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Abstract: The present manuscript proposes a computational approach to efficiently tackle a class
of two-point boundary value problems that features third-order nonlinear ordinary differential
equations. Specifically, this approach is based upon a combination of the shooting method with a
modification of the renowned Adomian decomposition method. The approach starts by transforming
the governing BVP into two appropriate initial-value problems, and thereafter, solves the resulting
IVPs recurrently. In addition, the application of this method to varied test models remains feasible—of
course, this is supported by the competing Runge–Kutta method, among others, and reported through
comparison plots and tables.
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1. Introduction

Assorted applications of real-life relevance have been perfectly modeled through
ordinary differential equations (ODEs) in the form of initial-value problems (IVPs) or
boundary value problems (BVPs). In fact, ODEs have been widely acknowledged in
modeling various physical processes, including population growth, radioactive decay, the
movement of electric charges in electronic circuits, and cooling problems, among others.
Further, the class of nonlinear ODEs is yet another interesting category of differential
equations that has vast applications in modeling nonlinear and chaotic circumstances, to
mention a few. Nevertheless, not all nonlinear ODEs provide actual analytical solutions
using the known analytical approaches; indeed, a lot of these equations possess only
numerical solutions. Hence, this negative aspect of nonlinear ODEs in providing actual
analytical solutions and/or providing multiple actual solutions is what has prompted
various mathematicians to put their minds to devising dissimilar computational ways to
tackle different IVPs and BVPs [1].

We recall the application of the shooting method [2], one of the finest numerical
methods devised to deal with the aforementioned negative aspect of certain nonlinear ODEs
with regard to the existence of actual analytical solutions. Indeed, one of the astounding
factors of this method is its ability to transform governing BVPs into corresponding systems
of IVPs, where various existing solvers could be used; via this approach, solutions to BVPs
are eventually acquired. In this regard, we mention the famous work of Morrison et al. [3]
that solved different nonlinear and linear BVPs via the shooting method. Moreover, Abu
Shanab [4] employed the shooting method to solve a class of third-order linear BVPs,
while Oderinu and Aregbesola [5] coupled Taylor’s series approach with the shooting
method to study third-order nonlinear BVPs amidst two-point boundary data. On the
same page as third-order BVPs, we make mention of the recent work of Nasir et al. [6],
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which proposed a direct integration scheme to tackle such models with two- and multi-
point boundary data. Srivastava and Hazarika [7] developed an algorithm based on the
shooting method for the solution of a two-point BVP consisting of a system of third-order
simultaneous ODEs. Through their results, they concluded that the shooting method seems
to be sufficiently convergent for the system, and the shooting method is preferable to obtain
numerical solutions where other methods seem to be laborious in mathematical treatment.
Subsequently, Attili and Syam [8] proposed a combination of the Adomian decomposition
method (ADM) and the shooting method to numerically examine second-order linear and
nonlinear BVPs using a special integration operator; the same method was equally extended
to third-order linear BVPs by Alzahrani et al. [9]. Additionally, we also cite [10–19] and the
references therein for some relevant considerations through the ADM, and also refer the
reader(s) to [20–23] for certain deliberations on the shooting approach.

However, motivated by the vast applications of third-order nonlinear ODEs in model-
ing diverse scientific processes, and the lack of both analytical and computational methods
to tackle this very class of third-order ODEs, this study intends to computationally propose
an efficient numerical scheme that would competently tackle this class of equations with
two-point boundary data. More expressly, the governing model reads [4,6]

y′′′ = f
(

x, y, y′, y′′
)
, x ∈ [a, b], (1)

together with the following two-point boundary data:

y(a) = α, y′(a) = λ, y(b) = β. (2)

In fact, we couple the efficient shooting method with the ADM, in what we called the
“efficient decomposition shooting method” (EDSM); this study serves as an extension to the
recent findings in [9] by deploying a superior version of the ADM. Stepwise, the approach
starts by transforming the principal BVP into a system of IVPs, and thereafter, solves the
resulting IVPs recurrently via the application of the coupled technique, which is easier
to execute and more numerically friendly than both the shooting and ADM procedures
individually. What is more, the application of this method is demonstrated on several test
examples, alongside deploying the competing numerical Runge–Kutta method, among
others, for validation of the obtained results. In addition, we shall be providing some
comparison plots and tables to support the findings of the present study. The rest of the
paper is composed as follows: Section 2 describes the traditional ADM technique, and
Section 3 gives an outline of the proposed coupling between the shooting method and
the ADM to solve third-order nonlinear BVPs. Section 4 demonstrates the application
of the proposed coupling method to several test models, while Section 5 gives some
concluding annotations.

2. Traditional ADM for Third-Order Nonlinear IVPs

The traditional ADM is an energetic semi-analytical and, at the same time, numerical
method for solving different forms of both linear and nonlinear ordinary and partial
differential equations [10–19]. Thus, we shall be applying this traditional method to a
generalized third-order nonlinear IVP in what follows.

Moreover, the ADM is typically deployed on a differential equation when expressed
in differential operator form as follows:

Ly + Ry + Ny = g(x), (3)

together with the following prescribed initial data

y(a) = α, y′(a) = λ, y′′(a) = t. (4)



Axioms 2024, 13, 248 3 of 14

where Ly = d3y
dx3 , Ry and Ny are linear and the nonlinear differential operators with orders

of less than 3, respectively, while g(x) is a forcing term. Additionally, the constants α, λ
and t in Equation (4) are prescribed real constants.

Since L is a third-order differential operator, the inverse operator L−1 is defined
as follows:

L−1(.) =
∫ x

a

∫ x

a

∫ x

a
(.) dx dx dx. (5)

Applying L−1 defined in Equation (5) to Equation (3) gives

y(x) = ϕ(x) + L−1(g(x))− L−1(Ry)− L−1(Ny), (6)

where ϕ(x) denotes the terms emanating as a result of the integration.
Therefore, we make use of an infinite series via Adomian’s method to represent the

solution y(x) as
y(x) = ∑∞

n=0 yn(x), (7)

and the nonlinear term Ny through

Ny = ∑∞
n=0 An, (8)

with An’s representing the polynomials by Adomian, which are determined through the
following formula:

An =
1
n!

dn

dλn

[
N
(
∑n

i=0 λiyi

)]
λ=0

, n = 0, 1, 2, . . . . (9)

Hence, the ADM procedure yields the following iterative scheme:

y0 = ϕ(x) + L−1(g(x)),
yn+1 = −L−1(Ryn)− L−1(An), n ≥ 0.

(10)

Eventually, the resulting approximate solution of the governing model expressed
in Equations (3) and (4) is thus obtained by taking the net sum of the components in
Equation (10) as follows:

yM+1(x) = ∑M
n=0 yn(x).

We remark here that the convergence of the Adomian series has already been proven
by several investigators [24,25]; moreover, for some prerequisites about the existence and
uniqueness of solutions for higher-order BVPs, one may read the comprehensive survey
provided by Agarwal [26].

The convergence of Adomian‘s technique is ensured with a weak hypothesis on the
nonlinear operator and on the functional equation. Cherruault [24] gave the first proof of
the convergence of the Adomian decomposition method and he used fixed-point theorems
for abstract functional equations. In [24], Cherruault avoided this type of hypothesis, which
is difficult to satisfy and to verify in physical problems. They supposed the following:

(i) The solution y of

y − N(y) = g (11)

can be represented as a series of functions yn, i.e., y = ∑∞
n=0 yn. Furthermore, this series is

supposed to be absolutely convergent, i.e., ∑ |yn| < +∞.

(ii) The nonlinear function N(y) is developable in entire series with a convergence radius
equal to infinity. In other words, we may write

N(y) = ∑∞
n=0 N(n)

(0)
yn

n!
, |y| < ∞. (12)
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This last hypothesis is almost always satisfied in concrete physical problems. We have
the following results:

Theorem 1. With the previous hypotheses (i) and (ii), the Adomian series y = ∑∞
n=0 yn is a

solution of Equation (11) when the yns satisfy the following relationships:

y0 = f ,
yn+1 = An(y0, . . . , yn), n ≥ 0.

(13)

Remark. In [24], it is proven that Adomian’s polynomials An depend only on y0, y1, . . . , yn.
In practice, Adomian’s method gives very good results even if we take a truncated series with a
small number of terms. The reason for such a result is the analogy of the Adomian series with the
Taylor series.

Theorem 2. Let N be an operator from a Hilbert space H into H and u be the exact solu-
tion of Equation (11). The decomposition series ∑∞

i=0 yi, which is obtained by (10), converges to
y when ∃ 0 ≤ α ≤ 1, ∥yk+1∥ ≤ α∥yk∥, ∀k ∈ N ∪ {0}.

3. EDSM for Third-Order Nonlinear BVPs

A general two-point boundary value problem can be written in the following form:

Dy = f (x, y), x ∈ [a, b], (14)

r[y(a), y(b)] = 0, (15)

where Equation (15) describes the boundary conditions satisfied by the system. Two-point
boundary value problems from optimal control have separate boundary conditions of
the type

r1[y(a)] = 0, and r2[ y(b)] = 0.

Provided it converges, the shooting method is the simplest, fastest and most accurate
method [27] to solve two-point boundary value problems. However, it is well known
that the simple shooting method can fail to converge for problems whose solutions are
very sensitive to the initial conditions. For such problems, finite difference and collocation
methods can provide a solution that satisfies the boundary conditions and is close to the
actual solution in some sense. The finite difference and collocation methods are much
harder to set up than shooting methods. For nonlinear problems, quasi-linearization is
used along with finite difference schemes.

This led to the development of the shooting method and the proposal of a modified
version of the shooting method called the “efficient decomposition shooting method”.

In [21] Ha discussed the simple shooting method for nonlinear two-point boundary
value problems and observed rapid convergence in his numerical experiments. It may be
useful here to present the following results in the study of a system of ODEs [28]:

Theorem 3 (existence). Let f (z, Y(z)) be continuous and satisfy the Lipschitz condition

∥ f (z, Y(z))− f (z, X(z))∥ ≤ k∥Y(z)− X(z)∥

with a Lipschitz constant K > 0 on the interval |z − a| ≤ T for all Y ∈ U.

Then for any constant vector c, the differential Equation (14) has a solution of |z − a| ≤
T with the initial condition Y(a) = c.

Theorem 4 (uniqueness). If f (z, Y(z)) satisfies the Lipschitz condition for U, then there is at
most one solution of (14) with the initial condition Y(a) = c.
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In spite of the abundant literature and convergence analyses, it seems that the use of
the simple shooting method has been neglected over the years by researchers to obtain
numerical solutions to higher-order nonlinear two-point boundary value problems. The
goal of the present work is to demonstrate the importance and capability of the efficient
decomposition shooting method in easily obtaining numerical solutions to third-order
two-point BVPs arising in other areas of research.

The shooting method [4] coupled with the ADM is an iterative method that has been
widely utilized to solve various classes of BVPs [7,8,20–23]. However, the iterative shooting
method procedures for solving both cases of linear and nonlinear BVPs remain the same [9],
except for the fact that the solution of the nonlinear model cannot be represented as a
linear combination of the solutions of two IVPs. As such, the solution of the governing
BVP (1)–(2) is approximated by those of the IVPs, with t as a parameter. So, we convert
the third-order BVP into IVPs, where we replace the boundary data with specific initial
conditions. Expressly, the problem has the following form:

y′′′ = f
(

x, y, y′, y′′
)
, x ∈ [a, b], (16)

with the initial data in the form

y(a) = α, y′(a) = λ, y′′(a) = t. (17)

However, as obtaining actual solutions to these IVPs is not generally feasible, the
solutions are approximated using any method for solving IVPs, like the one-step methods,
multistep methods or using the ADM directly. This also includes transforming the models
into a system of equations.

In this regard, the ADM is deployed directly in the present study to solve the IVP
expressed in Equations (16) and (17). In doing so, we begin by selecting the parameters
t = tk in such a way that the following is guaranteed:

lim
k→∞

y(b, tk) = y(b) = β, (18)

where y(x, tk) presents the solution to the IVP given in Equations (16) and (17) with
t = tk , while the function y(x) represents the solution to the BVP in Equations (1) and (2).
Therefore, the expected solution to the resulting first IVP is required to be in sequence form
after constraining the initial guess t0 = β−α

b−a . Then, we make use of Newton’s method to
find the value of t1 as follows:

t1 = t0 −
y(b, t0)− β

dy
dt (b, t0)

. (19)

So, to determine the value of dy
dt (b, t0), Equations (16) and (17) are scaled to depend

on the x and t variables as follows:

y′′′(x, t) = f
(
x, y(x, t), y′(x, t), y′′(x, t)

)
, (20)

with the following initial data

y(a, t) = α, y′(a, t) = λ, y′′(a, t) = t. (21)

Next, on finding the partial derivate of Equation (20) in t, let z(x, t) = ∂y
∂t (x, t); the IVP

expressed in Equations (20) and (21) is thus simplified as follows:

z′′′ =
∂ f
∂y

(
x, y, y′, y′′

)
z(x, t) +

∂ f
∂y′

(
x, y, y′, y′′

)
z′(x, t) +

∂ f
∂y′′

(
x, y, y′, y′′

)
z′′(x, t), (22)
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For a ≤ x ≤ b, the initial data are simplified as follows:

z(a) = 0, z′(a) = 0, z′′(a) = 1. (23)

Finally, we solve Equations (22) and (23) at tk using the ADM directly, which gives
dy
dt (b, t0). Also, to determine the complete sequence, the guess points tk for k = 2, 3, . . .,
together with the nonlinear function y(b, t)− β = 0, are thus found via the application of
the Secant iterative method as follows:

tk = tk−1 −
(y(b, tk−1)− β)(tk−1 − tk−2)

y(b, tk−1)− y(b, tk−2)
, k = 2, 3, . . . . (24)

Moreover, it is worth mentioning here that the computational procedure in the pro-
posed scheme is terminated upon satisfying the following condition:

|y(b, tk)− β| ≤ tolerance. (25)

In addition, the shooting method for nonlinear BVPs converges whenever the problem
is well posed in the sense that the solution to be computed is isolated. To compute non-
isolated solutions using shooting methods, one would have to use Newton’s method, which
employs the generalized inversion process, rather than just the inverse of the Jacobian [29].

Indeed, there are many problems for which shooting methods are eminently suitable
and offer many advantages. They depend on reliable and readily available routines for
solving IVPs. In contrast to global methods for BVPs, shooting methods are very economical
for computer storage; the discretized version usually has its mesh automatically adjusted
to the behavior of the solution, and subject to the inherent limitations of a shooting method,
it is easy to increase the accuracy of a solution [30].

4. Numerical Examples

This section checks the proposed EDSM for third-order nonlinear BVPs by demon-
strating its applicability to some test models of concern. This method is also compared
with a mixture of the shooting method and the Runge–Kutta method of the fourth order
(SRKM4) to further assess the performance of the approach. Other existing methods in
the literature will equally be recalled while commenting on the acquired approximate
results. Additionally, we provide Tables 1–7 and Figures 1–3, reporting the absolute error
difference between the available actual analytical solutions and, on the other hand, the
obtained approximate solutions using the proposed EEDSM. Moreover, the validation of
the proposed approximate solution is carried out using ESRKM4.

Example 1. Consider the third-order nonlinear BVP as follows [31]:

y′′′(x) = e−xy2(x), y(0) = y′(0) = 1, y(1) = e. (26)

The actual analytical solution is given by y(x) = ex.
Firstly, we consider the following two IVPs:

y′′′(x) = e−xy2(x), y(0) = 1, y′(0) = 1, y′′(0) = tk, (27)

and
z′′′(x) = 2e−xy(x) z(x), z(0) = 0, z′(0) = 0, z′′(0) = 1. (28)

Then, when we employ the ADM, the recursive relations are obtained as follows:
y0 = 1 + x + x2

2 tk,

yn+1 = L−1(e−x An), n ≥ 0,
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and 
z0 = x2

2 ,

zn+1 = 2 L−1(e−xynzn), n ≥ 0.

where An in the above schemes denotes the Adomian polynomials for the nonlinear term
y2. Consequently, the solution of Equation (27) with M = 10 is obtained in series form
as follows:

y(x) = ∑10
n=0 yn = y0 + y1 + . . . + y10.

Table 1. The absolute errors for SRKM4 and EDSM when h = 0.1.

x ESRKM4 EEDSM

0.0 0 2.0 × 10−29

0.1 1.5 × 10−7 2.5 × 10−15

0.2 2.5 × 10−7 1.0 × 10−14

0.3 3.1 × 10−7 2.3 × 10−14

0.4 3.2 × 10−7 4.0 × 10−14

0.5 3.1 × 10−7 6.3 × 10−14

0.6 2.7 × 10−7 9.2 × 10−14

0.7 2.1 × 10−7 1.3 × 10−13

0.8 1.4 × 10−7 1.6 × 10−13

0.9 6.9 × 10−8 2.1 × 10−13

1.0 2.5 × 10−22 2.6 × 10−13

Table 2. Comparison between different methods when h = 0.1.

Numerical Methods SBCM [31] SRKM4 EDSM

Maximum Error 9.3 × 10−3 3.2 × 10−7 2.6 × 10−13

Table 3. The absolute errors for SRKM4 and EDSM when h = 0.1.

x ESRKM4 EEDSM

0.0 0 0
0.1 1.0 × 10−8 2.1 × 10−21

0.2 4.1 × 10−8 8.4 × 10−21

0.3 9.0 × 10−8 1.9 × 10−20

0.4 1.5 × 10−7 3.4 × 10−20

0.5 2.3 × 10−7 5.3 × 10−20

0.6 2.9 × 10−7 7.6 × 10−20

0.7 3.3 × 10−7 1.0 × 10−19

0.8 3.2 × 10−7 1.4 × 10−19

0.9 2.3 × 10−7 1.7 × 10−19

1.0 3.6 × 10−19 2.1 × 10−19

Therefore, when using 5 iterations, y(x, tk) represents the solution to the third-order
BVP (26) with t = tk; see Tables 1 and 2 for the numerical results.

In Table 1, we report the absolute error difference between the actual analytical solution
and the proposed solution EEDSM and further validate it with ESRKM4. From Table 2, we
can see that EDSM is the most accurate technique for solving the governing model in
comparison with the SRKM4 and the method used in [31]. Again, we portray the actual
analytical and the contending approximate solutions in Figure 1, where one would notice
an ideal agreement between the solutions.
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Example 2. Consider the third-order nonlinear BVP as follows [32]:

y′′′(x) = y3(x)− x6, y(0) = y′(0) = 0, y(1) = 1. (29)

The actual analytical solution is given by y(x) = x2.
In the same manner, we refer to the following IVPs:

y′′′(x) = y3(x)− x6, y(0) = 0, y′(0) = 0, y′′(0) = tk, (30)

and
z′′′(x) = 3y2(x) z(x), z(0) = 0, z′(0) = 0, z′′(0) = 1. (31)

Then, the recursive relations are obtained as follows:
y0 = − x9

504 + x2

2 tk,

yn+1 = L−1(An), n ≥ 0,

and 
z0 = x2

2 ,

zn+1 = 3L−1
(
(yn)

2zn

)
, n ≥ 0,

where An in the above schemes denote the Adomian polynomials for the nonlinear term
y3; see Table 3 for the numerical results, using five iterations.

Table 3 shows that EDSM is a more efficient technique for solving the governing model
in comparison with SRKM4. Additionally, a good degree of exactitude in the graphical
representation of the exact analytical and approximation solutions is shown in Figure 2.

Example 3. Consider the third-order nonlinear BVP [33–36]

y′′′ = −2e−3y(x) +
4

(1 + x)3 , y(0) = 0, y′(0) = 1, y(1) = ln(2), (32)

which produces the actual solution y(x) = ln(1 + x).

In the same manner, we refer to the following IVPs:

y′′′ = −2e−3y +
4

(1 + x)3 , y(0) = 0, y′(0) = 1, y′′(0) = tk, (33)

and
z′′′ = 6e−3yz, z(0) = 0, z′(0) = 0, z′′(0) = 1. (34)

Then, the recursive relations take the following forms:
y0 = −x + 2ln (x + 1) + 3

2 tkx2,

yn+1 = −2L−1(An), n ≥ 0,

and 
z0 = x2

2 ,

zn+1 = 6 L−1(e−3yn zn
)

, n ≥ 0,

where An in the above schemes denote the Adomian polynomials for the nonlinear term
e−3y; see Tables 4 and 5 for the numerical results, using six iterations.
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Table 4. The absolute errors for SRKM4 and EDSM when h = 0.1.

x ESRKM4 EEDSM

0.0 0 0
0.1 9.3 × 10−7 2.4 × 10−15

0.2 1.5 × 10−6 9.4 × 10−15

0.3 1.7 × 10−6 2.1 × 10−14

0.4 1.8 × 10−6 3.7 × 10−14

0.5 1.7 × 10−6 5.8 × 10−14

0.6 1.5 × 10−6 8.3 × 10−14

0.7 1.3 × 10−6 1.1 × 10−13

0.8 9.1 × 10−7 1.5 × 10−13

0.9 4.9 × 10−7 1.7 × 10−13

1.0 2.2 × 10−31 6.6 × 10−27

Table 5. Comparison between different methods when h = 0.1.

Numerical Methods BPGWRM [33] GJGOMM [34] K-M Iteration [35] PGEM [36] SRKM4 EDSM

Maximum Error 7.7 × 10−10 2.4 × 10−11 7.3 × 10−12 7.3 × 10−12 1.8 × 10−6 1.7 × 10−13

The absolute error difference between the exact analytical solution and the suggested
solution EEDSM, which is further validated with ESRKM4, is presented in Table 4. From
Table 5, we can see that EDSM is the most accurate technique for solving the governing
model in comparison with SRKM4 and the methods used in [33–36]. Furthermore, Figure 3
shows precise depictions of the analytical and approximate curves, where the two are in
good conformity.

Example 4. Consider the following third-order nonlinear BVP [35,36]:

y′′′(x) + y(x) y′′(x)− (y ′(x)
)2

+ 1 = 0,y(0) = y′(0) = y(1) = 0. (35)

In the same manner, we refer to the following IVPs:

y′′′ = (y ′(x)
)2

− y(x)y′′(x)− 1, y(0) = 0, y′(0) = 0, y′′(0) = tk, (36)

and

z′′′ = −y′′(x)z(x) + 2y′(x)z′(x)− y(x)z′′(x), z(0) = z′(0) = 0, z′′(0) = 1. (37)

Then the recursive relations take the following forms:
y0 = − x3

6 + x2

2 tk,

yn+1 = L−1(An)− L−1(Bn), n ≥ 0,

and 
z0 = x2

2 ,

zn+1 = −L−1(y′′nzn) + 2L−1(y′nz′n)− L−1
(ynz′′n) , n ≥ 0,

where An and Bn in the above schemes denote the Adomian polynomials for the nonlinear

terms (y ′(x)
)2

and y(x) y′′(x), respectively; see Tables 6 and 7 for the numerical results,
using six iterations.
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Table 6. The absolute errors for EDSM when h = 0.1.

x EEDSM

0.0 0
0.1 2.7 × 10−19

0.2 1.1 × 10−19

0.3 2.4 × 10−19

0.4 4.3 × 10−18

0.5 6.7 × 10−18

0.6 9.6 × 10−18

0.7 1.3 × 10−17

0.8 1.7 × 10−17

0.9 2.2 × 10−17

1.0 2.7 × 10−17

Table 7. Comparison between different methods when h = 0.1.

Numerical Methods K-M Iteration [35] PGEM [36] EDSM

Maximum Error 4.2 × 10−13 4.2 × 10−13 2.7 × 10−17

In Table 6, we estimated the error in y(x, t5) using ERR = |y(x, t5)− y(x, t4)| because
this problem does not have a known closed-form solution. Therefore, from Table 7, we can
see that EDSM is the most accurate technique for solving the governing model in compari-
son with the methods used in [35,36]; for more on some efficient numerical algorithms that
are equally relevant, one may read [37,38] by Du Fort-Frankel for information on the fixed
domain technique and finite difference scheme, respectively.

Example 5. Consider the nonlinear MHD Jeffery–Hamel blood flow problem as follows [39]:

y′′′(x) + 2δ Re y(x)y′(x) + 4δ2y′(x) = 0,
y(0) = 1, y′(0) = y(1) = 0.

(38)

where δ is a non-zero parameter (read [39] for more details) and Re is the Reynolds number. In the
same manner, we refer to the following IVPs:

y′′′(x) = −2δ Re y(x)y′(x)− 4δ2y′(x),
y(0) = 1, y′(0) = 0, y′′(0) = tk,

(39)

and
z′′′(x) = −2δ Re y′(x) z(x)− 2δ(Re y(x) + 2δ) z′(x),

z(0) = 0, z′(0) = 0, z′′(0) = 1.
(40)

Then, the recursive relations are accordingly obtained as follows:
y0 = 1 + x2

2 tk,

yn+1 = −2δ Re L−1(An)− 4δ2 L−1(y′n), n ≥ 0,

and 
z0 = x2

2 ,

zn+1 = −2δ Re L−1(y′nzn)− 2δL−1
((Re yn + 2δ)z′n), n ≥ 0,

where An in the above schemes denotes the Adomian polynomials for the nonlinear term
y y′; see Tables 8 and 9 for the numerical results, using six iterations.
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Table 8. The absolute errors for EDSM when h = 0.1.

x
EEDSM

Case 1
σ=0.0524, Re=110

Case 2
σ=−0.0873, Re=80

Case 3
σ=0.1309, Re=50

Case 4
σ=0.0873, Re=50

0.0 0 0 0 0
0.1 2.9 × 10−5 4.1 × 10−12 3.3 × 10−4 3.5 × 10−7

0.2 1.1 × 10−4 1.7 × 10−11 1.3 × 10−3 1.4 × 10−6

0.3 2.4 × 10−4 4.1 × 10−11 2.7 × 10−3 3.0 × 10−6

0.4 4.1 × 10−4 7.8 × 10−11 4.5 × 10−3 5.1 × 10−6

0.5 6.0 × 10−4 1.3 × 10−10 6.6 × 10−3 7.6 × 10−6

0.6 8.1 × 10−4 2.1 × 10−10 8.8 × 10−2 1.0 × 10−5

0.7 1.0 × 10−3 3.3 × 10−10 1.1 × 10−2 1.3 × 10−5

0.8 1.3 × 10−3 4.8 × 10−10 1.4 × 10−2 1.7 × 10−5

0.9 1.6 × 10−3 6.7 × 10−10 1.7 × 10−2 2.0 × 10−5

1.0 1.9 × 10−3 8.9 × 10−10 2.1 × 10−2 2.5 × 10−5

Table 9. Comparison between different methods when h = 0.1.

Numerical
Methods

Maximum Error

Case 1 Case 2 Case 3 Case 4

EDSM 1.9 × 10−3 8.9 × 10−10 2.1 × 10−2 2.5 × 10−5

HPM [39] 7.6 × 10−2 1.4 × 10−2 1.3 × 10−1 2.4 × 10−2

The Jeffery–Hamel blood flow problem is solved by EDSM for four different cases,
each of which is generated by taking four different values of “Re” and “δ”. In Table 8, we
estimated the error in y(x, t5) using ERR = |y(x, t5)− y(x, t4)| because this problem does
not have a known closed-form solution. From Table 9, we can see that EDSM is the most
accurate technique for solving the governing model in comparison with the method used
in [39]. Again, we portray the approximate solutions of the EDSM for four different cases in
Figure 4. The graphical representation of the problem shows that if we increase the values
of x, the human arterial blood flow decreases, i.e., they have an inverse relation, and this
pattern is same for all of the different cases.
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5. Conclusions

In conclusion, a computational approach was introduced in the present study to
efficiently tackle a class of third-order nonlinear ODEs that was endowed with two-point
boundary data. Expressly, we sought the help of the iterative shooting method alongside
a modified ADM to come up with a very efficient approach. In particular, the approach
started by converting a BVP to two IVPs, and thereafter, we solved the resulting IVPs
iteratively. Moreover, the proposed method was applied to several test models in the
presence of the competing SRKM4, yet another efficient numerical method, and was found
to be numerically robust and economical. Lastly, we supported the findings of the present
study with some comparison plots and tables—demonstrating the effectiveness of the
devised approach. In addition, the proposed method can be applied to diverse models
of real-life applications; certainly, future studies could look at the possibility of tackling
higher-order nonlinear ODEs using the proposed method, and on the other hand, endeavor
to accelerate the rapidity of the convergence rate of the devised scheme by incorporating
more enhanced ADM algorithms.
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