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Abstract: Sample selection is one of the most important factors in estimating the unknown parameters
of distributions, as it saves time, saves effort, and gives the best results. One of the challenges is
deciding on a suitable distribution estimate technique and adequate sample selection to provide
the best results in comparison with earlier research. The method of moments (MOM) was decided
on to estimate the unknown parameters of the Gumbel distribution, but with four changes in the
sample selection, which were simple random sample (SRS), ranked set sampling (RSS), maximum
ranked set sampling (MRSS), and ordered maximum ranked set sampling (OMRSS) techniques, due
to small sample sizes. The MOM is a traditional method for estimation, but it is difficult to use when
dealing with RSS modification. RSS modification techniques were used to improve the efficiency of
the estimators based on a small sample size compared with the usual SRS estimator. A Monte Carlo
simulation study was carried out to compare the estimates based on different sampling. Finally, two
datasets were used to demonstrate the adaptability of the Gumbel distribution based on the different
sampling techniques.

Keywords: method of moments; general moments function; ranked set sampling; maximum ranked
set sampling; ordered maximum ranked set sampling
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1. Introduction

McIntyre [1] initially offered the idea of using ranked set sampling (RSS) to estimate
average pasture and forage yields, and subsequent discussions by Takahasi and Waki-
moto [2] elaborated on this strategy. Recently, it has been used for issues in domains
including environmental research, reliability engineering, and quality assurance when mea-
suring the variable of interest might be prohibitively costly. When compared with simple
random sampling (SRS), RSS may increase the efficiency and accuracy while decreasing
costs. For instance, Lavine [3] investigated a comparison of RSS and SRS within a Bayesian
framework. The literature has grown considerably in recent years, with most of it being
summed up within a monograph by Chen et al. [4]. The RSS scheme can be described as
follows: First, select an SRS of n sets of size n from the target population. Second, select
the element of rank i from the ith set in a cycle for {i = 1, 2, . . . , n}. The process can be
repeated m times to obtain an RSS sample of size nm. Let {X1, X2, . . . , Xn} be an SRS
sample from a distribution with a cumulative distribution function (CDF) G(x) and the
probability density function (PDF) g(x). Let {X(1)1, X(1)2, . . . , X(1)n1

; X(2)1, X(2)2, . . . , X(2)n2
;

. . . , X(n)1, X(n)2, . . . , X(n)nn} be independent random variables, where X(i)j denotes the ith
order statistic from the ith sample of size n, where {i = 1, 2, . . . , n}, and the jth cycle of size
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m, where {j = 1, 2, . . . , m}. Then, the PDF of X(i)j is given by the following (see Esemen
and Grler [5]):

gn(x(i)j) =
n!

(i − 1)!(n − i)!
g(x(i)j; θ) [G(x(i)j; θ)]i−1 [1 − G(x(i)j; θ)]n−i, (1)

McIntyre’s technique was first used by Halls and Dell [6]. Experimentally, they found
that RSS is more effective than SRS. They also indicate the name of the classified sampling
set currently in use. Al-Saleh and Al-Hadrami [7] used different set sizes for the RSS
technique to estimate the mean of the normal and exponential distributions, and they
found that this technique is more useful than SRS for estimating the mean of symmetric
distributions. Khamnei and Mayan [8] estimated the parameters of the Gumbel distribution
based on SRS and RSS when they compared the estimators of these two methods. Esemen
and Gürler [5] estimated the parameters of the generalized Rayleigh distribution based
on RSS and some of its modifications. Hassan et al. [9] estimated the parameters of the
gamma/Gompertz distribution based on four types of RSS and SRS. It should be noted that
X(i)j do not necessarily follow a specific order. Balakrishnan and Li [10] discussed RSS by
rearranging all X(i)j in an ascending order, which is known as ordered ranked set sampling
(ORSS). Stokes [11] proposed a variant of the ranked set sampling process called extreme
ranked set sampling (ERSS), in which only the highest- or lowest-ranked evaluating unit
is selected for measurement. As a variant of ERSS, Chacko [12] implemented an ordered
extreme ranked set sampling (OERSS) by sorting the ERSS’s components by increasing
magnitude. Using the MRSS with the unequal samples method, Eskandarzadeh et al. [13]
investigated information metrics. After that, Basikhasteh et al. [14] discussed the OMRSS
with unequal samples and some associated statistical properties. [15] estimated the mean
of the exponential distribution using MRSS with unequal samples.

To statistically model extreme values, the two-parameter Gumbel distribution (GumD),
also known as the type-I extreme value distribution, has been widely used in a variety of
research fields, including life testing, water management, and hydrology (see Lambert and
Duan [16]), and see Johnson et al. [17] to find more applications of this distribution. The
PDF and CDF of the GumD distribution are defined as

g(x; α, β) =
1
α

exp(− x − β

α
) exp(− exp(−

(
x − β

α

)
)); x ∈ R, β ∈ R, α > 0, (2)

and

G(x; α, β) = exp(− exp(−
(

x − β

α

)
)) x ∈ R, β ∈ R, α > 0, (3)

where α and β are the shape and scale parameters, respectively. It is commonly applied to
modeling a wide range of extreme data from the engineering, actuarial, and environmental
sciences. Furthermore, the Gumbel distribution can be used in applications of hydrology
and meteorological data. The generalized extreme value distribution’s limit distribution is
known as the Gumbel distribution. In actuality, the Gumbel distribution is a limit form that
transitions between the inverse Weibull and Fréchet distributions. Moreover, an inverse
Weibull random variable’s logarithmic transformation may be used to create a Gumbel
random variable. Due to having such statistical properties, the Gumbel di stribution has
gained a lot of attention. For instance, one may refer to Simiu et al. [18], Kang et al. [19],
Anderson and Daniewicz [20], and Dutta et al. [21].

In recent years, the estimation of parameters of different distributions based on RSS has
gained a lot of attention. For instance, Hussian [22] discussed the estimation of parameters
of the Kumaraswammy distribution based on RSS. Sadek et al. [23] considered the Bayesian
estimation of the parameters for an exponential distribution under RSS. Joukar et al. [24]
obtained an estimation of parameters for the exponential Poisson distribution based on RSS.
Pedroso et al. [25] discussed parameter estimation for the Birnbaum–Saunders distribution
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based on RSS. Biradar [26] discussed the estimation of the parameters of the location scale
family of distributions based on RSS with unequal sample sizes.

To the best of our knowledge, the estimation of parameters based on OMRSS with
unequal samples has not been studied yet in the statistical literature. Motivated by the
existing literature, parameter estimation for the GumD based on OMRSSU is proposed
in this article. In this article, the performance of the MRSS method is compared with
the other sampling techniques using MOM estimation with the SRS technique for the
GumD parameters. The remaining parts of this article are structured as follows: Section 2
presents the sampling methods. MOM estimation is discussed in Section 3 for the sampling
techniques. In Section 4, the Monte Carlo simulation results are presented to compare the
efficiency of the SRS-based estimators with their counterparts RSS, MRSS, and OMRSS in
terms of the mean squared error. In Section 5, results are given for two real datasets for
illustrative purposes. Finally, Section 6 draws some concluding remarks.

2. Some Ranked Set Sampling Techniques

In this section, different sampling techniques for unit selection based on RSS, MRSS,
and OMRSS and the associated PDF of a distribution are discussed.

2.1. Maximum Ranked Set Sampling

Eskandarzadeh et al. [13] modified RSS into maximum ranked set sampling (MRSS).
This strategy was found to be effective and can generate a more effective estimator com-
pared with traditional RSS by reducing the sample of traditional RSS by half. The MRSS
procedure can be described as follows: First, identify n sets from SRS such that the size of
the ith set is i for i = 1, 2, . . . , n. Second, measure the maximum observation from each set
by calculating the maximum statistical measure for ∑n

i=1 i = n(n+1)
2 units. Finally, obtain

an MRSS of size nm by repeating the previous steps m times. The PDF of X(i:i)j that gives
the maximum observation by MRSS is given by

gn(x(i:i)j; θ) = ig(x(i:i)j; θ)[G(x(i:i)j; θ)]i−1. (4)

for changeable i, which takes the value of the set, where i = 1, 2, . . . , n

2.2. Ordered Maximum Ranked Set Sampling

Basikhasteh et al. [14] created a variant of MRSS known as OMRSS. This technique
was demonstrated to be a more effective estimator compared with MRSS. The OMRSS
technique can be described as follows. First, identify n sets from SRS such that the size of
the ith set is i for i = 1, 2, . . . , n. Second, measure the maximum observation from each
set. Third, sort the maximum observation from the sets in ascending order of magnitude.
Finally, obtain an OMRSS of size nm by repeating the previous steps m times.

The PDF of X(ii)j that is ranked by OMRSS for (1 ≤ k ≤ n) is given by

gn(x(ii)j; θ) =
1

(k − 1)!(n − k)! ∑
p[n]

n−k

∑
d=0

∑
Cik+1,··· ,in :d

ir(−1)dg(x(ii)j; θ)

× (G(x(ii)j; θ))∑k
s=1 is+∑d

j=1 v−1
j , (5)

where ∑Cm,n denotes the summation over all permutations (i1, i2, · · · , in) for {1, 2, · · · , n},
for which i1 ≤ · · · ≤ ik and ik+1 ≤ · · · ≤ in; ∑Cik+1,··· ,in :d

denotes the summation over

all permutations (v1, v2, · · · , vn−k) of {ik+1, ik+2, · · · , in}, for which v1 ≤ · · · ≤ vd and
vd+1 ≤ · · · ≤ vn−r; p[n] denotes all n! permutations (i1, i2, · · · , in) for {1, 2, · · · , n}; and
when u is between k + 1 and n, d is between 0 and n − k.
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3. Method of Moments

In this section, the moments of the GumD are found based on SRS, RSS, MRSS,
and OMRSS using the general moments function MX(t). MX(t) is a function that can be
differentiated r times. When we want to integrate to find the usual moments using sampling
techniques, the GumD requires a complicated mathematical process. This challenging
situation is made simple and feasible by MX(t). The relationship between MX(t) and the
MOM is

E(Xr) =
dr

dtr [MX(t)]t=0.

3.1. Estimation Based on SRS

Mahdi and Cenac [27] obtained an estimation of the unknown parameters of the GumD
using the MOM based on the SRS technique. Also, Choi [28] discussed the estimation of the
parameters of the GumD using the SRS-based MOM based on MX(t). Let {X1, X2, . . . , Xn}
be used as an independent random sample of the GumD distribution using PDF, which is
given in (2).

Lemma 1. The rth moments using MX(t) based on SRS are calculated using

E(Xr) =
dr

dtr [exp(βt)Γ(1 − αt)]t=0.

Proof. Using the MX(t) for SRS:

MX(t) = E(exp(xt)) =
1
α

∫ ∞

0
exp(xt) exp(− x − β

α
) exp(− exp(−

(
x − β

α

)
))dx.

Let y = exp(− x−β
α ), then dy =

−exp(− x−β
α )

α dx when 0 < x < ∞ and 0 < y < ∞. The MX(t)
will be

MX(t) =
∫ ∞

0
exp(t(β − αlogy))exp(−y)dy

= exp(βt)
∫ ∞

0
y−αtexp(−y)dy

= exp(βt)Γ(1 − αt).

Hence,

E(Xr) =
dr

dtr [exp(βt)Γ(1 − αt)]t=0.

After computation and simplification, in the particular cases of r = 1 and r = 2,
we obtain

E(X) = β − αΓ′(1), (6)

and
E(X2) = β2 − 2αβΓ′(1) + α2Γ′′(1), (7)

where Γ′(1) = −γ ∼= 0.577215 is called the Euler–Mascheroni constant and Γ′′(1) = J ∼=
1.978 (see Mahdi and Cenac [27]) using the polygamma function
Γ(n)(z) = ∑n−1

k=0 (
n−1
k )Γ(k)(z)Ψ(n−k−1)(z), where Ψ(n−k−1)(z) = (−1)p+1 p! ∑∞

g=0
1

(g+z)n−k .

Equations (6) and (7) for finding x̄ and x̄2 were obtained from SRS. To obtain the MOM
estimators α̂ and β̂, we have to numerically solve the following:

β̂ + α̂γ = x̄,

and

β̂2 + 2α̂β̂γ + α̂2 J = x̄2.
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3.2. Estimation Based on RSS

In this subsection, we substitute (2) and (3) into (1) to obtain MOM estimators for the
GumD according to the RSS scheme. Let X(1;1)1, · · · , X(1;1)n1

; X(2;2)1, · · · ; X(2;2)n2
; · · · ;

X(n;n)1, · · · , X(n;n)nn be independent random variables. It is said that X(i;i)j represents the
ith-order statistic from the ith sample of size n, where i = 1, · · · , n.

Lemma 2. The rth moments using MX(t) based on RSS are obtained using

E(Xr) =
dr

dtr

[
n!

(i − 1)!(n − i)!
exp(βt)(n − 1)(1−αt)Γ(1 − αt)

n−i

∑
l=0

Cn−i
l (−1)l

]
t=0

Proof. The MX(t) for RSS is

MX(t) = E(exp(xt)) =
c
α

∫ ∞

0
exp(xt) exp(− x − β

α
)− exp

×
[

exp(−exp(−(
x − β

α
)))

]i−1[
1 − exp(−exp(−(

x − β

α
)))

]n−i
dx,

where c = n!
(i−1)!(n−i)! . By using the same substitution in SRS, i.e., y = exp(− x−β

α ),

the MX(t) will be MX(t) = c
∫ ∞

0 exp(t(β − αlogy))exp(−yi)(1 − exp(−y))n−idy. Using
the binomial expansion for 0 < (1 − exp(−y))n−i < 1, we obtain (1 − exp(−y))n−i =
n−i
∑

l=0
Cn−i

l (−1)l exp(−y(n − i − 1)). Here,

MX(t) = c
n−i

∑
l=0

Cn−i
l (−1)l

∫ ∞

0
exp(t(β − αlogy))exp(−y(n − 1))dy

= c exp(βt)
n−i

∑
l=0

Cn−i
l (−1)l

∫ ∞

0
y−αtexp(−y(n − 1))dy

= c exp(βt)(n − 1)(1−αt)Γ(1 − αt)
n−i

∑
l=0

Cn−i
l (−1)l .

Hence,

E(Xr) =
dr

dtr

[
n!

(i − 1)!(n − i)!
exp(βt)(n − 1)(1−αt)Γ(1 − αt)

n−i

∑
l=0

Cn−i
l (−1)l

]
t=0

.

We obtain the following in the specific cases of r = 1 and r = 2:

E(X) = c(n − 1)(β − α(log(n − 1)− γ))
n−i

∑
l=0

Cn−i
l (−1)l (8)

and

E(X2) = c(n − 1)[(β − αlog(n − 1) + αγ)(β − αlog(n − 1))

+ (αβγ − α2(γlog(n − 1)− J))]
n−i

∑
l=0

Cn−i
l (−1)l (9)
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Write Equations (8) and (9) in terms of x̄ and x̄2, respectively, and solve for them by a
numerical method to obtain the MOM estimators for α and β from RSS using

c(n − 1)(β̂ − α(log(n − 1)− γ))
n−i

∑
l=0

Cn−i
l (−1)l = x̄, (10)

and

c(n − 1)
[
(β̂ − α̂(log(n − 1)− γ))(β̂ − α̂log(n − 1))

+(α̂β̂γ − α̂2(γlog(n − 1)− J))
] n−i

∑
l=0

Cn−i
l (−1)l = x̄2. (11)

3.3. Estimation Based on MRSS

To obtain MOM estimators for the GumD using the MRSS scheme, we substitute (2)
and (3) into (4) in this subsection. Let {Xi(1), · · · , Xi(i)} be independent random variables
of n sets from X for {i = 1, · · · , n}. In this case, Xi::i is the Max{Xi(1), · · · , Xi(i)} for
{i = 1, · · · , n}, and represents the sample from MRSS.

Lemma 3. The rth moments using MX(t) based on MaxRSS are displayed using

E(Xr) = dr

dtr [i(1−αt)exp(βt)Γ(1 − αt)]t=0

Proof. The MX(t) for MRSS is as follows:

MX(t) = E(exp(xt)) =
i
α

∫ ∞

0
exp(xt)exp(− x − β

α
− exp(−

(
x − β

α

)
))

×
[

exp(−exp(−
(

x − β

α

)
))

]i−1
dx.

By using the same substitution in SRS, i.e., y = exp(− x−β
α ), the MX(t) is expressed as

MX(t) = i
∫ ∞

0
exp(t(β − αlogy))exp(−y)exp(−y(i − 1))dy

= exp(βt)
∫ ∞

0
y−αtexp(−yi)dy

= i(1−αt)exp(βt)Γ(1 − αt).

Hence,

E(Xr) = dr

dtr [i(1−αt)exp(βt)Γ(1 − αt)]t=0.

The specific cases of r = 1 and r = 2 are given by

E(X) = i[β − α(log(i)− γ)], (12)

and
E(X2) = i[(β − α(log(i)− γ))(β − αlog(i)) + (αβγ − α2(γlog(i)− J))]. (13)

Write Equations (12) and (13) in terms of x̄ and x̄2 to obtain MRSS estimates, and we have

i[β̂ − α̂(log(i)− γ)] = x,

and

i[(β̂ − α̂(log(i)− γ))(β̂ − α̂log(i)) + (α̂β̂γ − α̂2(γlog(i)− J))] = x2.

Since these equations are nonlinear and accurate solutions cannot be obtained, these
equations are solved numerically.
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3.4. Estimation Based on OMRSS

In this subsection, MOM estimators for the GumD using the OMRSS scheme are
obtained by substituting (2) and (3) into (5). For a sample of size n, the ordinal statistic
{Xi(i), i = 1, . . . , n} is produced in ascending order: X1(n) ≤ · · · ≤ Xl(n) ≤ · · · ≤ Xn(n).
If so, the sample from OMRSS is represented by Xii, which is an ordinal statistic of
Max{Xi(1), Xi(1), . . . , Xi(i)} for {i = 1, 2, . . . , n}.

Lemma 4. The rth moments using MX(t) based on OMRSS for 1 ≤ k ≤ n are obtained using

E(Xr) =
1

(k − 1)!(n − k)!
dr

dtr

exp(βt) ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )(1−αt)Γ(1 − αt)


t=0

.

Proof. The MX(t) for OMRSS is given by

MX(t) = E(exp(xt)) =
1
α

1
(k − 1)!(n − k)!

∫ ∞

0
exp(xt)exp(− x − β

α
− exp(−

(
x − β

α

)
))

× ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d
(

exp(−exp(−
(

x − β

α

)
))

)∑k
s=1 is+∑d

j=1 v−1
j

dx. (14)

By taking the same substitution in SRS, i.e., y = exp(− x−β
α ), MX(t) is

MX(t) = a ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ik(−1)d
∫ ∞

0
exp(t(β − αlogy))exp(−y)exp(−y(

k

∑
s=1

is +
d

∑
j=1

v−1
j ))dy

= a exp(βt) ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ik(−1)d
∫ ∞

0
y−αtexp(−y(1 +

k

∑
s=1

is +
d

∑
j=1

v−1
j ))dy

= a exp(βt) ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )(1−αt)Γ(1 − αt) ,

where a = 1
(k−1)!(n−k)! . Hence,

E(Xr) =
1

(k − 1)!(n − k)!
dr

dtr

exp(βt) ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )(1−αt)Γ(1 − αt)


t=0

.

After computation and simplification, we obtain the specific cases of r = 1
and r = 2 using

E(X) = a ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )

× [β − α(log(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )− γ)], (15)

and
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E(X2) = a ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )

× [[(β − αlog(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j ))(β − α(log(1 +

k

∑
s=1

is +
d

∑
j=1

v−1
j )− γ))]

+ [αβγ − α2(γlog(1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )− J]]. (16)

Write Equations (15) and (16) in terms of x̄ and x̄2 and solve them using numerical method
for the OMRSS estimators for α and β using

a ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d

(
1 +

k

∑
s=1

is +
d

∑
j=1

v−1
j

)

×
[

β̂ − α̂((1 +
k

∑
s=1

is +
d

∑
j=1

v−1
j )− γ)

]
= x̄,

and

a ∑
p[n]

n−k

∑
d=0

∑
Cik+1,...,in :d

ir(−1)d

(
1 +

k

∑
s=1

is +
d

∑
j=1

v−1
j

)
[[
(β̂ − α̂log(1 +

k

∑
s=1

is +
d

∑
j=1

v−1
j ))(β̂ − α̂(log(1 +

k

∑
s=1

is +
d

∑
j=1

v−1
j )− γ))

]
+
[
α̂β̂γ − α̂2(γlog(1 +

k

∑
s=1

is +
d

∑
j=1

v−1
j )− J

]]
= x̄2.

4. Simulation Study

In this section, the comparability results of the sampling estimators based on MOM
estimation are investigated based on simulations with different sample sizes n ranging from
4 to 7 for one cycle m = 1 and different true parameter values of the shape parameter α and
the scale parameter β, which were (α, β) = {(0.5, 0.7), (0.5, 1), (1, 1), (1, 2)}. The Monte
Carlo simulation was performed using R software with l = 10,000 iterations for different
sample sizes and different sampling techniques: SRS, RSS, MRSS, and OMRSS. The relative
efficiency (RE) was obtained, including the average bias (AB) and mean square error (MSE).

• Absolute bias (AB): 1
N ∑N

i=1 |Θi − Θ̂i|, where Θi represents the parameters, whereas
Θ̂i represents their estimates and N is the number of iterations. A lower value of AB
suggests that the experimental data and prediction model are more accurately correlated.

• Mean squared error (MSE): 1
N ∑N

i=1
(
Θi − Θ̂i

)2. A greater performance of the estima-
tions is indicated by a smaller value of MSE.

• Relative efficiency (RE): The relative efficiency represents the ratio of their efficiencies

The simulation study was done using R 4.0.3 software. Some important R packages
were used for this purpose, namely, Envstats, VGAM, Matrix, etc. Furthermore, the Optim
package was used to solve the nonlinear equations to obtain the values of the estimates.

The simulation results for the classical two-parameter GumD are presented in Table 1.
The following are the results of the simulation. First, we concluded that the OMRSS-based
estimators provided more accurate estimates, followed by the MRSS-based estimators, with
very small biases. In almost all cases, the biases of the RSS, MRSS, and OMRSS techniques
were very small compared with the biases of SRS, as illustrated in Table 1 in the different
cases of true parameter values. From Table 1, it is noticed that for any fixed values of
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(α, β), the values of AB decreased with the increase in n. Next, we discovered that for all
sample sizes, OMRSS estimators outperformed other sampling techniques, and that MRSS
estimators also outperformed SRS and RSS estimators. For all sample sizes, RSS-based
estimators outperformed SRS-based estimators with respect to (α, β). Table 2 provided an
illustration of these results. Also, the MSEs of all estimators for (α, β) based on RSS, MRSS,
and OMRSS were almost always smaller than the MSEs of SRS estimators, and that the
MSEs of the RSS estimators were always larger than the MSEs of the estimators based on
OMRSS and MRSS. For different values of (α, β), the MSEs of the OMRSS-based estimators
were always smaller than the MSEs of the other RSS-based estimators, as illustrated in
Table 3 in the different cases of sample size. It should be noted that the performance of the
MOM based on the SRS technique was investigated for the estimation of unknown GumD
parameters in Mahdi and Cenac [27]. Here, we applied a different sampling technique for
using them in the MOM estimation.

Table 1. Average estimates and ABs for different sampling techniques.

α β n α̂SRS β̂SRS α̂RSS β̂RSS α̂MRSS β̂MRSS α̂OMRSS β̂OMRSS

0.7

4

5

6

7

0.5905
(−0.0905)

0.5809
(−0.0809)

0.5607
(−0.0607)

0.5572
(−0.0572)

0.5358
(0.1642)
0.5710
(0.1290)
0.5946
(0.1054)
0.6068
(0.0932)

0.5498
(−0.0498)

0.5394
(−0.0394)

0.5314
(−0.0314)

0.5290
(−0.0290)

0.6217
(0.0783)
0.6349
(0.0651)
0.6454
(0.0546)
0.6518
(0.0482)

0.5527
(−0.0527)

0.5439
(−0.0407)

0.5356
(−0.0356)

0.5281
(−0.0281)

0.5968
(0.1032)
0.6223
(0.0718)
0.6485
(0.0515)
0.6580
(0.0420)

0.5581
(−0.0581)

0.5407
(−0.0412)

0.5329
(−0.0329)

0.5265
(−0.0265)

0.5994
(0.1006)
0.6282
(0.0698)
0.6428
(0.0572)
0.6541
(0.0459)

0.5 1

4

5

6

7

0.6257
(−0.1257)

0.6091
(−0.1091)

0.5843
(−0.0843)

0.5809
(−0.0809)

0.7670
(0.2330)
0.8138
(0.1862)
0.8460
(0.1540)
0.8669
(0.1331)

0.5698
(−0.0698)

0.5571
(−0.0571)

0.5463
(−0.0463)

0.5382
(−0.0382)

0.8825
(0.1175)
0.9060
(0.0940)
0.9180
(0.0820)
0.9363
(0.0637)

0.5833
(−0.0833)

0.5568
(−0.0568)

0.5440
(−0.0440)

0.5374
(−0.0374)

0.8567
(0.1433)
0.8946
(0.1054)
0.9184
(0.0816)
0.9368
(0.0632)

0.5832
(0.0104)
0.5599

(−0.0599)
0.5453

(−0.0453)
0.5366

(−0.0366)

0.8555
(0.1445)
0.9003
(0.0997)
0.9220
(0.0780)
0.9366
(0.0634)

2

4

5

6

7

0.7602
(−0.2602)

0.7264
(−0.2264)

0.6779
(−0.1779)

0.6709
(−0.1709)

1.5379
(0.4621)
1.6354
(0.3646)
1.6880
(0.3120)
1.7465
(0.2535)

0.7699
(−0.2699)

0.7098
(−0.2098)

0.6912
(−0.1912)

0.6467
(−0.1467)

1.5617
(0.4383)
1.6170
(0.3830)
1.6861
(0.3139)
1.7184
(0.2816)

0.6631
(−0.1631)

0.6256
(−0.1256)

0.5953
(−0.0953)

0.5812
(−0.0812)

1.7029
(0.2971)
1.7860
(0.2140)
1.8373
(0.1627)
1.8589
(0.1411)

0.6587
(−0.1587)

0.6147
(−0.1147)

0.5945
(−0.0945)

0.5748
(−0.0748)

1.7209
(0.2791)
1.7972
(0.2028)
1.8314
(0.1686)
1.8674
(0.1326)

0.7

4

5

6

7

1.0947
(−0.0947)

1.0727
(−0.0727)

1.0603
(−0.0603)

1.0547
(−0.0547)

0.5370
(0.1630)
0.5697
(0.1303)
0.5917
(0.1083)
0.6032
(0.0968)

1.0926
(−0.0926)

1.0736
(−0.0736)

1.0685
(−0.0685)

1.0568
(−0.0568)

0.5328
(0.1672)
0.5682
(0.1318)
0.5917
(0.1083)
0.6042
(0.0958)

1.0595
(−0.0595)

1.0420
(−0.0420)

1.0348
(−0.0348)

1.0263
(−0.0263)

0.6007
(0.0993)
0.6273
(0.0727)
0.6443
(0.0557)
0.6530
(0.0470)

1.0588
(−0.0588)

1.0416
(−0.0416)

1.0313
(−0.0313)

1.0273
(−0.0273)

0.6042
(0.0958)
0.6249
(0.0751)
0.6446

(−0.0313)
0.6517
(0.0483)

1 1

4

5

6

7

1.1360
(−0.1360)

1.1036
(−0.1036)

1.0939
(−0.0939)

1.0788
(−0.0788)

0.7700
(0.2300)
0.8141
(0.1859)
0.8463
(0.1537)
0.8709
(0.1291)

1.1390
(−0.1390)

1.1050
(−0.1050)

1.0854
(−0.0854)

1.0715
(−0.0715)

0.7785
(0.2215)
0.8106
(0.1894)
0.8471
(0.1529)
0.8641
(0.1359)

1.0855
(−0.0855)

1.0585
(−0.0585)

1.0466
(−0.0466)

1.0378
(−0.0378)

0.8586
(0.1414)
0.8933
(0.1067)
0.9163
(0.0837)
0.9350
(0.0650)

1.0862
(−0.0862)

1.0631
(−0.0631)

1.0458
(−0.0458)

1.0407
(−0.0407)

0.8591
(0.1409)
0.9025
(0.0975)
0.9167
(0.0833)
0.9357
(0.0643)

2

4

5

6

7

1.2551
(−0.2551)

1.2224
(−0.2224)

1.1833
(−0.1833)

1.1617
(−0.1617)

1.5295
(0.4705)
1.6420
(0.3580)
1.6870
(0.3130)
1.7326
(0.2674)

1.2699
(−0.2699)

1.2101
(−0.2101)

1.1819
(−0.1819)

1.1606
(0.0388)

1.5617
(0.4383)
1.6301
(0.3699)
1.6954
(0.3046)
1.7293
(0.2707)

1.1651
(−0.1651)

1.1221
(−0.1221)

1.0932
(−0.0932)

1.0838
(−0.0838)

1.7138
(0.2862)
1.8008
(0.1992)
1.8388
(0.1612)
1.8654
(0.1346)

1.1491
(−0.1491)

1.1158
(−0.1158)

1.0994
(−0.0994)

1.0765
(−0.0765)

1.7037
(0.2963)
1.7841
(0.2159)
1.8425
(0.1575)
1.8661
(0.1339)
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Table 2. REs of the RSS-based estimators for the different true parameter values.

α β n α̂RSS β̂RSS α̂MRSS β̂MRSS α̂OMRSS β̂OMRSS

0.7

4
5
6
7

3.7013
6.2968
4.7443
19.5555

17.2920
1.0002
4.8506

26.3555

4.6947
8.9932
6.2749

23.2403

53.6192
4.2868
4.9300
46.0790

6.1142
13.2891
8.5105

91.5991

84.3283
5.8655
4.9599
78.1208

0.5 1

4
5
6
7

2.6851
1.3502
8.4115
2.4107

9.0612
3.3105
4.9502
5.3478

3.9082
24.5139
16.4499
3.1159

16.7455
4.1808
9.2859
7.6584

22.4366
29.1483
41.4499
7.0868

26.0740
4.3723

14.1631
56.4560

2

4
5
6
7

1.5613
1.5200
5.6984
1.6696

2.0381
1.4362
1.7853
2.1892

2.3668
2.4058
7.0050
4.1251

2.5066
3.1504
1.9539
4.9020

12.0396
9.6265

32.1273
23.6703

6.8367
59.8232
2.6250
11.2264

0.7

4
5
6
7

12.0061
6.5461

34.9618
1.5629

3.6648
1.6319
7.4401
1.7806

15.6642
8.5819

37.8385
9.8525

3.7030
4.6944
12.5514
17.2279

17.4097
53.4039
51.4523
22.2806

4.6794
5.9712

18.5215
93.4339

1 1

4
5
6
7

1.8645
12.8513
2.4804
5.1264

1.8608
1.4276
3.1891
3.6597

8.8356
20.1194
5.1823

39.6826

3.7994
3.9916
25.6814
9.1304

26.6519
39.8336
29.6181

118.9753

34.6611
6.7517

53.9711
24.4499

2

4
5
6
7

1.0185
1.6811
1.8672
1.5265

1.9512
3.2852
4.0130
7.7246

2.7145
1.8331
4.6008
1.6144

4.8727
5.9760
4.8441
8.6092

29.0157
19.4223
40.7312
1.8176

15.8716
6.1706
7.1577

15.2554

Table 3. MSEs of the different sampling techniques.

α β n α̂SRS β̂SRS α̂RSS β̂RSS α̂MaxRSS β̂MaxRSS α̂OMaxRSS β̂OMaxRSS

0.7

4
5
6
7

0.3037
0.2356
0.1625
0.3956

0.2411
0.0111
0.1343
0.2853

0.0820
0.0374
0.0343
0.0202

0.0139
0.0111
0.0277
0.0108

0.0647
0.0262
0.0259
0.0170

0.0045
0.0026
0.0273
0.0062

0.0497
0.0177
0.0191
0.0043

0.0029
0.0019
0.0271
0.0037

0.5 1

4
5
6
7

0.4808
0.4709
0.9159
0.2740

0.2623
0.2136
0.2048
0.6307

0.1790
0.3488
0.1089
0.1137

0.0289
0.0645
0.0414
0.1179

0.1230
0.0192
0.0557
0.0880

0.0157
0.0511
0.0221
0.0824

0.0214
0.0162
0.0221
0.0387

0.0101
0.0489
0.0145
0.0112

2

4
5
6
7

0.8847
0.3801
0.7669
0.9998

0.6743
0.6126
0.2160
0.9789

0.5667
0.2500
0.1346
0.5988

0.3309
0.4266
0.1210
0.4472

0.3738
0.1580
0.1095
0.2424

0.2690
0.1945
0.1105
0.1997

0.0735
0.0395
0.0239
0.0422

0.0986
0.0102
0.0823
0.0872

0.7

4
5
6
7

0.5496
0.1427
0.6070
0.1857

0.2156
0.1238
0.2367
0.1759

0.0458
0.0218
0.0174
0.1188

0.0588
0.0759
0.0318
0.0988

0.0351
0.0166
0.0160
0.0189

0.0582
0.0264
0.0189
0.0102

0.0316
0.0027
0.0118
0.0083

0.0461
0.0207
0.0128
0.0019

1 1

4
5
6
7

0.1609
0.4335
0.6323
0.2294

0.1195
0.2051
0.7348
0.2863

0.0863
0.0337
0.2549
0.0447

0.0642
0.1437
0.2304
0.0782

0.0182
0.0215
0.1220
0.0058

0.0314
0.0514
0.0286
0.0314

0.0060
0.0109
0.0213
0.0019

0.0034
0.0304
0.0136
0.0117

2

4
5
6
7

0.5771
0.5199
0.6212
0.3364

0.6456
0.4577
0.2768
0.2999

0.5667
0.3093
0.3327
0.2204

0.3309
0.1393
0.0690
0.0388

0.2126
0.2836
0.1350
0.2084

0.1325
0.0766
0.0571
0.0348

0.0199
0.0268
0.0153
0.1851

0.0407
0.0742
0.0387
0.0197

5. Empirical Study

Real datasets were used to establish the importance of applying the Gumble distribu-
tion to real life. This application saved time, saved effort, and achieved the desired result.
It also showed the importance of the GumD in real life. Two actual datasets from Saudi
Arabia and the United Kingdom were utilized to assess the GumD goodness-of-fit. The two
real datasets were used to estimate the unknown parameters using the method of moments.
The first dataset was used in Fayomi et al. [29] and represented a random sample of Saudi
Arabia’s COVID-19 mortality rates over a 36-day period. The second dataset was used in
Zayed et al. [30] and showed the total milk production from the first birth of 107 cows of the
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SINDI race. To ensure the reliability and suitability of this study, we used different sample
sizes. The datasets were subjected to the Kolmogorov–Smirnov (KS), Anderson–Darling
(AD), and Cramer–von Mises (CVM) statistical tests for goodness-of-fit, and the p-values in
each test indicate that the distribution fits the data very well (see Table 4).

Table 4. The KSs, ADs, and Ws, and the associated p-values of these tests on the dataset.

KSs p-Value ADs p-Value Ws p-Value

Dataset I 0.52462 0.9343 0.2779 0.6311 0.0421 0.6322

Dataset II 0.38101 0.4818 0.4542 0.2649 0.0561 0.4230

Figure 1 shows the histogram plot with the fitted PDF, P-P plot, and Q-Q plot of the
Gumble distribution using dataset I. From this figure, we concluded that the GumD was
appropriate for this dataset I. Figure 2 shows three plots of dataset I, where on the left
is a boxplot with data explaining that the data had no outlier values, in the middle is
an empirical CDF (ECDF) and a theoretical CDF plot with data explaining that the data
were increasing, and on the right is a hazard estimated plot line indicating that the hazard
was increasing. From Figures 1 and 2, it can be observed that the given dataset I fit the
GumD well.

Figure 1. Histogram, P-P plot, and Q-Q plot for the fit of GumD based on dataset I.

Figure 2. Boxplot, ECDF, and hazard plot for the fit of GumD based on dataset I.

Figure 3 illustrates the histogram graph with the fitted PDF, P-P plot, and Q-Q plot
of the GumD based on dataset II. Based on this figure, we concluded that the GumD fit
dataset II. Figure 4 displays three graphs of dataset II. The graph on the left shows a boxplot
showing the data had no outlier values. The middle graph depicts an empirical CDF and
theoretical CDF plot with data indicating that the data were increasing. The right graph
depicts a hazard estimated plot line, indicating that the hazard was increasing. From
Figures 3 and 4, it was observed that the given dataset II fit the GumD well.

Figure 3. Histogram, P-P plot, and Q-Q plot for the fit of GumD based on dataset II.
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Figure 4. Boxplot, ECDF, and hazard plot for the fit of GumD based on dataset II.

We used the MOM to estimate the unknown parameters of the GumD. During the
estimation period, some measurements of error were used, such as MSE, mean abso-
lute error (MAE), mean bias error (MBE), and standard error (SE) values, which were
calculated using

MSE =
1
n

n

∑
i=1

(xobs − xexp)
2, MAE =

1
n

n

∑
i=1

|xobs − xexp|,

MBE =
1
n

n

∑
i=1

(xobs − xexp), and SE =

√
1
n

n

∑
i=1

(xobs − xexp)2,

where xobs is the value from a dataset and xexp is the value of x that came from the
simulation after estimating the unknown parameters. In Table 5, the values of MSE, MAE,
MBE, and SE are shown for dataset I with sample size n = 6 and dataset II with sample size
n = 10 with cycle size m = 1. Compare the GumD with the SRS, RSS, MRSS, and OMRSS
techniques based on the MOM in this table. Based on the results of these measures, we may
be able to select the best sample technique for estimating the GumD based on the smaller
values of measurements of error. Based on the numerical results of the real datasets, the
conclusions can be summarized as follows: First, in general, all measures of error based on
the RSS, MRSS, and OMRSS methods were lower than those measures based on the SRS
technique. Second, the OMRSS technique was superior to all other sampling techniques.
It had the lowest values for the measures of error. Third, it can also be seen that the SRS
was inferior to other sampling techniques. It had the highest values measures of error for
various estimation techniques. Fourth, the SE had a largest values compared with the other
measures of error based on the sampling techniques, while MSE had the lowest values of
the measures of error. Finally, the MSE was the same as the MBE for all estimation methods
and sampling techniques. It was also the smallest compared with the other measures.

Table 5. The estimators and selected measures for datasets using sampling techniques.

n Measures SRS RSS MRSS OMRSS

Dataset I (α̂, β̂) (0.7832, 0.4542) (0.3848, 0.4559) (0.3874, 0.3972) (0.4560, 0.2137)
MSE 1.1499 0.5270 0.4154 0.2356
MAE 0.9304 0.5832 0.4805 0.4367
MBE 1.1499 0.5270 0.4154 0.2356
SE 1.0724 0.7260 0.6445 0.4854

Dataset II (α̂, β̂) (0.5002, 0.3973) (0.2899, 0.3361) (0.3091, 0.1852) (0.6168, 0.2513)
MSE 0.2852 0.1644 0.1301 0.1074
MAE 0.3836 0.3029 0.2896 0.2796
MBE 0.2852 0.1644 0.1301 0.1074
SE 0.5340 0.4055 0.3608 0.3277

6. Conclusions

In this study, the unknown parameters of Gumbel distribution were estimated using
the method of moments based on the SRS, RSS, MRSS, and OMaxRSS techniques. The
conclusions can be divided into three parts: First, theoretical results were obtained using the
method of moments with sampling techniques. The first and second moments of sampling
techniques were obtained and solved numerically to obtain the estimators. Second, based
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on the comparative study’s simulation results, numerical comparisons between SRS and
different RSS techniques revealed that, in general, estimates based on the RSS, MRSS, and
OMRSS techniques were more efficient than the SRS estimators. Furthermore, RSS was
shown to be less efficient than the MRSS and OMRSS techniques with large MSEs. The
OMRSS was more efficient than other SRS-based RSS techniques for different sample sizes.
Finally, based on the results of two real datasets used in a comparative study, a numerical
comparison between SRS and RSS techniques shows that all measures of error based on
the RSS, MRSS, and OMRSS techniques had lower values than those based on the SRS
technique. For the sampling techniques, the MSE was the same as the MBE. In comparison
with the other measures, the MSE was also the smallest. The RSS had the largest value
in the measures compared with the other MRSS and OMRSS techniques. The OMRSS
technique was superior to all other sampling techniques; it had the lowest values for the
measures of error.
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