hmax 12(A)2
thus:
D + 6ru 32D + 67Uy + 21
3(Ax)2 e 2(Ax)? e
5 > <At < 5 5 (81)
(Ax)? Hmax 12(A)? 3(Ax)? e 12(Ax)?
6. Solving the Nonlinear ADR Equation by Using HUPFD 2
In this section, we solve the linear ADR equation by the HUPFD 2 scheme.
By substituting Equation (10) into (58), the following equation is obtained:
utth — g1 L uf' , + Sufjll 8ul 2 + u”Jrl _ szl +16ul', | — 30uf ™+ 16ul | +ult)
2At 12Ax 12Ax?
ulth (82)
By simplifying Equation (82), the following is obtained:
1 1 n+1 1 30 1 8 1 1 1
1 )unt n+ ut
(12Ax + 12Ax2> Tloar P e TH)M T T oAt T poaative
16 8 1 -1 16 1,
_ 0 — ", 83
<12Ax2 + 12Ax> Mt oAt T Attt T oaytive (83)
Lts—i+és—i+30+1s—i L
COUT oax T 12ax2 P T 2t 12042 37 12ax 1282
s—16+85—16s—1s—i
P T 2Ax2 T 128x7 0T 12842777 T 128x7 8 T 2AF
Equation (83) is simplified to the following equation:
syt + soul T 4 ssul i+ sw?jzl = s5ul_y +seUl'q + syuly +ssul (84)
The HUPFD 2 scheme to solve nonlinear ADR equation is as follows:
Au" T = Bu" +d (85)
where:
[sp s3 s, 0 0 --- O] TH_
un+1
0 Sp S3 S4 0 u%—«—l
3
S1 0 S 53 S4 .
1
Aut = 0 s 0 Sp» 83 0 (86)
0 0 S1 0 k) S4 :
s3] |,
_0 51 S| _ufrfl
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0 Se 57 0 0 - 0 uﬁl
. ug
S5 0 S6 S7 0 ul
3
0 S5 0 S6 S7 :
no_ .
Bu" =10 0 s5 0 s . 0 (87)
0 0 0 S5 0 s7 :
: . n
© 56| [ Uy
1 0 0 ss O] [ up |
and:
_u¥_
u;
u3
d258
[

(52 +1)

6.1. Consistency

By using the Taylor expansion given below, the following system of Equations
are obtained:

N A% N <A2t>2%;%t (A;Pé%
=t~ u] —At%—”t‘ = (A;)Zz;%l + (A;)Bg%’
ul | ~ull — Ax g% (A;C)Z g; (Ag)3 ?;3 8)
Uiy AU +Ax gl+( ;)23272[+( 6)3%
Wt~ At onx s a(a 2 o T L BETL
R R e aal -
uify ~ uf +At% Ax g—” - (A;)Z 322 +1 5 (AtAx )aa:a + (Azt)z ?;2 +
ull y ~ ul +2Axg—u +2(Ax )23 -+ S(A )33 LR
By substituting Equation (88) into (84), we obtain the following;:
n+<9At 4 8At +At+1)au+(7 1>au_32u
i 12Ax ' 3Ax2 ot 6Ax | 9x  ox2
2 2 2
i <3(322 1221((29?)2 + 2) >?9f121 " (A4t - 12AAtx 12AAtx2) aataljc =0 (89)

when At — 0, Ax — 0, the original reaction diffusion equation is not produced, which
implies the fourth order of unconditionally positive on advection diffusion reaction equa-
tion is not consistent.
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6.2. Stability

By applying the Fourier series analyses to the scheme (84), we then obtain the following;:

u? — gnejAtiAx

u?:rzl — §n+lejAt(i72)Ax

u:}+1 — §n+1ejAt(i)Ax

u;(l_:-zl — érn—i-lejAt(i-‘rZ)Ax

M?,l — gnejAt(ifl)Ax ©0)
”?H — §n+1‘ejAé(i+1)Ax

u?+2 _ Cne]At(H-Z)Ax

u;z:ll — gnflejAt(ifl)Ax

1/!?+1 — é'nejAt(i-‘rl)Ax

1 — énflejAt(i)Ax

1

By substituting Equation (90) into (84), we obtain the following;:

51 (gn—i-lejAt(i—Z)Ax) +5 <§n+1ejAt(i)Ax) +s3 (Cn—l—lejAt(i—&-l)Ax)
54 <§n+1ejAt(i+z)Ax) — 5 (gnejAt(i—l)Ax) 91)
+ 56 <§n+lejAt(i+1)Ax) tsy <§nejAt(i+2)Ax) 1 sg (gnflejAt(i)Ax),
By simplifying Equation (91), the following is obtained:
&2 (Sle—ZjAtAx T 59+ 53elBY 4 S4e2jAtAx) _ g(sse—jAtAx T 5ol 4 s7erAtAx> p— 92)

Since |¢|? < 1 from the Von Neumann stability analysis,the following is obtained
7 44 7 44 2 7 \* 7 7 \?
<8Tx ~ 3(Ax)? _4> iJ <8Tx ~ 3(Ax)? _4> 3 (12Ax) B <m + 3(Ax)2> }

2 (i25e) ~ (e *s70)

At < , (93)

and:
77 . 6 NN, (7o 6 AN (7N (7 T
24Ax - (Ax)2 2 24Ax  (Ax)?2 2 12Ax 4Ax  3(Ax)?

7 \? 7 7 \?
2oz ) — (ot s
12Ax 4Ax - 3(Ax)?
The scheme is not consistent, but is stable, and that implies that the scheme is
not convergent.

At > (94)

7. Solving Nonlinear ADR by Using HUPFD 3

In this section, we consider solving nonlinear ADR equation by using the HUPFD 3
scheme (82). By substituting (82) into (58), the following is obtained:
W —w —ul' T+ 16ul = 30ul T+ 16ul | — Ul
2At 12Ax2

= ru} — umaxu?H, (95)

where by using the freezing coefficient technique, u? is replace by utty,x and u is frozen to

a constant 4,5y, which represents the maximum value of the solution u. By simplifying
Equation (95), the following is obtained:
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1 30 +1 D +1 0t D
(ZAt + m + 7’”max> u? + m (er-l+2 + M?_z ) Zm (16M?+1 + 161/[?71)
1
n = n-l
+ ru; +2Atul , (96)
1 30 D 1
Lets; = 5+ 5 = ——,53 = ——, and thus:
U1 = oar T oAy T Mman 52 = oA a%8 T gpp AN thus
soul o+ spul 4 szu?:; = 16spu! 4 + rul' + 16spul’, | + szul ! (97)
The HUPFD 3 scheme to solve the nonlinear ADR equation is as follows:
Au"t = Bu" 4 d" (98)
where: i o )
s 0 s 0 0 07 [uj™
un+1
0 S1 0 S 0 u%+1
3
s 0 s 0 s .
1
At =109 5, 0 s 0 0 , (99)
0 0 S 0 S1 S2 :
Do 1
: U
_0 S2 81 _qul_
[ r 16s; 0 0 O 0 ][ uf
Uy
16s, r 16s, 0 0 un
3
0 16s, r 16s, 0 .
Bu' =110 0 165, r 16s) 0 (100)
0 0 0 16sp, r 0 .
: 165y | |ul_,
| 0 0 16sp r || up
and:
un
Uz
d= S3
[t

7.1. Consistency

Consistency of the scheme is investigated by using the Taylor expansion on the point

(m,n).
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ou (M) Pu (A’ Pu
i ot 2 o2 6 of
) du  (A?Pu (At ou
i i ot 2 o2 6 ot
ou  (Ax)29%u  (Ax)3%u
n ~ yh _ - — — Y
Uig mup = Axar 4 9x2 6 ox3
u  (8x)2Pu | (Ax)?du
n ~ 1 - _— N 2
Mgt MU A T o 6 0x3
ou ou %u 0%u (At)? 9%u
n+l = _ — 2 5 - EYR o2
wlty ol At =200 4+ 2(Ax)% 5 — 2(AHAY) o+ T
ou du o2u O u (A1) u
n+l . n - — 22 YR 912
wlly Ml At + 200+ 2(Ax)P 5 +2(AAY) o+ S

(101)

By substituting Equation (101) into (97), we obtain the following:

_ - 27 % Z .
5 2Ax8x + 2(Ax) 2 Z(AtAx)atax + ST +

ou (A2 %u (A1)} Pu
n R E— .« ..
1 (”" M TR S TR TE

ou ou o%u ’u  (At)? %u
n - 27 —_— —_— DY
+5p (ui + At + 2005+ 2(Ax) 5 +2(MAY) o+ ST )

232 333
du  (Ax)*d7u  (Ax)’ d°u )—H’u?

n
- 1 Ax— — I
1652 <u‘ TR T 6

2 2 2 32
5 (“zn —i—Ata—u u ou *u  (At)* 0°u )

o, (AP (8P
ox 2 ox2 6 ox3

+ 165, (ul” +Ax—+

du  (AD?%u | (A1) du ) (102)

n_ R E— E— ..
+S3(”1 Myt " 6 B "

By simplifying Equation (102), the following is obtained:

d 9
(51 — 30y — s3)u” + (2Atsy + Atsy + Ats) a*ltl + (—12(Ax)252) oy

52 (103)
(At)? (At)s )8214 _

2 _— _— =
+ <(At) Sy + > S1 R T 0,
Further simplification to Equation (103) gives the following outcome:

o
ot 9x2

TUmax ! + (1 + 2AtD + S0At + rAtu )
! 12(Ax)?  23(Ax) max

( (At)?D N 30(At)? N r(At)Zumax>82u
12(Ax)?  24(Ax) 2 or?

=0, (104)

When At — 0 and Ax — 0, the scheme becomes:

Jou %u
T D@ = TU — TUpax U (105)

Thus, the original PDE equation is obtained, which implies that the scheme is consistent.

7.2. Stability

Von Neumann stability analysis is the focus on to obtain the stability region for the
finite difference schemes. Firstly, we define:

2l il — ult, = EelBAY, (106)
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where i, is exact solution, u}, is numerical solution, ¢ is the amplification factor, and
w = AtAx is a phase angle, where the phase angle ranges from [—7r, 7]

u;z 1 — gne‘jAtz:Ax
”?jz _ €n+1e]At(l—2)Ax
uitl = Enl At A
1
1 e
uzr}jz — gnJrl‘eA]A)f‘(lerZA)Ax 107)
u?fll — é'ne] 4t(z—‘ )Ax
u?:l — gnflle]At‘(zfl)Ax
I
ne _oan—
! _ gn ol (i)Ax
By substituting Equations (107) into (97), the following is obtained:
gnJrl (spe 2D 451 45pe2MIAT) & (165267]&&‘ T 16SZejAtAx) + 6117153, (108)
By simplifying Equation , the following equation is obtained:
E1 (255 cos(2AtAX) + 51) = E"(32cos(AtAX) + 1) + & s, (109)
By simplifying Equation (109), the following is obtained:
(255 cos(2AtAX) + 51)& — (3255 cos(AtAX) 4 )& —s3 =0, (110)

By using the quadratic Equation ¢ = , the following is obtained:

—b £+ Vb2 — 4ac
2a

(32sp cos(AtAx) +7) £ \/(3252 cos(AtAX) + r)? + 4s3(25 cos(2AtAX) + s1) 1
6= 2(2s; cos(2AtAX) + s1) (1D

By using the | & |2< 1, where | & |= v/(R())2 + (S(&))?, thus:

(3255 cos(AEAX) +7) £ / (3255 cos(AEAX) + 1)? + s (255 cos (20AX) +51) .
6= 2(2sp cos(2AtAx) + s1) - (112)

Further simplification of (112) leads to the following:

(3255 cos(AtAx) + 1) + \/(3252 cos(AtAX) + 1)? + 4s3(25 cos(2AtAX) + 51)

2_
[e= 2(2s7 cos(2AtAx) + s1)

, (113)

For w = AtAx:

(32spcos(w) + 1) £ \/(3252 cos(w) 4 7)? + 4s3(255 cos (2w) + 51)

¢ = 2025
2 cos(2w) + 1)

, (114)
To find the region of stability, we considered an approach followed by Hindmarsh
and Sousa, where two cases are considered, in this the case corresponding with w = 7.

32D
2(Ax)?

8D N\ (,_ 3D \¥
3(Ax)? max 12(Ax)2

4+ 6F Uy + 21
At <

(115)
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and:
55D 4 6ru
72 max
At > 3x)° - (116)
(Ax)2 tmax 12(A)2
thus:
55D 32D
——— + 6T Uy ——— + Oy + 21
2 2
3(Ax) 2(Ax) (117)

5 5 <At < 5 5
ﬂ_FZru — r_ﬂ iD_Zru —7r — r_ﬂ
(Ax)? tmax 12(A)2 3(Ax)? e 12(Ax)?

The scheme is not consistent, but is stable, which implies that the scheme is
not convergent.

8. Implementation of the UPFD and the HUPFD Schemes on the Linear
Schnakenberg Model

The linear Schnakenberg model is given by the equations below:

ou ou %u

g‘i’Cg = (qlfl)u“quv‘k‘ul@, (118)
Jv v 9%

T Ut B v (119)

Subject to the following initial and boundary conditions:

u(x,0) =e%, 0<x<10
{ u(0,t) = e, 0<t<0.85 (120)
ux(10,t) = —u(10,t), 0<t<0.85
and:
v(x,0) =e7 %, 0<x<10
{ 0(0,t) = ¢, 0<t<085 (121)
0.(10,£) = —v(10,£), 0 <t <085

with constants s =5,c =0,q1 = g2 = 0,41 =1, = 5.
8.1. Solving the Linear Schnakenberg Model Using the UPFD Scheme
The linear Schnakenberg model is solved by using the UPFD . Since the coefficient

0
of % in Equation (14) is positive, we use Equations (5b)—(7) to find the UPFD scheme.
Therefore, the UPFD discretization of Equation (14) is given by the equation below:

n+1 n n+1 n n n+1 n
i W i nl Uiy —2u; T H gy
= -1 122
At +C Ax (‘h )M (’72+5)U +‘111 (AX)Z 4 ( )
oty ol _ ol | — 20 ot
i N i +c i o i qlun+1 420 n+1 + 1o i+1 (Azx)z i—1 (123)

which simplifies to the following:

1 ¢ H1 n+l _ n K1, n n ¢ 1
(At + A (ql ) (Ax)2>u1 - (QZ+S)U1 + Ax(ui+1+ui—1)+ A u + Atul’

1 .“2 +1 +1 1 H2
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1 c 21 1 27
L t — P - — 1 —_— P = ’ d th .
et s1 (At+Ax+(q1 )+(Ax)2> $2 (A+Ax+q2+(A) and thus
R C ) A O S B SR S (124)
t s P Axsy s LT Ay T Aty
1_ 1 n+1 1 H2
ot = _5”? T Al T A Xs) ot (Ax)?s; (V1 + ol 2

8.2. Solving the Schnakenberg Model Using the HUPFD1 Scheme
The Schnakenberg model is solved by using the HUPFDI. Since the coefficient of

)
—z in Equation (14) is positive, we use Equations (5b)—(7) to find the HUPFD1 scheme.
Therefore, the HUPFDI1 discretization of Equation (14) is given by the equations below:

un+1 —_yn u{d+1 _ u}"li
e = @ - DT (2 +8)ef,
1 1 1
N —ully 4+ 16ul’, | —30ul T+ 16ul | — ul) 126
# 12(Ax)? ’
v’.”‘l — o U'-H_l — o
i N LI . i—1 lhun_H _ qun+1
1 1 1
N —olly + 160}, — 300/ + 160 | — o', a2
#a 12(Ax)? '
which are simplified to the following:
dq ﬂ+1 + dzu?j_zl + dzu”l = d41/ln + (qZ + S) *+ 16d21/l?+1 + dg,u? 1 (128)
p Yl+1 _|_ pZU:’l—:-zl _|_ pzvn-i-l +q1un+1 _ d ,Ui’l"rl + pS,Ul 1 _|_ 16pzvl+l (129)
1 c 3011 13 c 161 1
h = Az A T AN27 = I8 A2 = 7 T/ AN/ = X1’
where @ = Gt Ay T A 2 T oo P T A T a0 M T A
1 c 302 U2 c 16p2
= AT A TR R P2 a2 PP T ax T 20
Equations (128) and (129), respectively, are simplified to the following:
A"t = By +d%and  Aou"! = Byu" + d3, (130)
where: i o
a1 0 a 0 0 --- 0 Ti
n
0 m 0 a O u%+l
3
a 0 a 0 a :
1 . :
A" =10 4 0 a 0 . 0] - (131)
0 0 a 0 m az :
.. 0 un—i—l
—1
0 an 0 ai uig"'l
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[ay 16a, 0 0 0 0 ][ ut ]|
ul’l
az ag 16a, O 0 u%’
3
0 as as 16&2 0 :
Bu=\|o0 0 a5 ay 16m 0 (132)
0 0 0 ds ay 0 :
: ' 16ap | |ull,_4
| 0 0 az  ag || up |
and:
[l _u()’H_
0 0
0 0
dl = ay — a3 (133)
vl _”Zill_
and: ) o )
p1 0 pp 0 0 07 [oit!
Z]nJrl
0 pr 0 p O i1
3
p2 0 pr 0 po :
Azui’l+1 — 0 p2 0 P] 0 0 (134)
0 0 p 0 m P2 :
: . S 1
: . - 0 ot
0 p2 0 pi] [opt
[dy 16ps 0 0 0 0 ][ of ]
vi’l
ps dy 16py 0O 0 v%
3
0 p3 d4 16p2 0 :
B =10 0 p3 di 16p 0 (135)
0 0 0 Ps3 dy 0 .
’ 16;92 712171
_0 0 pP3 d4 1L ZJ% ]

and:
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ron - on+l
Yo Uy
0 0
0 0
di =ay| | —as| (136)
n n+1
LU L1

respectively, where u is the unknown vector of the order m x 1 at any time level "1 and
A and B are the coefficient square matrix of order m x m with a triangular structure.

8.3. Solving the Schnakenberg Model Using the HUPFD2 Scheme
The Schnakenberg model is solved by using the HUPFD2. Since the coefficient of

)
% in Equation (14) is positive, we use Equations (5b)—(7) to find the HUPFD2 scheme.
Therefore, the HUPFD?2 discretization of Equation (14) is given by the equation below:

yttl _gyn ult gy
i X L4 z+1Ax i-1 _ (‘71 _1)u?+1+(q2+s)0?
+1 +1 +1
e —ujly 16wl —30ui " +16ul | —ui, 137)
! 12(Ax)2
ot _gn ptEl ot
i N L4 z+1Ax i-1 _ _qlu?+1 _qzv?Jrl
+1 +1 +1
s vy + 160}, | — 300 + 160} | — v}, 138)
12(Ax)?
which are simplified to the following:
by byl byl + baul ) = byul + bsuf | + 16b3uf, 4, (139)
10! T 4 v+ vl + e3vf ) = g0l T+ 4ol + 160307 (140)
1 3041 c M1 1
here by = — — (g — by = s by = by = —,
where by = = -D+pons b = s B = page ™ = &
c 1641 1 302 c H2
b frd —_— , —= —_ , fd —_—, frd ,
5 28x T 2(an2 A T T DAz @ 2ax 12(Ax)?
£ 2Ax T 12(Ax)%
Equations (139) and (140) are simplified to the following;:
At = By + d”, (141)

where:
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-bl by by 0 0 0] _UgH_l_
un+l
0 by by by 0 u§+l
bsy 0 by by b3 .
A = 0 by 0 b b 0 (142)
0 0 b3 0 b b .
: . U 1
|0 by 0 by |uit?
[by  16b3 0 0 0 ][ uf
n
bs by 16by 0 0 y
3
0 b5 by 16bs O :
Biu =10 0 b5 by 16bs 0 (143)
0 0 b5 b4 0 .
; ' oo 16bs| |ut
0 0 bs by || up
and:
_“0_ 'u6‘+1'
0 0
0 0
dl = b3 — b3 (144)
[ i | -”Zvill-
and: ) o }
c1 C C3 0 0 0 'UgH_l
anrl
0 ¢g ¢ ¢z O A
U3
¢z 0 ¢4 ¢ c3 .
Azu}’lJrl — O C3 0 Cl C2 0 (145)
0 0 ¢ 0 c3 .
. s 017111—‘:11
0 g 0 o] _vgjl
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[dy 16c; 0 0 0 - 0]
. n
Cyq d4 16C3 0 0 Z%
3
0 C4 d4 16C3 0 :
Bou"=10 0 ¢ dy 163 . 0 : (146)
0 0 0 ¢ dy 0 :
l6cs U%*l
_O 0 Cq d4 1L ot ]
and:
(0] ugﬂ_
0 0
0 0
d=c3| | —c3| (147)
1
Kz _7’21?1_

respectively, where u is the unknown vector of the order m x 1 at any time level "1 and
A and B are the coefficient square matrix of order m x m with a triangular structure.

8.4. Solving the Schnakenberg Model Using the HUPFD3 Scheme
The Schnakenberg model is solved by using the HUPFD3 . Since the coefficient of

d
—Z in Equation (14) is positive, we use Equations (5b)—(7) to find the HUPFD3 scheme.
Therefore, the HUPFD3 discretization of Equation (14) is given by the equation below:

n+1 n _ _ n+1
it ( uf g+ 8ufll —8ul |+ u] 2)

L+c = (1 — Dul™ + (g2 +5)0}

At 12Ax
+1 +1 +1
b ::Lz + 16MH_1 - 3014;1 +16u} 4 u” o (148)
! 12(Ax)2 '
1 +
U?Jr B Uzy'l Y z+l + 8vz+1 801 1 + vn =g un+1 _ q20n+1
At 12Ax i i
+1 +1 +1
2 —vith 160}, — 3007 4160} | — v}, 149)
12(Ax)2 ’
which are simplified to the following:
equl 1+ ezuf‘jll +eqult + ew?j; = esu} + qs0} + esul',, + (8es + 16eq)uj' | + 16e4ul, ;, (150)

ol gl 4 8H00H + fol )+ fof ) = esol! + 16307 + fovl, + f50lq, (151)
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1 30y 8c c U1 M1
h - = (-1 ey = = e = ,
where er = 5 = (1 =D a2 = ar' @ = 128 T 2(an2’ @ T 2080
1 1 302 o _ 125 o U2
= MmN T M TR T R 2T Ay BT e 1T aax T (A
fs = 8c 164,
T 12Ax T 12(Ax)2
Equations (150) and (151) are simplified to the following;:
At = By +d”, (152)
where: ) - -
e1 €6 e4 0 o --- 0 UT—H
un+1
0 e e e O u%H
3
es 0 e e e .
A= | 3 0 e e - 0 (153)
0 0 e 0 ¢ (] :
' e ufntlll
_0 es 0 e1 | _u%+
[ e 16e4 0 0 0 0 [ up ]|
. n
8e3 + 16¢4 es 1664 0 0 Z%
3
0 8esz + 16¢4 es 16¢e4 0 .
Byu" = 0 0 8¢z + 16e4 es 1664 0
0 0 0 8es + 16es  e5 0
: . . 16e4 | |upy_4
I 0 0 Bes+16ey s || up |
and:
] [t
0 0
0 0
d;l =e3 — €3 (154)
[ i | _unmj-ll_
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and:

(f1 8 f3 0 0 07 [of]
Ug+1
fa f 82 f3 O i1
0 fi fi 8fL f3 :
N P Y 0 (155)
0 0 0 fi fi f3 :
S S ) 1
: ) ) i ) . 8f Ufﬂtll
10 0 fi A |o4t
[es 16f3 fo 0 0 0 1][ of ]
Un
f5 €5 16f3 f2 0 ZJ%
3
0 f5 €5 16f3 fz .
Bau"=10 0 f e 16f 0 (156)
0 0 0 f5 e fa :
f - . ep| o,
_0 0 f5 €5 1L ’U% ]
and:
(0] —ugﬂ
0 0
0 0
dy = f3 ~f3 (157)
k2 L %ill_

respectively, where u is the unknown vector of the order m x 1 at any time level t"*! and
A and B are the coefficient square matrix of order m x m with a triangular structure.

Theorem 1 (Solution positivity). Let u’(x) > 0,0 < ¢%(x) < 1, v%(x) > 0 for the numerical
scheme (18), (37), (124), (125), (128), (129), (139), (140), (150), and (151); we have u?“ >0,
0< g?”, v?” > 0, independent of the mesh step size [11], where g is the reaction term.

Proof. Let us assume that u?“ >0,0< g?” <109 >0 fori =01------ ,m,
n=0, - m.

Equations (19), (38), (51), (130), (141), and (152) is composed of a coefficient matrix
with strictly diagonally dominant tridiagonal matrix, with positive values on diagonal
and subdiagonals, which implies nonnegative inverse. Thus, the solution to the algebraic
system is nonnegative u?“ > (0and U?H >0,i=0,1,------ m.

Furthermore, it is observed that gi”H > 0 in Equations (19), (38), (51), (130), (141), and

(152). By applying the same consideration at each time level, we complete the proof. [J
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9. Numerical Results

In this section, we present solutions obtained by the positivity-preserving higher-order
methods for solving the linear, nonlinear ADR equations and Schnakenberg system of
equations. The validity of the method’s outcomes is verified by a comparative analysis
with the exact, Crank Nicolson, and NSFD solutions. The performance of the approaches
is evaluated by calculating the convergence rates, absolute errors, and computing time.
The numerical solution is represented by i; ;, while the analytical solution is denoted by u; ;.
The error is represented by the symbol ¢; j, and its magnitude is quantified by the Le-norm,
which is determined by the following formula:

||€i,n||0° = ||”i,n - ﬁi,nlloo = Max‘”i,n - ﬁi,n| (158)

The convergence rate is calculated by using the formula below:

.- logo (%)
toga (515

9.1. Numerical Results for the Linear Advection—Diffusion—Reaction Equation

Table 1 presents the convergence rates of the UPFD, Crank-Nicolson, NSFD, and HUPFD
solutions with respect to the time and spatial steps. The results show that the HUPFD1
approach shows a faster convergence to the solution compared to the UPFD, HUPFD2,
and HUPFD3 approaches. In Table 2, solutions obtained by the exact, UPFD, Crank—Nicolson,
NSFD, and HUPED 1, HUPED 2, and HUPFD 3 solutions at (t,x) = (1.33334,0.0002),
(2.6668,0.0004), and (4.0002,0.0006) are compared. Table 3 presents a comparison of the
infinite norm results obtained from the HUPDF methods developed in this study, with re-
spect to the Crank Nicolson and NSFD methods, along with their respective computational
times. The results show that the UPFD approach exhibits faster convergence to the solu-
tion compared to the HUPFD techniques. This is primarily attributed to the fact that the
HUPFD methods require an increased number of nodal points for approximating solutions
to the problem.

(159)

Table 1. Convergence rates for the linear ADR equation by the UPFD, NSFD, Crank-Nicolson, and
HUPFD with respect to varying Ax and At.

q(Aty)
Aty Axy UPFD  HUPFD1 HUPFD2 HUPFD3 O™ Ngpp
Nicolson
0.00005 0.6667 2.1675 2.5233 1.6978 1.0006 45606 2.0579
0.0001  0.6667 0.9973 1.0054 1.1996 1.0212 1.0051 1.9427
0.0002  0.6667 1.8201 1.9990 1.5640 1.0023 2.7372 1.8871

0.0004  0.6667

Table 2. Numerical results of the linear ADR equation at a fixed Ax = 0.6667 and At = 0.0001.

Exact UPFD Absolute Error Absolute Error Absolute Error Absolute Error
(x,t) Solution  Solution (Exact and HUPFD 1 (Exact and HUPFD 2 (Exact and HUPFD 3 (Exact and
" " UPFD) HUPFD 1) HUPFD 2) HUPFD 3)
(1.3334,0.0002) 0.0048 0.0048 3.0635 x 1077 0.0049 5.3037 x 10~ 0.0048 5.1776 x 10~ 0.0049 2.9297 x 10~
(2.6668,0.0004) 0.0185 0.0186 9.2639 x 10~° 0.0186 8.1664 x 10~° 0.0184 2.2392 x 107> 0.0188 39185 x 10~*
(4.0002,0.0006) 0.0709 0.0715 59143 x 10~* 0.0714 5.1625 x 10~* 0.0700 1.4136 x 1074 0.0722 2.4000 x 1073

The infinity norms of the proposed HUPFD methods are compared with the UPFD,
Crank-Nicolson, and NSFD methods in solving the linear ADR equation, as shown in
Table 3. In this example, the results demonstrate that HUPFD approaches preserve the
accuracy of the solution. The surface plots of the UPFD, HUPFD1, and exact solutions of
linear advection—diffusion-reaction equation are shown in Figures 1a to 2a.
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Table 3. Infinity norm results of the linear ADR equation by using the exact, UPFD, Crank-Nicolson,
NSFD, and HUPFD solutions.

(%,1) Exact UPFD Error HUPFD1  Error HUPFD2  Eror HUPFD3  Error N?c’:l‘;lgn Error NSFD  Error
u(:,00002) 11654  1.1654 00025 11654 00025 11655 00025 11653 00025  1.1654 0.0024 11654  0.0025
u(:,00004) 11657 11657 00026 11657 00025 11657 00025 11652 00027  1.1657 00025 1.1657  0.0024
u(;,0.0006) 11659 11660 00026 1.1660 00026  1.1660 00028 11652 00030  1.1660 0.0025 1.1660  0.0026

Time 0.001230 0.002748 0.002717 0.003089 0.002689 0.001033

(a) (b)
Figure 1. (a) UPFD solution of the nonlinear ADR equation. (b) HUPFD solution of the linear
ADR equation.

0.018

0.016

0.014

0.012

o
=

0.008

Absolute difference

0.006

0.004

0.002

(@) (b)
Figure 2. (a) Exact solution of the linear ADR equation. (b) Absolute error obtained by the

HUPFD method.

9.2. Numerical Results for the Nonlinear Advection Diffusion Equation

Table 4 presents the convergence rates of the UPFD and the HUPFD with respect to
the time and spatial steps. The convergence rate of HUPFD is slightly higher com-
pared to that of UPFD. The comparison of the exact, UPFD, and HUPFD solutions at
(x,t) = (0.3,0.06), (0.4,0.008), and (0.5,0.1) is presented in Table 5. Additionally, the com-
putational time for the UPFD and HUPFD methods are shown. The accuracy of the HUPFD
approach is slightly greater in comparison to the UPFD method. However, the UPFD
method exhibits low convergence rate as compared to the HUPFD method when solving
the linear ADR equation.

Table 4. Convergence rates for the nonlinear ADR reaction equation by the UPFD and HUPFD with
respect to varying Ax and At.

q(Aty)
Aty Axy UPFD HUPFD Crank-Nicolson
0.00005 0.6667 1.0002 1.0029 1.9634
0.0001 0.6667 1.0004 1.0058 1.9055
0.0002 0.6667 1.0007 1.0116 2.2109

0.0004 0.6667
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Table 5. Numerical results of the nonlinear ADR equation at a fixed Ax = 0.01, At = 0.05, r = 0.05,
and D = 0.0002.

Exact . . Absolute Error Absolute Error
(1) Solution UPFD Solution HUPFD Solution (gt and UPFD)  (Exact and HUPFD)
(03,006)  1.327 x 1077 3.9120 x 108 1.314 x 1077 9.346 x 1078 1.201 x 1077
(0.4,008) 527 x 1077 1.76 x 1077 5204 x 10~7 3.509 x 107 6.681 x 10~°
(0.5,01)  1.964 x 106 7.322 x 1077 1.933 x 106 1.232 x 106 3.195 x 108
Time 0.006 0.086

The infinity norms of the proposed HUPFD are compared with the UPFD and NSFD
methods in solving the linear ADR equation, as shown in Table 6. The findings indicate
that the HUPFD approach achieved slightly high accuracy (Figures 3 and 4).

Table 6. Infinity norm results of the nonlinear ADR equation by using the exact, UPFD, NSFD,
and HUPFD solutions.

(x,1) Exact UPFD Error HUPFD Error NSFD Error
u(:,0.1) 0.7101 0.6995 0.0106 0.7000 0.0101 0.6994 0.0107
u(:,0.2) 0.7101 0.6985 0.0116 0.7000 0.0116 0.6983 0.0118
u(:,0.4) 0.7101 0.6979 0.0122 0.7000 0.0122 0.6972 0.0129

T \\\{{\\\\\\\\‘\‘\ i
‘\\\\\\\\\\\‘\\\\\\\\\\\\\\\\\\\t‘“\“\“\“\“
. \\\\Q\t\\Q‘QQ\\\‘\‘\\\\\\\\\\\\\\\x\\\
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'\\\\\\\\\\\\\

\\;aii‘ii\t '\{\‘{&{\t\\\\\\\\\\\\R&\“\“\“\\\\\\\\\\\
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\\\
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’5’/\\\\\\ ity

i i

(a) :
Figure 3. (a) Analytical solution of the nonlinear ADR equation. (b) HUPFD solution of the nonlinear
ADR equation.
0.8 ‘
HUPFD sol
0.7 Exact sol
Crank sol
NSFD sol
0.6 F |
T \\\\\\\\\\\ 057
T \\\\\\\\\\\\\\\\\\ i |
’”"“‘}R‘t‘{“‘“Q{R\{{t‘t\ﬁ\%\\Q\\“\\“\*\{\“\“\“\\“ il
\\\\ “ .
i \\\\\\\\\\\\\\\\\\ !
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(a) (b)

Figure 4. (a) UPFD solution of the nonlinear ADR equation. (b) Comparison of the analytical and
numerical solutions of the nonlinear ADR equation.

Figure 5 show the absolute errors between the exact solution and HUPFD solution for
the nonlinear ADR against time.
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0.004 -
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Figure 5. Absolute difference between analytical and HUPFD of the nonlinear ADR equation.

9.3. Numerical Results for the Schnakenberg Model

Table 7 presents the convergence rates of the UPFD, HUPFD 1, HUPFD 2, and HUPFD 3
in relation to the time and spatial steps. The findings show that the HUPFD methods pro-
vide a slightly higher convergence rate compared to the UPFD, HUPFD2, and HUPFD 3
approaches while solving the Schnakenberg model. The solutions of the UPFD, HUPFD 1,
HUPFD 2, and HUPFD3 solutions at (x,t) = (1.33334,0.0002), (2.6668,0.0004),
and (4.0002,0.0006) are compared in Tables 8 and 9. Additionally, the computing times are
also provided. The results show that the HUPFD 1 approach has less computational time in
comparison to the UPFD, HUPFD 2, and HUPFD 3 solutions when solving the problem.
The surface plots of the UPFD, HUPFD1, HUPFD2, and HUPFD3 of the Schnakenberg
model are shown in Figures 6a to 7b. The figure demonstrates that the implemented
approaches achieve positivity of solution when solving the problem.

Table 7. Convergence rates for the Schnakenberg model by the UPFD, HUPFD 1, HUPFD 2, and
HUPFD 3 with respect to varying Ax and At.

q(Aty)
Aty Axy UPFD HUPFD 1 HUPFD 2 HUPFD 3
0.00005 0.6667 1.0002 1.0029 1.0027 1.0027
0.0001 0.6667 1.0004 1.0058 1.0055 1.0055
0.0002 0.6667 1.0007 1.0116 1.0109 1.0109

0.0004 0.6667

Table 8. Comparison of solutions u of the Schnakenberg model by using the UPFD, HUPFDI1,
HUPFD2, and HUPFD3 solutions.

(x, 1) UPFD Error HUPFD 1 Error HUPFD2  Error  HUPFD 3 Error
1(:,0.0002) 0.0048 0.0013 0.0050 0.0148 0.5254 0.0142 0.5254 0.0142
1(:,0.0004) 0.0182 0.0013 0.0198 0.0151 0.1456 0.0146 0.1456 0.0146
1(:,0.0006) 0.0690 0.0013 0.0788 0.0154 0.0403 0.0149 0.0403 0.0149

Time 0.048534 0.046653 0.057943 0.048868

Table 9. Comparison of solutions v of the Schnakenberg model by using the UPFD, HUPFD1,
HUPFD2, and HUPFD3 solutions.

(x, 1) UPFD Error HUPFD 1 Error HUPFD2  Error HUPFD 3 Error
1(:,0.0002) 0.0048 0.0030 0.5310 0.0186 0.5026 0.0108 0.5271 0.0161
1(:,0.0004) 0.0186 0.0029 0.1429 0.0187 0.1350 0.0108 0.1460 0.0163
1(:,0.0006) 0.0711 0.0029 0.0390 0.0188 0.0355 0.0108 0.0405 0.0164

Time 0.048534 0.046653 0.057943 0.048868
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Figure 6. (a) UPFD solution of the Schnakenberg system equations. (b) HUPFDI1 solution of the

Schnakenberg system equations.
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Figure 7. (a) HUPFD2 solution of the Schnakenberg system equations. (b) HUPFD3 solution of the

Schnakenberg system equations.

10. Conclusions

The HUPFD scheme was developed and used in this study to solve the linear, nonlinear,
and system of ADR equations. The goal of this study was to investigate the performance of
the HUPFD in various aspects, including stability analysis, consistency, convergence rate,
error, computational time, and accuracy. The findings show that the HUPFD performs well
as an approximation method to solve the ADR equations, thereby confirming its efficiency
and effectiveness. However, it is important to note that the consistency of the HUPFD is
conditional. Additionally, we noted that augmenting the order of the UPFD scheme results
in an implicit scheme that exhibits conditional stability and enhanced accuracy in terms
of time and space. Nevertheless, these schemes also possess certain limitations, including
requiring more computational resources than explicit methods. This study has the potential
to be extended to a two-dimensional case in order to replicate real-world challenges. It is
possible to build higher-order schemes for the time and space fractional advection diffusion
equations, which could result in a numerical method that is highly efficient.
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Abbreviations

HUPFD Higher-order unconditionally positive finite difference methods
ADR Advection—diffusion—-reaction

PDEs Partial differential equations

CPU time Computational time

Nomenclature
x Spatial variable
t Time variable

Ax  Change in spatial variable

At Change in time variable

Uy Rate at which concentration of substances changes over time
Uy Advection term

uyy Diffusion term

u Advection coefficient
D Diffusion coefficient
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