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Abstract: Simulating surface conditions by solving the wave equation of a sucker-rod string is the
theoretical basis of a sucker-rod pumping system. To overcome the shortcomings of the conventional
finite difference method and analytical solution, this work describes a novel hybrid method that
combines the analytical solution with the finite difference method. In this method, an analytical
solution of the tapered rod wave equation with a recursive matrix form based on the Fourier series is
proposed, a unified pumping condition model is established, a modified finite difference method is
given, a hybrid strategy is established, and a convergence calculation method is proposed. Based on
two different types of oil wells, the analytical solutions are verified by comparing different methods.
The hybrid method is verified by using the finite difference method simulated data and measured
oil data. The pumping speed sensitivity and convergence of the hybrid method are studied. The
results show that the proposed analytical solution has high accuracy, with a maximum relative error
relative to that of the classical finite difference method of 0.062%. The proposed hybrid method has a
high simulation accuracy, with a maximum relative area error relative to that of the finite difference
method of 0.09% and a maximum relative area error relative to measured data of 1.89%. Even at
higher pumping speeds, the hybrid method still has accuracy. The hybrid method in this paper
is convergent. The introduction of the finite difference method allows the hybrid method to more
easily converge. The novelty of this work is that it combines the advantages of the finite difference
method and the analytical solution, and it provides a convergence calculation method to provide
guidance for its application. The hybrid method presented in this paper provides an alternative
scheme for predicting the behavior of sucker-rod pumping systems and a new approach for solving
wave equations with complex boundary conditions.

Keywords: sucker-rod string wave equation; pumping condition model; hybrid prediction method;
analytical solution; finite difference method

MSC: 35L05

1. Introduction

Petroleum is a strategic resource that plays a key role in the industrial field and
manufacturing industry and still accounts for a relatively large proportion of global energy
consumption [1]. In the petroleum industry, the sucker-rod pumping system has the merits
of low comprehensive costs, simple equipment, and convenient operation [2] and has the
highest number of installations worldwide [3].

A typical sucker-rod pumping system consists of a surface unit, a sucker-rod string,
a tubing string, and a subsurface pump, which has a standing valve at the bottom of
the well and a traveling valve attached to a rod [4,5]. A sucker-rod pumping system
is generally unstable and can suffer various failures due to operation in open air and
long-term operation, so monitoring its operating conditions is very important for oil
production [6]. However, a pumping system’s operating conditions are difficult to measure
directly because it operates in a small-diameter oil tube thousands of meters underground.
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In production practice, the pumping condition is usually identified by analyzing the surface
dynamometer card [7], i.e., a closed curve of polished rod displacement and load, which is
called diagnostic technology.

Many advanced methods have been applied in diagnostic technology based on
fault dynamometer cards, such as the continuous hidden Markov model [8], supervised
dictionary-based transfer subspace learning [9], optimized density peak clustering [10], oil-
Net 1-D/2-D identification models from time-series and computer vision perspectives [11],
four-segment time-frequency signature matrices, and deep learning [12].

In a real oil well, it is impossible to have every type of surface dynamometer card.
Computer simulation of fault surface dynamometer cards is an economical and effective
method. In this method, the card is simulated based on the solutions of the sucker-rod string
wave equation with the description of the operation of the sucker-rod pump, which is called
prediction technology [13]. Moreover, the behavior prediction of a sucker-rod pumping
system is the theoretical basis for system design [14], energy consumption analysis [15],
production parameter optimization [16], system control [4], and so on.

In 1963, Gibbs [17] established a one-dimensional wave equation to describe the
vibration of a sucker-rod string and proposed the finite difference method to predict the
behaviors of a sucker-rod pumping system. In the finite difference method, the upper
boundary of the wave equation is the polished rod displacement, and the lower boundary is
a “self-sensing” pumping condition model. It is a mixed function of the pump displacement
and the load determined by the time of valve opening and closing, which permits automatic
“sensing” of the valve operating times by computer tests.

Gibbs’s work was pioneering [18] and has since been used as a basis for research [19].
As a standard solution method [4], one of the merits of the finite difference method is
that it can easily simulate the pump card (i.e., the downhole dynamometer card, which is
a closed curve of pump displacement and load). However, the finite difference method
should satisfy the stability criterion [17]. This results in a long computer simulation time,
especially for tapered rod strings [20].

In addition to the finite difference method, there are other methods for solving the
sucker-rod wave equation in prediction technology, such as the traveling wave method [21],
the mode superposition method [22,23], the spring-mass-damper method (i.e., abbrevi-
ated as the SMD method, the sucker-rod string is dispersed into spring-mass-damper
systems) [24,25], and the analytical solution.

This paper focuses on the analytical solution due to its advantages of being able to
calculate the displacement and force at any position on the sucker-rod string [26] and not
being limited by stability conditions [20]. As early as 1966 and 1967, Gibbs and Neely [27]
and Gibbs [28] proposed an analytical solution using complex theory and separation of
variables in diagnostic technology. The boundary conditions of the wave equation are the
polished rod displacement and load, which are known and can be expanded into a Fourier
series, so the pump displacement and load can be easily calculated [29].

Scientists have tried to apply it to prediction techniques but have no effective scheme.
Li and Li [30] proposed an analytical solution using complex theory and separation of
variables in prediction and noted that it required a periodic trail pump load-time function
that should be modified according to the given conditions. However, modified details of
the pumping condition model are lacking. Chen et al. [31] provided a unified expression
for diagnostic and predictive analysis based on the analytical solution using complex
theory and separation of variables, taking the displacement and force at any point of the
sucker-rod string as known conditions. However, its boundary conditions are different
from those in real predictive analyses [13,17]. Yin et al. [20] proposed a matrix solution
based on the analytical solution. However, the pump load is a periodical pump load-
time function determined by polished rod displacement, which is suitable only for the
case of low pumping speeds. The analytical solution is essentially a frequency domain
approach that requires a periodic pump load-time function, making it difficult to address
the traditional “self-sensing” pumping condition model. Therefore, it is necessary to study
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how to introduce the finite difference method into the analytical wave solution of the
prediction method.

This work proposes a hybrid method based on an analytical solution and the finite
difference method. First, an analytical solution of the wave equation of the tapered sucker-
rod based on a recursive matrix form is presented. Then, as part of the preparation for
the hybrid method, a unified pumping condition model is established. As another part
of the preparation for the hybrid method, a modified finite difference method for a single
rod is introduced. Then, the hybrid method of fusing the analytical solution and the finite
difference method is proposed, and the convergence of the hybrid method is given. Finally,
the hybrid method is verified by simulated and measured cards based on oil field data.

The remainder of the paper is organized as follows: Section 2 describes the theory and
algorithm of this work. Section 3 presents the validation and discussion. Section 4 presents
the conclusion of the paper.

2. Theory and Algorithm
2.1. Fundamental Assumptions

A real well pumping system is complex, especially when considering the flow law
of borehole fluids. To establish the model conveniently, the following basic assumptions
are made: (1) The lateral vibration of the sucker-rod string is ignored. (2) The discharge
pressure, intake pressure, and temperature at the pump are constant. (3) The valves are
opened and closed instantaneously. (4) The hydraulic loss of the valves and the liquid
friction of the pump plunger are ignored. (5) The gas-to-liquid ratio does not change at
the same pump pressure and temperature. Only the compressibility of the gas phase is
considered. Gas compression and expansion are isothermal polytropic processes. Notably,
most of the assumptions are conventional assumptions [16,32,33], which do not deviate
much from field applications.

2.2. Analytical Solution of the Wave Equation Based on a Recursive Matrix Form
2.2.1. One-Dimensional Wave Equation

The longitudinal vibration of the single rod string can be described by the one-
dimensional wave equation given by Gibbs in a vertical well [17]. It is assumed that
the total string consists of the K stage taper section and the wave equation of the i-th taper
section is [20]:

∂2ui
∂t2 − c2

i
∂2ui
∂x2 + vi

∂ui
∂t

= 0 l − Li < x < l (1)

where ci =
√

Erig/ρi, l =
i

∑
k=1

Lk. Eri is the Young’s modulus of the rod material, g is the

gravitational acceleration, ρi is the rod density, Lk is the length of the k-stage taper section
of the rod, and vi is the viscous damping factor.

In prediction technology, the boundary conditions and continuity conditions are

u(0, t) = −ua(t),
ErK ArK

∂u(x,t)
∂x

∣∣x=L = Pp(t) ,
ui(l, t) = ui+1(l, t),
Eri Ari

∂ui(x,t)
∂x

∣∣∣x=l = Eri+1 Ari+1
∂ui+1(x,t)

∂x |x=l

(2)

where L =
K
∑

k=1
Lk and Pp(t) = Ap[pd − p(t)]. Ap is the plunger area, pd is the discharge

pressure, p(t) is the pump pressure, and ua(t) is the polished rod displacement.
Equations (1) and (2) show that when ua(t) and Pp(t) or p(t) are given, the rod

displacement function u(x, t) can be calculated after solving Equation (1), then the dynamic
properties of the rod can be analyzed.
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2.2.2. Block Matrix Expression of the Analytical Solution

By separating variables and assuming complex periodic solutions T(t) = einωt, Gibbs
and Neely [27] and Gibbs [28] proposed an analytical solution in diagnostic technology.
Equation (1) of the wave equation of the i-th taper section is defined as follows:

Definition 1 ([27]). The generic solution to Equation (1) is as follows:

ui(x, t) = ξi + ηix +
N
∑

n=1
[Qin(x) cos nωt + Pin(x) sin nωt],

Di(x, t) = Eri Ariηi + Eri Ari
N
∑

n=1

[
Q′

in(x) cos nωt + P′
in(x) sin nωt

] (3)

where
Qin(x) = εinchc(x) + πinshs(x) + κinchs(x) + µinshc(x),
Pin(x) = −εinshs(x) + πinchc(x) + κinshc(x)− µinchs(x),
Qin(x) = ∂Qin(x)

∂x , Pin(x) = ∂Pin(x)
∂x ,

chc(x) = cosh βinx cos αinx, shs(x) = sinhβinx sin αinx,
chs(x) = cosh βinx sin αinx, shc(x) = sinhβinx cos αinx,

αin = nω
ci
√

2

√
1 +

√
1 +

( vi
nω

)2, βin = nω
ci
√

2

√
−1 +

√
1 +

( vi
nω

)2

(4)

where ω = 2π/T is the angular frequency of pumping and T is the pumping cycle period.

Definition 2. Qin(x), Pin(x), Q′
in(x), and P′

in(x) in Equation (3) are expressed by a block matrix
as follows:

[
Qin(x) Pin(x) Q′

in(x) P′
in(x)

]T
=

[
Mx

i,1 Fx
i,1

]T
[επn]i +

[
Mx

i,2 Fx
i,2

]T
[κµn]i (5)

where
[επn]i =

[
εin πin

]T , [κµn]i =
[

κin µin
]T ,

Mx
i,1 =

[
chc(x) shs(x)
−shs(x) chc(x)

]x

i
, Mx

i,2 =

[
chs(x) shc(x)
shc(x) −chs(x)

]x

i
,

Fx
i,1 =

∂Mx
i,1

∂x , Fx
i,2 =

∂Mx
i,2

∂x

(6)

2.2.3. Recursive Matrix Solving Method

According to Definitions 1–2, the solution of the definite solution problem, i.e.,
Equations (1) and (2), is transformed into the solution of the coefficients [επn]i and [κµn]i.

According to the displacement expression and the load expression of Equation (3), the
continuity conditions of Equation (2) can be rewritten as follows:[

Ml
i,1 Ml

i,2
Eri AiFl

i,1 Eri AriFl
i,2

][
πεn
κµn

]
i
=

[
Ml

i+1,1 Ml
i+1,2

Eri+1 Ari+1Fl
i+1,1 Eri+1 Ari+1Fl

i+1,2

][
πεn
κµn

]
i+1

(7)

Resolving Equation (7) yields the recursive matrix

[
πεn
κµn

]
i
=

[
Ml

i,1 Ml
i,2

Eri AiFl
i,1 Eri AriFl

i,2

]−1[
Ml

i+1,1 Ml
i+1,2

Eri+1 Ari+1Fl
i+1,1 Eri+1 Ari+1Fl

i+1,2

][
πεn
κµn

]
i+1

(8)

The coefficients [επn]K and [κµn]K are the key to the solution of the definite solu-
tion problem.
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Proposition 1. The coefficients [επn]K and [κµn]K of the last section of the tapered rod are
determined from the rod’s characteristic matrix [MFn] and the boundary condition coefficient matrix
[δvn] and [στn] as follows: [

κµn
πεn

]
K
= [MFn]

[
δvn
στn

]
(9)

The poof Proposition 1 is shown in Appendix A.1.
According to Equations (A1) and (A3), the coefficients [πεn]1 and [κµn]1 can be re-

solved as follows:
[πεn]1 = [vδn],
[κµn]1 = [Ft1][κµn]N + [Ft2][πεn]N

(10)

The other coefficients
[

κµn
πεn

]
i

can be calculated according to the recursive matrix of

Equation (8).
Thus, the pump displacement and pump load can be calculated as follows:

up(t) = −uK(L, t) =
ν0

2
− σ0

2

K
∑

k=1

Lk
Erk Ark

−
N
∑

n=1
[QKn(L) cos nωt + PKn(L) sin nωt],

PRL(t) = W f + D1(0, t) = W f +
σ0

2
+ Er1 Ar1

N
∑

n=1
[Q′1n(0) cos nωt + P′1n(0) sin nωt]

(11)
where [

QKn(L) PKn(L)
]T

=
[

ML
K,1

]
[επn]K +

[
ML

K,2

]
[κµn]K,[

Q′
1n(0) P′

1n(0)
]T

=
[

F0
1,1

]
[επn]1 +

[
F0

1,2

]
[κµn]1

(12)

W f is the weight of the sucker-rod in the fluid.
As shown in Equation (11), up(t) and PRL(t) can be calculated after ua(t) and Pp(t)

are approximated by the truncated Fourier series. Then, the key cards of this paper, i.e., the
surface dynamometer card [ua(t), PRL(t)] and the pump card

[
up(t), Pp(t)

]
, can be drawn.

The flowchart of the solution procedure is shown in Figure 1.
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The polished rod displacement up(t) is easily determined, and the next key is to
determine the pump load Pp(t) according to the operating conditions of the pump, i.e., the
pump condition model.

2.3. Uniform Pumping Condition Model

Under common pumping conditions, the model in this paper considers only the ideal
pumping conditions and the gas interference pumping conditions.

When the pumping speed is low, the vibration of the sucker-rod string in Equation (1)
can be neglected, and the sucker-rod string is in a state of elastic deformation and is
equivalent to a spring. The fundamental force balance equation follows according to
Equation (1) to Equation (2):

ua(t)− upg(t)− Apkt[pd − p(t)] = Apkr[pd − p(t)] (13)

where upg(t) is the pump displacement caused by gas interference and Apkt[pd − p(t)] is

the pump displacement caused by the elastic deformation of the tubing string. kr =
K
∑

i=1

Li
Eri Ari

and kt =
K
∑

i=1

Lti
Eti Ati

.Lti and Ati are the length and the cross-sectional area of the i-th tubing

string, respectively. Eti is the Young’s modulus of the i-th tubing string.
According to the gas expansion and gas compression [23], the pump displacement can

be rewritten and differentiated. Differentiating Equation (13) yields

va(t)− vpg(t)
dp(t)

dt
= −Apke

dp(t)
dt

(14)

where
ke = kr + δtkt,

vpg(t) = −
[
rp

log n√pd
n +

(
1 − rp

) lg n√ps
n

]
[p(t)]−

1
n −1,

log = Rsl0, n = 1.1, Rs =
R

1+R , lg = Rd
(
l0 + lp

)
,

Rd =
log

[
p(tm)

pd

]− 1
n

l0−log+log

[
p(tm)

pd

]− 1
n

R is the gas-to-liquid ratio at the pump suction. In the loading portion, rp = 1, while
in the unloading portion, rp = 0. δt = 0 indicates that the tubing string is anchored, while
δt = 1 indicates that the tubing string is unanchored. ps is the intake pressure, and tm is the
downstroke start time. l0 is the clearance column length of the pump and lp is the length of
the pump stroke.

To calculate the pump pressure, the forward difference is used, and the pump pressure
is calculated in the loading and unloading portions according to Equation (14) as follows:

p
(
tj
)
=

vpg
(
tj−1

)
p
(
tj−1

)
+ Apke p

(
tj−1

)
− va

(
tj
)
∆t

vpg
(
tj−1

)
+ Apke

, j = 1, 2, 3, . . . , J (15)

where ∆t is the time increment and T = (J − 1)∆t.
Obviously, p(t) = f (δt, Rs). The model naturally includes the conditions of faulty

pumping and tubing anchoring.
As indicated by Equation (15), the pump pressure is a function of the polished rod

displacement, and it only applies to static cases. Therefore, it can be called a static model.
For the dynamic model, the pump pressure is

p
(
tj
)
=

vpg
(
tj−1

)
p
(
tj−1

)
+ Apkt p

(
tj−1

)
− vp

(
tj
)
∆t

vpg
(
tj−1

)
+ Apkt

, j = 1, 2, 3, . . . , J (16)
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It is worth noting that the model can be easily extended to include other failure
conditions, such as leak conditions, including the clearance leakage of the pump plunger
and pump barrel, the leakage of the traveling valve, and the leakage of the standing valve.
A more comprehensive model is under investigation.

The initial value of the pump pressure calculation expression is

va(0) = 0,
vp(0) = 0,
p(0) = pd

(17)

The judgment condition is

p(t) ≤ ps → p(t) = ps,
p(t) ≥ ps → p(t) = pd

(18)

As shown in Equation (16), the pump pressure p(t) is determined by the pump speed
vp(t), while Equation (18) shows that it is also determined by itself, so it is a kind of “self-
sensing” model. It is difficult to simulate the behavior of the analytical solution because a
periodical pump load-time function is needed for Fourier series expansion. However, finite
difference methods can easily handle this challenge.

2.4. Finite Difference Method

In this section, the classical finite difference method for a single rod is employed in the
next hybrid method, while the finite difference method for a tapered rod string is used for
comparison with the hybrid method.

The classical finite difference solution equation of a single rod is adapted below [13,18]:

um,j+1 = γs1γs2
(
um+1,j + um−1,j

)
+ γs1γs3um,j − γs1um,j−1; m = 2, 3, . . . , M; j = 2, 3, . . . , J (19)

where
γs1 = 1

1+v∆t ,

γs2 =
(

∆tc
∆x

)2
,

γs3 =
(

γ−1
s1 − 2γs2 + 1

) (20)

To apply the finite difference method in the hybrid method, the upper boundary
condition of the finite difference solution should be modified; that is, the displacement
uu(t) and the load Pu(t) should be modified. Here, they are called the middle displacement
and middle load, respectively. Considering Equation (19) and the finite difference form of
the pump load [17], the following modified expression is obtained:

u1,j = −uu,j,
u2,j+1 = γs1(γs2 + 0.25γs3)u3,j + γs1(γs2 + 0.75γs3)u1,j − γs1u2,j−1 +

γs1γs3∆x
2ErK ArK

Pu,j
(21)

The lower boundary condition is [17]

(1 − δt)u(L, t) + δt
∂u(L, t)

∂x
= (1 − δt)uc + δt

Ap

ErK ArK
[pd − p(t)] (22)

According to the dynamic model of Equation (16), Equation (22) can be rewritten as

uM,j+1 = (1 − δt)uc + δt
2uM−1,j+1 − 0.5uM−2,j+1 +

∆x
ErK ArK

Fj

1.5 + ∆x
ErK ArK

Ap pre2,j
(23)
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where
Fj = Ap

(
pd − pre1,j pre2,j + pre2,juM,j

)
,

pre1,j = vpg,j pj + Apkt pj,
pre2,j =

1
vpg,j+Apkt

(24)

Thus, the pump load, pump pressure, and pump displacement are as follows:

Pp,j+1 = ErK ArK
∆x

(
1.5uM,j+1 − 2uM−1,j+1 + 0.5uM−2,j+1

)
,

pj+1 = pd − Pp,j+1/Ap,
up,j+1 = −uM,j+1

(25)

As shown in Equations (23)–(25), the pump load Pp,j+1 can be calculated according to
uM,j, so the information of the j-th time step is used to recursively infer the information
of the j + 1-th time step, which can easily simulate the pump operating conditions. This
strategy was first proposed by Gibbs [17].

The finite difference method for tapered rod strings was proposed by Zhang et al. [34],
Takacs [13], and Yin [20].

The polished rod displacement ua(t) is calculated according to the equation from the
kinematic analysis of the movement of different types of pumping units, i.e., the long-stroke
pumping unit (Rotaflex) [35] or the beam pumping unit [36].

2.5. Hybrid Method of the Tapered Rod
2.5.1. Design of the Hybrid Method

In the design of the hybrid method, the last section of the tapered rod near the pump is
discretized into at least six units, and the whole tapered rod is divided into two calculation
domains, as shown in Figure 2. Domain 2 is the remaining five units of the last section of
the rod. In domain 1, the analytical solution is used to solve the wave equation, while in
domain 2, the modified finite difference method proposed in this paper is used. Thus, it is
possible to conveniently simulate the pump card using the classical “self-sensing” pumping
condition model.
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Figure 2. Schematic of the calculation domain in the hybrid method.

The calculation scheme of the hybrid method is shown in Figure 3.
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The details are listed as follows:
Setp1, in domain1, calculate the static pump loads according to Equation (15), i.e.,

Pps(t) = Ap{pd − p[va(t)]}. According to the boundary conditions of Pps(t) and ua(t),
the middle load and displacement can be calculated using the analytical solution, i.e.,
Pu(t) = W f + DK(L − 5∆x, t), uu1(t) = −uK(L − 5∆x, t).

Setp2, in domain 2, takes the middle load Pu(t) and displacement uu1(t) as the upper
boundary conditions of the finite difference method. After discretization, the pump load
Pp(t) and displacement up(t) are calculated according to the finite difference method with
the pumping condition model of Equation (23).

Setp3, in domain 1, takes the new load Pp(t) and polished rod displacement ua(t) as
the boundary, and the new middle load Pu(t), displacement uu2(t) and polished rod load
PRL(t) can be calculated according to the analytical solution.

Setp4, calculate ε = max|uu1(t)−uu2(t)|
uu1m

, where uu1m is the maximum value of uu1(t). If
ε > ε0, update the displacement uu1(t) and return to step 2; otherwise, output the results,
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i.e., PRL(t), up(t), Pp(t), and end the program. Thus, the surface dynamometer card, which
is [ua(t), PRL(t)], and the pump card, which is

[
up(t), Pp(t)

]
, can be drawn.

The algorithm’s pseudocode is shown in Algorithm 1.

Algorithm 1: Hybrid method

Calculate: Pps(t) according to Equation (15)
Calculate: Pu(t) and uu1(t) according to the analytical solution taking Pps(t) and ua(t) as the
boundary conditions
Set: ε0 = 0.20%
For i = 1:300

Calculate: Pp(t) and up(t) according to the finite difference method, taking Pu(t) and uu1(t)
as the boundary conditions with the pumping condition model of Equation (23)
Calculate: Pu(t), uu2(t), and PRL(t) according to the analytical solution, taking Pp(t) and
ua(t) as the boundary conditions
Calculate: ε = max|uu1(t)− uu2(t)|/uu1m
Update: uu1(t) = 0.5[uu1(t)− uu2(t)]
If ε<=ε0

break
end

end
Output: ua(t), PRL(t), up(t) and Pp(t)

2.5.2. Convergence of the Hybrid Method

As shown in the calculation scheme of the hybrid method, there is an iterative process.

Proposition 2. The iterative coefficient matrix [Mit] of the hybrid method is the product of the
iterative coefficient matrix [AM] of the analytical solution method and the iterative coefficient matrix
[FM] of the finite difference method and is given as follows:

[Mit] = [FM][AM] (26)

The poof Proposition 2 is shown in Appendix A.2.
In domain 1, according to Equation (3), the deviation of the middle displacement

∆uu1(t) is

∆uu1(t) = −
N
∑

n=1
[QKn(L − 5∆x) cos nωt + PKn(L − 5∆x) sin nωt],[

QKn(L − 5∆x)
PKn(L − 5∆x)

]
=

[
ML−5∆x

K,1 ML−5∆x
K,2

][ επn
κµn

]
K

(27)

According to Equation (A6), the transfer coefficient matrix of the analytical solution is
given as follows:

[AM,n] =
[

ML−5∆x
K,1 ML−5∆x

K,2

]
[MFn] (28)

In domain 2, the finite difference method has the famous stability criterion, i.e.,
∆tc
∆x ≤ 1 [17,18]. Combined with Equation (19), the transfer coefficient matrix of the finite
difference method is set to [FM] = γs1γs2.

Thus, according to Equation (26), the iterative matrix can be given as follows:

[Mit,n] =
kr

ke

σ0

2ErK ArK
γs1γs2

[
ML−5∆x

K,1 ML−5∆x
K,2

]
[MFn] (29)

where, σ0/2ErK ArK adjusts the order of magnitude and kr/ke is the effect coefficient of the
anchored state of the tubing [37].

The spectral radius of the iteration matrix, i.e., ρ(Mit,n), can be calculated. Only when
the spectral radius of the iteration matrix is less than 1 will the iteration converge.
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3. Validation and Discussions

To ensure the credibility of the hybrid method, measured oilfield data and published
data from a different oil well are used. The measured data from well 1 (number X2) are
from the Shengli oilfield of the Oilfield Company of China. The published measured data
and simulated data, which consider hydraulic loss and Newtonian fluid leakage, are from
well 2, as proposed by Xing [38]. The basic parameters of the wells are listed in Table 1.

Table 1. Basic parameters of the oil wells.

Item Value Value

Well number 1 2

Pumping unit DX700 (Rotaflex) CYJ14-6-73HB (Beam pumping)

Pump stroke, m 5.9 4.0

Pumping speed, min−1 1.6 3.18

Sucker-rod string, mm × m 25 × 389 + 22 × 1322 + 28 × 153 22 × 800 + 19 × 900

Tubing string, mm × m 76 × 543 + 62 × 982, Unanchored 62 × 1400, Anchored

Pump diameter, mm 44 56

Pump depth, m 1904 1700

Fluid density, kg/m3 915.4 959

Dynamic liquid level, m 1554 1400

Oil pressure, MPa 1.2 0.6

Casing pressure, MPa 0 0.3

Fluid viscosity, mPa.s 329.84 430

Gas/oil ratio, m3/m3 0 20

Rod and tube’s density, kg/m3 7850 (Steel) 7850 (Steel)

Rod and tube’s Young’s modulus, GPa 210 (Steel) 210 (Steel)

In this paper, a comparison method is used to validate the proposed method. The
validation is divided into two parts: one is the validation of the analytical solution com-
pared with the finite difference method, and the SMD method is employed. The finite
difference method is a well-known and proven solution for the predictive analysis of
sucker-rod pumping systems [37]. Samuel and Anatolii [39] argued that the SMD method
is more applicable for simulating the behaviors of sucker-rod pumping systems. The SMD
method can also be extended to failure analysis and prevention of pipe strings in horizontal
wellbores [40]. The details of the SMD method are given in [24,25].

The other is the validation of the hybrid method. The surface dynamometer card and
the pump card are simulated using the hybrid method and the classical finite difference
method according to the same oil well parameters. The results of the finite difference
method are taken as the standard results and compared. At the same time, the simulated
surface dynamometer card is also compared with the measured card.

The computing platform used in this paper is the MATLAB R2021a. In the finite
difference method and the SMD method, the length increment is Lim/6, and the time
increment is 0.95∆x/cim, where Lin is the minimum length and cim is the maximum sound
velocity of the tapered rod. In the analytical solution, the Fourier series number N is 200, so
its time increment is 60/

(
400np

)
, where np is the pumping speed. Since the time increments

of the two methods are different, the interpolation function of MATLAB, which is “interp1”,
is used to unify the vector lengths of the two methods. In well 2, there is a gas interference
pumping condition with the parameter R = 0.2 and l0 = 0.1lp. In the hybrid method and
finite difference method, ε0 = 0.20%.
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3.1. Validation of Analytical Solution by the Different Methods

To validate the proposed analytical solution, the upper boundary and the lower
boundary are given. The upper boundary is the polished rod displacement, and the lower
boundary is the static pump load calculated according to Equation (15).

Validation 1: For well 1, in the SMD method, the numbers of elements are 15, 51,
and 6. The mass mn, elastic modulus kn and friction coefficient bn of the i-th element are
[99.9305 77.3510 123.2582] kg, [3.9749 3.0796 5.0709] MPa·m, and [64.5298 49.5274 82.4773]
Pa·s·m, respectively. The given upper boundary and the lower boundary are shown in
Figure 4a,b, and the pump displacements calculated by the analytical solution, the finite
difference method, and the SMD method are shown in Figure 4c. As shown in Figure 4c,
the calculated results of the three solutions are consistent, indicating that all three methods
can be used to solve the wave equation. However, as seen from the magnified portion of
the curves, the curves of the analytical solution coincide with those of the finite difference
method, while the curves of the SMD method deviate somewhat. The relative error of the
curves between the analytical solution and the finite difference method is 0.013%, while
that between the SMD method and the finite difference method is 0.40%, indicating that
the proposed analytical solution has the same accuracy as the finite difference method.
Here, the relative error is defined as max

∣∣∣u′
p(t)− upd(t)

∣∣∣/updm × 100%, where u′
p(t) is the

pump displacement curve calculated by the analytical solution or the SMD method, upd(t)
is the pump displacement curve calculated by the finite difference method, and updm is the
maximum value of upd(t).
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Validation 2: For well 2, in the SMD method, the numbers of elements are 40 and 45.
The reason why the numbers are not 6 and 6, i.e., Lim/6, is that the simulation error is too
large. The mass mn, elastic modulus kn and friction coefficient bn of the i-th element are
[59.6808 44.5140] kg, [3.9914 2.9771] MPa·m, [60.7456 46.1426] Pa·s·m, respectively. The
given upper boundary and the lower boundary are shown in Figure 5a,b, and the pump
displacements calculated by the analytical solution, the finite difference method, and the
SMD method are shown in Figure 5c. As shown in Figure 5c, the calculated results of the
three solutions are also the same. As shown in the magnified portion of the curve, the curve
of the analytical solution coincides well with that of the finite difference method, while that
of the SMD method has a certain deviation. The relative error of the curves between the
analytical solution and the finite difference method is 0.062%, while that between the SMD
method and the finite difference method is 0.43%.
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Thus, it can be concluded that, under the same boundary conditions, the proposed
analytical solution has the same accuracy as the finite difference method, while the SMD
method has some errors, and the sources of error are under study. Therefore, the proposed
analytical solution is feasible. In the next hybrid method validation, the finite difference
method is taken as the standard and compared.

3.2. Validation of the Hybrid Method by the Simulated Results

Validation 1: For well 1, the surface dynamometer card and the pump card are
simulated by the hybrid method and the finite difference method, as shown in Figure 6.
As shown in Figure 6, the surface dynamometer card and the pump card simulated by
both methods are perfectly matched, with relative area errors of only 0.06% and 0.09%,
respectively. This indicates that the hybrid method gives the same simulation results as the
finite difference method. Here, the relative area error is defined as the ratio of the absolute
value of two area differences to one of the areas.
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Validation 2: For well 2, the cards simulated by both methods are shown in Figure 7.
As shown in Figure 7, the cards simulated by both methods are also the same, with relative
area errors of 0.02% and 0.03%, respectively.
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It can be concluded that the hybrid method gives the same simulation results as the
finite difference method.

3.3. Validation of the Hybrid Method by the Measured Results

Validation 1: For well 1, the measured surface dynamometer card and the simulated
card obtained by the hybrid method are shown in Figure 8. It should be noted that the
buoyant rod weight in the simulated dynamometer card is adjusted by −1.5 kN. This error
may be due to the calculation method of the buoyant rod weight considering the coupling
of the sucker-rod string or the calibration of the polished rod transducers [35]. The relative
area error excludes the influence of the weight of the buoyant rod. Therefore, it is used
in this paper. The relative area error between the measured and simulated cards is 1.89%.
Therefore, the results of the hybrid method in this paper are in good agreement with the
field test results.
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Validation 2: For well 2, the surface dynamometer card and pump card simulated by
the hybrid method and by Xing [38] (defined as an old method), as well as the measured
surface dynamometer card, are shown in Figure 9. As indicated in Figure 9, the three types
of surface dynamometer cards exhibited the same trends. However, the area relative error
between the surface dynamometer card simulated by the hybrid model and the measured
card is 1.00%, while that between the surface dynamometer card simulated by the old
model and the measured model is 23.12%. Therefore, the results of the proposed method
are closer to the measured data. There are also the same trends for the pump card, and
the area relative error between the pump card simulated by the hybrid method and those
simulated by the old model is 2.16%. This is because the hybrid method does not consider
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hydraulic loss or Newtonian fluid leakage [38]. Validation by surface dynamometer card
measurements from wells 1 and 2 shows that the hybrid method is feasible.
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3.4. Sensitivity Analysis of the Pump Speed

To further illustrate the effectiveness of the hybrid method, a simulation is carried out
with pumping speeds of np, 2np, and 3np.

Sensitivity analysis 1: For well 1, the surface dynamometer cards and pump cards are
simulated by the hybrid method, and the finite difference method is shown in Figure 10. Af-
ter the first loop of the hybrid method, the simulated pump cards are shown in Figure 10a–c.
Figure 10a shows that at a low pumping speed, there are slight differences in the loading
and unloading portions of both cards. Figure 10b,c shows that at higher speeds, the results
of the hybrid method obviously deviate from those of the finite difference method, espe-
cially in the loading and unloading portions of the cards. Figure 10c also shows that there
is an obvious smoothing effect at the highest peak. In the first cycle of the hybrid method,
the pump load Pps(t) is the static pump load calculated according to the static pumping
condition model, i.e., calculated according to the polished rod velocity. Therefore, it can be
concluded that the static model is only applicable to the case of low pumping speed, and a
smoothing effect may occur at high pumping speed. Our previous study [20], which is the
conclusion of the analytical solution, is sensitive to the viscous damping factor and may
belong to this case. The sensitivity of the analytical solutions to the viscous damping factor
is being further investigated.

When the hybrid method meets the accuracy requirements, the loop is finished, and
the simulation results are shown in Figure 10d–f. As illustrated in Figure 10d–f, the cards
simulated by the hybrid method perfectly match those simulated by the finite difference
method. Therefore, even at higher pump speeds, the hybrid method can still eliminate the
influence of the static model and has high accuracy.

Sensitivity analysis 2: For well 2, the surface dynamometer cards and pump cards are
simulated by the hybrid method, and the finite difference method at different pumping
speeds is shown in Figure 11. After the first loop of the hybrid method, the simulated
pump cards are shown in Figure 11a–c. Figure 11a–c shows that the trend is the same as
that of Figure 10a–c, i.e., the static model is suitable for the low pumping speed case, and
the higher the pumping speed is, the greater the simulation error. When the loop is finished
in the hybrid method, the simulation results are shown in Figure 11d–f. As illustrated in
Figure 11d–f, the cards simulated by the hybrid method also perfectly match with those
simulated by the finite difference method. As a result, the hybrid method eliminates the
effects of the static pumping condition model and has high accuracy despite being applied
to different pumping wells and higher pumping speeds.
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Figure 10. Cards simulated by the hybrid method and the finite difference method with different
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at a speed of 3 np. (d) Finished loop at a speed of np. (e) Finished loop at a speed of 2 np. (f) Finished
loop at a speed of 3 np.
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3.5. Numerical Analysis of the Convergence

In this section, the curves between the spectral radius ρ(Mit,n) and the Fourier series
number n, i.e., the convergence curves of the hybrid method are calculated according to
Equation (29). The convergence curves in domain 1 are calculated by setting γs1γs2 = 1
in Equation (29). The convergence curves in the whole domain are calculated by setting
γs1γs2 = 1 and

[
ML−5×0

K,1 ML−5×0
K,2

]
in Equation (29).

Convergence analysis 1: The convergence curves for oil well 1 at pump speeds of 1 np
and 3 np are shown in Figures 12 and 13. As shown in Figure 12, there are four peaks in the
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convergence curves, with the largest peak occurring at a Fourier series number of 26. The
spectral radius of the largest peak in all three convergence curves is less than 1, particularly
in the whole domain, indicating that the algorithm converges when using the analytical
solution iteration method according to reference [37]. The spectral radius of domain 1 is
slightly smaller than that of the whole domain. According to Equation (28), domain 2 short-
ens the length of the rod but accounts for a smaller percentage of 5∆x/L = 6.84%. The
maximum peak spectral radius of the hybrid method is the smallest, indicating that the
introduction of the finite difference method allows the algorithm to more easily converge,
i.e., it can improve the convergence of the algorithm.
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As illustrated in Figure 13, the overall trend is the same as that of Figure 12, with the
difference that the number of peaks in the convergence curve increases to 11, indicating
an increase in the number of harmonics, and the largest peak of the spectral radius occurs
at a Fourier series number of 9, which indicates that a frequency redshift occurs, since the
Fourier series number corresponds to the frequency of the harmonics. The value of the
spectral radius is smaller than that in Figure 12, indicating that the convergence of the
algorithm is enhanced after increasing the pumping speed.

Convergence analysis 2: The convergence curves for oil well 2 at pump speeds of 1 np
and 3 np are shown in Figures 14 and 15. As illustrated in Figure 14, the convergence curves
have seven peaks, with the largest peak occurring at a Fourier number of 15. The maximum
peak spectral radius of domain 1 and the whole domain is greater than 1, indicating that
the iterative algorithm of reference [37] does not converge. When the maximum peak
spectral radius of the hybrid method is less than 1, the hybrid method converges, i.e., the
introduction of the finite difference method makes the algorithm convergent. The spectral
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radius of domain 1 is significantly smaller than that of the whole domain, which is different
from that of well 1 in Figure 12, and according to Equation (28), the reason is that the length
of the rods in domain 2 accounts for a larger proportion of the total length of the rods,
which is 5∆x/L = 44.12%.
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As shown in Figure 15, the overall trend is the same as that of Figure 14, with the
difference that the number of peaks in the convergence curve increases, indicating an
increase in the number of harmonics and the maximum peak of the spectral radius occurs
at a Fourier number of 5, i.e., the frequency redshift. The value of the maximum peak
spectral radius is reduced compared to that in Figure 14, indicating that the algorithm is
more likely to converge after increasing the pump speed.

3.6. Spectral Analysis of the Polisher Rod Load and Pump Load

Based on frequency spectrum analysis, He et al. [41] estimated the typical character-
istics of operating conditions and affecting factors of the dynamometer cards. Therefore,
frequency spectrum analysis is a useful tool for the character analysis. To further un-
derstand the relationship between the polisher rod load and pump load, the frequency
spectrum is analyzed based on the simulated polisher rod load and pump load.

Spectral analysis 1: The polisher rod load and pump load simulated by the hybrid
method for well 1 are shown in Figure 16a, and their frequency spectrums are shown in
Figure 16b. As shown in Figure 16b, the signal characteristics of the two spectrums are
similar, and the amplitude of the main frequency is basically the same; only the amplitude
increases in the frequency region of [0.3192–0.9044] Hz. After deleting the frequency region
and reconstructing the signal, the modified frequency spectrum and the polisher rod load
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are obtained, as shown in Figure 16c,d. The vibration signal disappears in the modified
polisher rod load. This indicates that the spectrum analysis method is helpful for separating
the vibration signal. The maximum value of the frequency region is 0.67 Hz, as shown in
Figure 16b, 0.67 Hz × T = 26, which is the position of the first peak in the convergence
curves in Figure 12. Therefore, the resonant frequency of the sucker-rod for the frequency
spectrum of the polisher rod load can be obtained.
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Spectral analysis 2: The polisher rod load and pump load simulated by the hybrid
method for well 2 are shown in Figure 17a, and their frequency spectrums are shown in
Figure 17b. As shown in Figure 17b, the shape characteristics of the two spectrums are basi-
cally the same; only the amplitude increases in the frequency region of [0.6344–0.9516] Hz.
After reconstructing the signal after deleting the frequency region, the modified frequency
spectrums and the polisher rod load are obtained, as shown in Figure 17c,d. The vibra-
tion signal also disappears in the modified polisher rod load. The maximum value of
the frequency region is 0.80 Hz, as shown in Figure 17b, 0.80 Hz × T = 15; it is also the
position of the first peak in the convergence curves in Figure 14. This trend is the same as
that of spectrum analysis 1, in which the low-frequency portion of the spectrum reflects
the pump conditions, while the high-frequency portion corresponds to the sucker-rod
vibration information.
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4. Conclusions

This paper presents a new hybrid method for predicting the behaviors of sucker-rod
pumping units. The hybrid method includes an analytical solution of the sucker-rod wave
equation, a unified pumping condition model, and a modified finite difference method of
the sucker-rod wave equation. The proposed analytical solution is the recursive matrix form
based on the truncated Fourier series of the polished rod displacement and the pump load.
The established unified pumping condition model includes both the static and dynamic
models. In the modified finite difference method, the upper boundary is the displacement
and load. In the hybrid method, the whole rod string is divided into two calculation
domains. In the small domain near the pump, the sucker-rod string wave equation is
solved by the modified finite difference method to handle the “self-sensing” pumping
condition model. In the other large domain, it is solved by the analytical solution; thus, the
disadvantage of not being able to handle the “self-sensing” pumping condition model is
overcome. The convergence calculation method of the hybrid method is proposed.

Based on two different types of oil wells, the proposed analytical solution of the
sucker-rod wave equation is verified by the finite difference method and the SMD method
with the same given upper boundary and lower boundary. The hybrid method is verified
by using simulated data from the classical finite difference method and measured data.
The sensitivities of the pumping speed and the convergence of the hybrid method are
investigated. The frequency spectrums of the polisher rod load and pump load simulated
by the hybrid method are analyzed. The main results can be summarized as follows:

(1) The proposed analytical solution has the same accuracy as the finite difference method,
while the SMD method has a lower accuracy. The maximum relative error between
the analytical solution and the finite difference method is 0.062%, while that between
the SMD method and the finite difference solution is 0.43%;

(2) The proposed hybrid method is feasible and has a high simulation accuracy. The
maximum relative area error between the hybrid method and the finite difference
method is 0.09%, and the maximum relative area error between the hybrid method
and the measured data is 1.89%;

(3) Despite the increase in the pumping speed, the hybrid method can still eliminate
the influence of the static pumping condition model and has the same accuracy as
the finite difference method. The hybrid method converges in this paper because
the maximum spectral radius of the iterative matrix is less than 1. The introduction
of the finite difference method allows the algorithm of the hybrid method to more
easily converge;

(4) The frequency spectrums of the polisher rod load and pump load simulated by the
hybrid method are similar. The low-frequency portion of the spectrum can reflect the
pump conditions, while the high-frequency portion corresponds to the sucker-rod
vibration information.

The research presented in this paper can be applied to fault diagnosis, system design,
energy consumption analysis, parameter optimization, and system control of sucker-rod
pumping systems. It also provides a new way to solve the wave equation with complex
boundary conditions.
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Appendix A

Appendix A.1. Proof of Proposition 1

Proof. Considering all the number of tapers in the string yields[
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After the polished rod displacement ua(t) and the pump load Pp(t) are approximated
by the truncated Fourier series, the boundary conditions of Equations (2) can be expressed
as follows: [
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where
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vn and δn are the Fourier coefficients of the displacement function, and σn and τn are
the Fourier coefficients of the dynamic load function.

Considering x = 0 and according to Equations ((A1), (A3)), the following is obtained:[
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Thus, Equation (A5) can be resolved as follows:[
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Proposition 1 is therefore proved. □

Appendix A.2. Proof of Proposition 2

Proof. During the iterative process, the polished rod displacement does not change.
The input of the analytical solution is the pump load Pp(t) and its output is the middle
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displacement uu1(t), so uu1(t) = [AM]Pp(t), where [AM] is the transfer coefficient matrix
of the analytical solution. If ∆Pp0(t) is set to be the deviation between the initial value of
the pump load Pps(t) and the true value of the pump load Ppr(t), thus, the deviation of
the middle displacement ∆uu1(t) can be calculated according to the analytical solution,
that is, ∆uu1(t) = [AM]∆Pp0(t). The new deviation of the pump load ∆Pp1(t) is calculated
according to the finite difference method, that is, ∆Pp1(t) = [FM]∆uu1(t), and [FM] is
the transfer coefficient matrix of the finite difference method. It can be concluded that
∆Pp1(t) = [FM][AM]∆Pp0(t), that is, the iterative coefficient matrix is [Mit] = [FM][AM].

Proposition 2 is therefore proved. □
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