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Abstract: In this research paper, we consider a model of the fractional Cauchy—Euler-type equation,
where the fractional derivative operator is the Caputo with order 0 < a < 2. The problem also
constitutes a class of examples of the Cauchy problem of the Bagley-Torvik equation with variable
coefficients. For proving the existence and uniqueness of the solution of the given problem, the
contraction mapping principle is utilized. Furthermore, a numerical method and an algorithm are
developed for obtaining the approximate solution. Also, convergence analyses are studied, and
simulations on some test problems are given. It is shown that the proposed method and the algorithm
are easy to implement on a computer and efficient in computational time and storage.

Keywords: Cauchy—Euler equation; existence and uniqueness; convergence analysis; algorithm;
collocation method

MSC: 34A08; 65D07; 65L05

1. Introduction

The modeling of numerous phenomena in diverse scientific fields leads us to consider
conventional or fractional time-dependent differential equations in the modeling domain.
In general, finding analytic solutions of these modeled problems is a difficult task, or even
not possible. Hence, numerical methods are needed, such as the latest approaches [1,2].

In 1984, in [3], the fractional derivative was shown to arise naturally for the description
of certain motions of a Newtonian fluid. Further, the authors found that a fractional
derivative relationship can be identified in the solution to a classic problem in the motion
of viscous fluids, and they proposed the fractional differential equation which was after
called the Bagley-Torvik equation. Recently, the fractional Bagley-Torvik equations with
variable coefficients using the Riemann-Liouville fractional operator

D?¢(x) + p(x) D*¢(x) + q(x)(x) = g(x),0 <a <2, x € [a,]],
¢(a) =0, ¢'(a) =0,

where p(x), g(x) and g(x) are the given functions, were considered in [4]. The uniqueness
of the solution was investigated by converting the above equation to a Volterra integral
equation. To prove the uniqueness of the solution, a contraction operator was used. Also,
a piecewise Taylor series expansion method was employed for the solution. Further,
in [5] a variable coefficient generalized Bagley-Torvik equation with a fractional integral
boundary condition was studied. The Riemann-Liouville fractional derivative operation
was employed, and the Fredholm integral equations of the second kind were derived. For
the approximate solution, a piecewise Taylor series expansion method was used.
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Additionally, fractional calculus has been used in studies of transient electric circuit
analysis and electrical impedance spectroscopy to the resistor-capacitor (RC) circuit as
well as in many fields of sciences and engineering, including rheology, diffusive transport,
electromagnetic theory, probability, and so on; see [6,7]. Recently, some studies were
conducted on the existence and uniqueness of the solutions to models of fractional Cauchy-
Euler equations (FrC-E), also known as Euler-type equations. Next, we mention some
existing analytic methods for the solutions of FrC-E type equations given in the literature.
Euler-type fractional differential equations were given in [8] with the left and right Liouville
derivatives of the fractional order as follows:

kf: Akx“k(D‘fk)y(x) =f(x) (x>0,a>0),
=0

i ka“k(pﬂfk) y(x) = f(x) (x>0,a>0),
k=0

with real constants Ay, By € R,k =0, - - ,m. In their method, two linear non-homogeneous
ordinary differential equations were studied using the direct and inverse Mellin integral
transforms (see [9] for Mellin integral transform). They gave a general approach to de-
duce the solution of Euler-type equations. The solution of specific cases were given in
terms of the Euler psi functions, Gauss hypergeometric function, and of the generalized
Wright functions.

Later, ref. [10] proposed an analytic method for solving the homogeneous fractional
differential equation of the Euler-type equation

42 D2y ) () + p T (D4 Ty ) (x) + Ax* ( DB,y ) (x) =0,
for x > 0 and with the fractional derivatives Dgiky (k =0,1,2) and complex coefficient
#,A € C on the positive half-line Ry = (0, +c0). D, is the left Riemann-Liouville frac-
tional derivative of the complex order « € C, Re(«) > 0. The solution of the homogeneous
differential equation of the Euler type was found by applying the Mellin integral transform
under some conditions on the exact solution y.
In [11], the solution in closed form of the linear non-homogeneous differential equations

oxt2 (D”frz) (x) + px*+1 <D‘ﬁ+1> (x) + Ax" <D”i> (x) = f(x),
(x > 0,Re(a) = 0),

was given, with « > 0 and complex J,u,A € C on a positive half-axis Ry = (0, +00).
One-dimensional direct and inverse Mellin integral transform M and M ~! were used with
the residue theory to establish explicit solutions in terms of special cases of the generalized
wright function »¥,[z], generalized hypergeometric function pF;|z], and Euler psi function;
see details in [12]. An analytic solution of the Euler-type equation

m
y Akx“+k( D‘ff“ky) (x) =0, (x>0,An #0),
k=0

was given in [13] with complex Ay € C,(k = 0,1,---,m) on the positive half axis
Ry = (0,+00). Further, general solutions were investigated using the direct and inverse
Mellin transforms, the residue theory, and the properties of fractional derivatives and the
Euler psi function.
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The main contribution of this research is that we give a model of the fractional Cauchy—
Euler (FrC-E)-type problem, constituting a class of examples of the Cauchy problem of the
Bagley—Torvik equation with variable coefficients as follows:

B D%y(t) + th“(iD?‘y(t)) +Bsy(t) = f(t), te(aT), ya)=po y(a)=p1, (1)

where 0 < a < T < o, Bo, B1, B1, B2, B3 are the given constants, and B; # 0, SD is the
Caputo fractional derivative defined as

t
DIyt =y [ (£ =0 Dl @

also, 7 = [a] and « € (0,2) and DIy = g%. Further, f is a given continuous function. The
proposed problem also extends the classical Cauchy—Euler equation [14] to the Caputo
fractional model problem. Additionally, we prove the existence and uniqueness of the
solution of the given problem by using the contraction mapping principle. Some exhaustive
studies on the existence of solutions to boundary value problems include [15-17], and
related recent works on fractional model problems include [18-20].

In accordance with applications of fractional Cauchy—Euler’s equations, some exam-
ples are as follows:

1.  Engineering: They are often used in structural engineering to model the behavior of
beams and columns under load, where the stiffness of the material varies with position.

2. Physics: In quantum mechanics and wave propagation, Cauchy—Euler equations can
describe the behavior of systems with varying potentials or media properties.

3. Control systems: They are applied in control theory to design systems with variable
parameters, enhancing the stability and response of control systems.

4. Fluid dynamics: These equations can model fluid flow where the fluid properties
change with position, such as in varying temperature or pressure conditions.

5. Economics: In financial mathematics, they can be used to model economic systems
with time-varying interest rates or other dynamic parameters.

These applications demonstrate the versatility and importance of Cauchy-Euler equa-
tions in modeling and solving complex, real-world problems across various disciplines.
The classical Cauchy—-Euler problem may be solved by using variable transformation that
reduces the problem to linear differential equation with constant coefficients. However,
variable transformation for (1) may lead to more complicated equations because the Caputo
fractional derivative does not certify the classical Leibniz rule. Moreover, the computa-
tional cost of the analytic solution is very high even if it is evaluated at a few discrete
points. Therefore, numerical approximations of (1) are inevitable, and this motivated us to
established a numerical method for the solution. It is well known that collocation methods
are continuous methods that produce approximations at discrete points, but many discrete
methods cannot be used to obtain continuous approximations such as extrapolation and
finite difference methods, and many Runge-Kutta methods. For this reason, they are ineffi-
cient for problems requiring globally continuous differentiable functions as approximations
of the unknown solution; see [21]. Furthermore, in general, collocation methods are simple
and easy to code. Some of the recent studies on collocation methods are [22,23].

Motivated by the above, the second aim of the research is to provide a collocation
method and an algorithm for the numerical solution of (1). Hence, the research is organized
as follows: In Section 2, the existence and uniqueness of the solution to the given (FrC-E)
problem (1) is given. In Section 3, a collocation method and an algorithm are developed for
the approximate solution of (1). Also, the accuracy and convergence analysis are studied in
Section 4. It is proved that if the exact solution y € C"*2[a, T|, where a > 0 and m is the
number of collocation parameters that we have considered m = 3, 4 for the realization, then
the numerical solution is of O (h™) order of accuracy. In Section 5, the numerical simulation
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of the proposed method and the algorithm are given on several constructed examples. The
numerical results prove to be consistent with the theoretical results and demonstrate the
efficiency and applicability of the method. Finally, in Section 6, the conclusion and some
expected future work are given.

2. The Existence and Uniqueness

In order to investigate the existence and uniqueness of solution of Equation (1), we
define a max metric ds containing ¥*, and prove that any two solutions of Equation (1) are
equivalent in the metric space (C2[a, T],d;). Further, we show that a solution sequence
{yj};; of Equation (1) is a Cauchy sequence in the metric space. Setting By = B, = B3 =1,
we rewrite Equation (1) in the form

"

y' (1) = 2 () — 2 EDty(H) — £ 72y() = h(Ly(), SDY(), 0<a<2,
y(a) = Po, ¥'(a) = B1, 3)
where $ D%y (t) exists and is continuous, and f(t) is continuous in the interval [a, T]. Here,

Bo and B are real numbers. For the same value of &, the following equations are equivalent
to Equation (1).

Lemmal. Let h(t,y(t), SD¥y(t)) = t72f(t) — t*=2 S D¥y(t) — t~2y(t), then the initial value
problem (1) is equivalent to the following equations, provided that  D¥y(t) exists and is continuous,
and f(t) is continuous in the interval [a, T.

(a)
u(0) = [[(=o(sy(s), §DM))ds + alt—a) + fo € [0 T), @

(b)  Moreover, for 0 < a < 1,

EDIVI0) = gy [ (=9 h(s0(s), SDRE) a0 e T 9)

Proof. (a) Integrating twice Equation (3), the result follows as in (4).
(b) To prove part (b), we first differentiate both sides of Equation (4):

/ d rt -
V(0= 5 [ = 9m(su0s), ED5y(s))ds + i
t c .
= [ 1(s(s), SDFY(s) ) ds+ .
a
For0 < a < 1andt € [a, T], by applying the Caputo derivative, we obtain

y @ (1) =1y (1) = y® (/:h(sry(S)f $Diy(s))ds +5'1>

ey [ =9 ([ h(nvn, SOty + 7 )

v =gy J, 1 (), SDRyOn) )y [ (=570

+F(110é) /Zt(t - S)iaﬁ_lds.
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We change the order of integration in the iterative integral to obtain

1 E(t—p)t" . 1 (t—s)|
r(l_a)/a =) h(w(n), thy(ﬂ))dW—r(l_[x) o | P
t -
:(1—@1{(1—@/ (t—v)l*”‘h(n,y(n), gD?y(Tl))dﬂ-F(l_a)ﬁl}(l_“)(t—a)l“

Zr(zl_a) /at(t - n)l’“h(w(n)/ EDf‘y(W))dn + r(zﬁi“)(t — )l

The proof is complete. [

Let Y := C?[a, T] be a set of twice continuously differentiable functions on [a, T]. We
consider the metric space (Y, ds) coupled with the max metric

max |x(t) —y(t)]  max [x& () —y® ()]

G el T Eor) T telaT]  Eeot)

,Vx,y €Y.

Theorem 1. Assume that 0 < a < 2. Equation (3) has only one solution y = y(t) in (C*[a, T],ds)
defined on the interval [a, T).

Proof. Itis clear that
\h(t,wy, ur) — h(t, W), up)| < 2wy — wa| 4+ %2 |uy — up|

< 1 1
< lwn —waf + g fur — .

2 2—w
Define A ::max{a%, QZ%W} [(T;u) + (i(_laf)a) ] and choose T such that A < 1. Define

an operator Ey : (Y, ds) — (Y, ds) as follows:

Zy(t) = [ (¢ = h(s,(5), SDEY(s) )ds + fult — o) + o ©
Then,
Zx() - Zy (O < [ (6= 5)lhlsx(5),x4(5)) — hls,y(5) 4 (5) s

IN

[[0=9)| 16) ~ )+ el — o) s,

and

< Bal0P ) [ s (19) | 1)~ ) + el -y )]

. 1 1 t
Ey o (68279 max{az,az_a}dg(x,y) / (t —s)ds

IN

_ 1 1) (t—a)
— 2
= Ep_,(6t77%) max{{ﬂ,aza} 5 ds(x,y).

1 1 1) (t—a)
Wx(t)_y(t)|§max{asz}( 2”) ds(x,y). 7)
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Similarly,
B 90~ @)
< r(zl_a)/ (t_s>1—aEM(1M h(sx(s), §DEx(s)) = h(s,(5), SDFy(s))|ds

1 W1
STe—w) / (b =)

1 1 1 t .
S nY -, 5 _ «
=T2—«) ma"{ 2 ath} da(x,y)/a (t—s)'"%ds

1 f— 2—a 1 1
= r2—a) ( > j)tx max{az, aZ—zx} ds(x,y)
)2« 1 1
= (li(la_)a)max{az, aZ“} ds(x,y). ®)

Taking the supremum with respect to t in (7) and (8) and adding them, we obtain

— g 2 —q 2—u
a%' a2ltx} [(T 2 ) * (i(l —)DC) ‘|d5(x’y).

[Mlx(s) = y(s)| + NIx® () =y (s)]| s

ds(Ex,By) < max{

For small T — a, we have

1 1 (T—a)®> (T—a)*™
max{aZ, “Z'X}l 5 + (- a) <1.
2 2—w
Thus, there exist T; > 0 such that max {%2' QZ%} [(ﬂ;ﬂ) + (Trl(_lu—)a) ] < 1, and the

operator X is a construction. By the Banach fixed-point theorem, = has a unique fixed point
in Y and consequently the Equation (3) has a unique solution on [a, T;]. By repeating this
process multiple times, we arrive at a unique solution on [a, T|. O

3. The Numerical Method and Algorithm

Let L, = {tj it = a+jhh= Tﬁ”,]’ =0,1,--- ,N} be a given uniform mesh on
L = [a,T] and set 6, = (tn, ty+1] and 6, = [tn, ty41], forn = 0,1,---,N — 1. The so-

lution y of the problem (1) will be approximated by an element u;, € S M) (Ly), where

m+1
Si(ﬂlil(Lh) = {P € C{L) : Pls € Iy41}. Also, Iy, 41 presents the space of all real

polynomials of a degree not exceeding m + 1. Let
Xy ={t=th+vh:0<v1<---<v,, <,,n=0,1,--- ,N—1}, )

and v;,i =1,2,- -, m being the collocation parameters, the collocation solution uy, satisfies
the following collocation problem:

By £2D2u, (1) + th“(infg‘uh(t)) + Bauy(t) = f(t), te X, (10)
up(a) = Bo,  uy(a) = P. (11)

Lett = t, + wh € é,,w € [0,1], then on each subinterval §,, the collocation solution

uy € S(l)

ma1(Ln) satisfying (10) and (11) is given by
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1 m
up(t) = up(ty +wh) = ) a;qu +) b,((")wk“,w € [0,1]. (12)
7=0 k=1
We present §D%u, as follows:
1 n—1 fpi
C o _ _ T—a—1 T
[Dru] . = e I [ (=27 Dl (x)dx
b t=t,+wh
t
1 T—oa—11~T
t—
+ (m g J (=0 DL ()i
b t=t,+wh
n—1 c
— © o
- X Tt ()], DO (13)
Also,
n—1 1 n—1 Tt
® o _ T—a—1 T
Zo[tp]tpﬂuh(t)} t=t, -+l - F(T— “) Z() / (t x) Dx“h(x)dx
- =t t=ty+wh
1 "21/1 =T DT uy (t, + sh)
Tt =) ;20 (tn+wh—t, — k)T
n—1
R TN o [un(tp + sh)]. (14)
p=0
In a similar way, we have
1 [ Diu(x)
Cru xUp(x
D =
|:fn tuh(t):| b=ty +wh (F(T _ lx) / (t x)ﬁCJrl*T dx)
tn t=ty+wh
e T+1DTuh (tn +sh)d
T —0( / 1x+1 T §
0
R / DZXuy(ty +Sh)ds
I(T—a) (w—s)"T7T
= W= (GD% [un(ta + )] (@) ). (15)
By Equations (14) and (15), we write Equation (13) as follows:
Cpu BT
R CI z ol [un(ty +5h)]
Iy (%Dg; [uh(tn + .h)} (w)). (16)

We mention that the papers [22,24-29] studied the different applications of collocation
methods. First, we give the analogue of the collocation method for the numerical solution
of the proposed model of the fractional Cauchy—Euler (FrC-E) problem by applying the
operator (16) on the collocation function uy, of (12) for t € 5, when 0 < a < 1, for which we

obtain
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Cpo<a<l }
uy (t
[a t h( ) t=t,+wh

n—1 _ —u
ey <a5p><n+wv> Afors L]

oar) I'(1-—a) n—p+uw

oFi |:D(,k+1,k+2,1:|>
n—p+w

(n+w-—p) "
+Zb —( )

1—a

—af )W o (n) (K + DI (k + D
+h <a1 F(z_w)Jrk;bk T2 a1 k) : (17)

Here, > F; is the Gauss Hypergeometric function. Also,

"

u(t) = h™ (Dfuuh(tn + wh)) = h2 f(l + kbW 1, w € (0,1]. (18)
k=1

Evaluating (12), (17) and (18) at t,,; = t,, + v;h and substituting into (10) gives

(217 (1+k)k )1)

NS (p) —a 1
+ Bz(tl’l,l) Z m ul (7’1 + 0 — P) ZFl x, ]-/ 2/ -

=0 n—p-+uv;

m 1
pP) )Y ,F { k+1k z,]
B R L Ty

1—a m k+1—u
ol (n) Y (n) (k+1)r(k+1)vi
T (“1 r(z—a)+zbk T2—a+k)

k=1

1 B m
+ B3h? (2 aé")v? +) b,(cn)v;‘“)
G=0 k=1

= hzf(tn,i>‘ (19)

Next, we rewrite Equation (19) in matrix representation as

AMp = e LWy —0,1,... N -1, (20)

where A(") ¢ R™*™m, CYZ) € R"™*2 and Fl(") € R™ with entries given as

(A = Byt (1 + R)k(op)* !
(k—|—1) (k+1) k+l o

+ Bz(tn,i)“hz“"< ) +Bh* k=1, ,m,  (21)

r2 —zx—i—k)
1—«a
(n) _ p2 (n) o Nap2—a Y 2
(Cl )i,l_ Bah (Cl )i,Z_ Ba (b )l T(2—a) Bsh~oi, @2)
M\ _2pp P |
(Fl )1. =h f(tl’l,l> 1"(1 — a) BZ(tn,z)
(S 1
i - F /1/2/ -
X ;;) a;’ (n+v;—p) zl{zx n—p—i—vi]

m
(p) )Y 1
—|—k;bk (n+v; —p) zFl{a,k—ﬁ—l,k—l—Z,n_p_'_vi])), (23)
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fori=1,---,m. We remark from the above that at n = 0, the vector a(?) is known from the
initial conditions and is given as follows:

/ T > T
a® = y@), m'@ | =B M ]". (24)
Similarly, vectors a(") and b(") are defined by
T T
/0 = a0, o = [ 40, 40, bl ]

For n > 1, the continuity condition on [t,, t,1], which gives the relationship between
the known vectors a("), b(") and the unknown vector a(**1), is given by

"t = Hya™ 4 Hyp™, (25)

11 1+k\
H1:<0 1>, (Hz)j+1,k=< j ), j=01land k=1,---,m

See [22,30-32] for details and the references therein. Analogously, when1 < a < 2,
the following system is obtained from Equation (10) when evaluated at t,,; = t;, + v;h,

where

B«%N<fu+mum“%@>

k=1
nlm k+1)(n+v;—p) " 1
+ Byt «"‘(hz"‘ p(r) ¢ 1 F [—1+a,k,k+1,
2( n,l) r;)]; k F(Z—DC) 241 n—p+o
B k+ ) (k—i—l) k+l o
h2 o b(”)(
* (kzl S
1 _ m
+B3h2<2 ol + Yy b,ﬁ”)vf“) = W f(tyy), i=1,2,---,m. (26)
7=0 k=1
Writing Equation (26) in matrix form, we have
AP = Cpa™ 4 W, n=0,1,--- ,N—1, 27)

where A(") is the same matrix as given in (21) and C, € R™*2 and Fz(") € R™. The entries

of C; and FZ(n) are as follows:

(C2)je41 = —Bsh®v}, s =0,1, 28)
(F(H)> — W2 F(t B2« 1 m b(P k 1 ) -
2 i f(n,z)_r(z ZZ i + 71 v — P)
p=0k=1
F|-1 k k 1 29
X 2I [ +«, + . ) (29)

i=1,---,m. Next, we give Algorithm 1 for finding the solution of problem (1) as follows:
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Algorithm 1 A numerical approach for finding the solution of problem (1)

Let G-LP be the Gauss points which are the zeros of the (shifted) Legendre polynomial
Py (2s — 1) and also, let M-CP be the mean Chebyshev-type points, v; = (x; +1)/2 and

x,=1-— cos(é—;) fori=1,2,---,m.
Case 0 < o < 1: We choose the collocation parameters v;,i = 1,2, - - - , m either as G-LP

or M-CP.
Step 1: Forn =0

i) a0 is computed using the initial conditions in Equation (24).

(i) We compute Fl(o) using Equation (23).

(iif) Using Equations (20)—(23) and the result in (i) and (ii) in conjunction with the LU
decomposition method, we compute b(©),

Step 2: Substituting the results from Step 1 into Equation (12), we find the solution of the
initial value problem on the interval [, t1].
Step 3: Forn =1

@ aWis computed using Equation (25) and the result in Step 1 (i) and (iii).
(ii) Using Equations (20)—(23) and the results obtained in Step 1, we compute the vector

Fl(l). Repeating Step 1 (iii) for n = 1, we find the value of b(!).

(iii) Substituting the results from Step 3 (i) and (ii) into Equation (12) again, we find the
collocated solution which presents the local solution of the initial problem on the
interval [ty, t].

Step 4: Step 3 is repeated for n = 2,3,---,N — 1, resulting in systems of alge-

braic linear equations which give the solution of the initial value problem on [t, f3],

[t3,ta],- - -, [tN—1,tN], respectively.

Case 1 < o < 2: We choose the collocation parameters v;,i = 1,2, - - - , m either as G-LP

or M-CP.

The algorithm is analogous but in Step 1 part (ii), we compute FZ(O) using Equation (29),

and in Step 1 part (iii) and Step 3 part (ii), instead of Equations (20)—(23), we use (26)—(29).

4. Convergence Analysis

Lemma 2. Consider a uniform sequence of meshes for L = [a, T| andlet1 < & < 2,t, ; = t, +v;h.
Then, for0 < p <n—1(n < N —1) and for g € N and for all 0 < 0;<1,j=12--,m

1—a

Vitwj—tp e 22" (n—p)
L7 N q N A
/0 ( 7 s> shds < . (30)

Proof. For p = n — 1 we have

1 -~ 1 1 oa—1
1-a 1—-a
/0(1—0—0]-—3) squg/o(l—s) ds:27a<270¢'

and the estimation (30) holds. For p < n — 2 and from v; € [0, 1], we obtain

- L/t i—tp B Lty —ty 1-a

= ’ — < —
Lnp(a) /0( p s) sds_/o( p s) ds

B 1 tn_tp 2—0(_ tn_tp_l 2—a

2—a h h

2—a

1 [t \ T tp—tp\ !
_Z—a( . ) 1= {1- (" . (31)
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Application of the Mean Value Theorem gives

L (=t 2_“71 ) =t b=\ 1) -
() ) e 5 )

and 0 < 0y, < 1. Using (31) and (32), the following is obtained

i by — b\ 1% f—t,\ 1)
In,p(a)s(h”) (1%7( h”) ) . (33)

Further, since p < n —2 and based on the uniform grid, we have

. th—tp\ T g1
~ e\ T, =1-opp(n—p) = > (34)

Using (34) in (33), given that 1 < a < 2, gives

Lp(a) <207 n—p) ™ < —(n—p)' ™"
O

Lemma 3. Let the assumptions of Lemma 2 hold, then

n=1 .1 f,i—t 1-a T —a)* ™"
2/ h2—“<’”h”5) dsg%mgnSN—l-
p=0"0 -

Proof.
n-l tni—tp ra o nclo ty —t 1-a
2/ h2“< J —s) ds < Z/ hz"‘< p—s) ds
p=0"0 p=0"0
e - (5
2—u =0 h h
1 n—1 ’ ’
=5 L=t = ()
p:
_ (—a)*t _(T—a)*"
T 2—u 2—w
O

Theorem 2. Assume that

(a) {vi},i=1,---,marem > 1distinct collocation parameters (which may be chosen as M-CP
or G-LP as given in Algorithm 1) satisfying 0 < v1 < vp < --- < vy < L.
(b)  The exact solution y of (1) satisfies y € C"+2(L).

(c)  The collocation solution uj, € anlll(Lh) for the FrC-E problem (1) corresponding to the
collocation points X, is defined by (12).
(d) h > 0is such that, for any h € (0, h), each of the linear systems (20) and (27) has a unique

solution. Then, the estimate

Iy = . = maxly(t) — wn(e)| < Coh™, 35)
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holds true for h € (0,h). The constant Cy depends on the collocation parameters v; and on
DI"*2y(t) but are independent of h.

Proof. From assumption (b), we have y € C"*2(L) and hence D}y(t) € C"*1(L), and
D?y(t) € C™(L). For simplicity, we will use the notation l;)tly(t) = y/(t) and D?y(t) =
y" (t). Thus, we have, using Peano’s Theorem [21] for " on J,,,

m

y'(t) = Y Li(w)Z,,; + "R, (w), w e [0,1], (36)
j=1

with Z,, ; =y (t,;) = y" (tn + vjh), and the polynomials

Liw) =T "% (j=1,2 7
j(w) = —(j=12,,m), (37)
1# % Y

denote the Lagrange fundamental polynomials with respect to the (distinct) collocation
parameters v;,j = 1,2,--- ,m. Also, the Peano remainder term is

1
R;(111)+2,n(w) = /Km(w,z)ym“(tn +zh)dz, (38)
0

and
1 P e
Kin(t,s) = (m_l)!{(f—s)+ 1—]§Lj(f)(?’j_s)+ l}'

Here, (t —s)f =0 ift <sand (t — s) := (t —s)? for t > s. Then, the local Lagrange
representation of i/ (t) on &, is

y/(tn+Wh) tn +hz,31] Zn]+h mtl Rm+2n( ) (39)
where
w
Br,j(w / a=r j(s)ds, r=0,1,
0
and
m+2n /Rm+2n

Integrating once more both sides of (39) from 0 to w yields

y(ty +wh) = y(ty) + hwy' (ty) + h? Z,BOJ )Znj + H" 2Ry o0 (w), (40)
j=1
and
m+2n /Rm+2n

The collocation solution uy,(t) = uy(t, + wh) satisfies the collocation Equations (10)
and (11), and the local representation of uy,(t) = uy,(t, + wh) is

uh(t) - uh(tn + wh) - Mh(tn) + hwuh(ti’l + h* Z 180] n]/ (41)
j=1
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where Y, ; = uj! (tn + vjh). The local function (41) can also be presented as (12). Let the
collocation error be e, := y — uy, on 6,,. Subtracting (41) from (40) gives

en(ty +wh) = y(t,) — a(()") + w(hy’(tn) - a%")>

m . ~

+ 3 (1B (@)Zy = b0 ) + W 2Ry 0 ()

=1

m
= ey(tn) + hwe), (tn) + 1Y Boi(w)ey j + W2 Ryson(w), (42)
j=1
forw € [0,1] where e, ; = Z,, ; — Y, ;. Further,
C1 ) n-1m +1 nfli
[“ Dy=*en(t) L tn+wh ; ;'BOJ(w)EpJ + " ;}Rmﬂ,p(w)
m
+ e Z ﬁO] €n] hm+2_aRm+2,n (w)/ (43)
e),(tn +wh) = e, (ty) +h Z Bij(w)en,; + W' R0 n (W), (44)
j=1
- (1)
e;l/(t'fl + Wh) = Z L](w) hmRm+2n( ) (45)
=1
where
R\m+2,n(w) ( Dl<1¥<2 |: m+2, n(s)} ) ( ) 0/ 1/ T N - 1/
Riyyo,p(w) = (0]1<“<2{ m+2,p(8 D on—1,
Boj(w) = (012 [Bo, ()] ), j = m,
Aoj(w) ( Dl<a<2[ (s )D(w) e m. (46)

y(0) — u,(0) = 0and ¢;,(0) = y'(0) — u},(0) = 0 and that ¢, e} are

Using that ¢;,(0) =
continuous applying recursion and evaluating at w = 1 gives
n—1 m 1 n—1
ep(tn) =h Y Y Brj(Dep; + " Y Ry p(1) (47)
p=0j=1 p=0
) n—=1m ) n—1
eh(tn) =h Z Z .Bl,j(l)ep,j + i Z Rm+2,p(1)
p:O j=1 p=0
+ h? 2250] e, +h"2 2Rm+2,, (48)
p=0j=1
Next, ej, := y — uy, satisfies the following equation att = t,,; = t, + v;h
Bltnzeh( n,i) + Bth,i (aCDtl<a<26h) (tn,i) + B3eh(tn,i) =0,i=12,---, (49)
Then, evaluating (45) at w = v; gives
(50)

e = €l (ta;) — "R\, (0).
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Further, evaluating (42) and (43) at w = v; and using (47)—(50), we obtain the following
algebraic system of equations fori =1,2,--- ,m:

m m
— Buty e — Batyy ;124 Y Boj(vi)en — Bsh® ) Boj(vi)en,
j=1 j=1

n—1 m n—1
= Bth,i (h ZO 21 ﬁO,j(Ui)‘C'PJ 4 pmtl ZOR"H_Z’p (v;) + hm+2“Rm+2,n(Ui)>
p=Vj= p=

B (1Y S ey 12 Ry, (1
3 .Bl,]( )Ep,]+ Z m+2,p( )
p=0

p=0j=1

) n—1 m 5 n—=1 _
+h2 )Y Boj(Dep +H" Y Rusap(1)
p=0j=1 p=0

) h2 ol ) . hm+2 (=
+ 0; 2 Z ﬁl/](l)sp,] + Z Rm+2,p(1)
p=0

p=0j=1

+ hm+2ﬁm+2,n(vi)> + B2 1R, (v)). (1)

The system of Equation (51) can be presented in the matrix form

n—1
{Q}l FREEOR 4 hzﬂi] E,= Y I¥,,E, + =, (52)
p=0
where O}, 02,03, ¥, , € R™™ and Q) is an invertible diagonal matrix, and Q3,3

have bounded entries and E, = [e,,1,€n02, - - , en,m}T and &, = [0n1,Pn2, " - ,pn,m]T with
the entries

n—1
(Pn)i = thz,ihm—i_l Z Rm+2,p(tn,i) + thz,ihm—i_z_aRerZ,n (Ui)

p=0
-1 _
Bst* hm“n R 1)+ B hm+2n 11’€ 1
+ B3 n,i 2 m+2,p( )+ 3 2 m+2,p( )
p=0 p=0

n—1
+ B30 2 Y Ryui,p(1) + Bsh"™ 2Ry 0,(07)
p=0
1 .
+ B2 R, (0),i= 1,2, m. (53)
Sincet,; € L,n =0,1,--- ,N — 1, and using (46) and Lemmas 2 and 3, there exists
a constant C such that ||e,||; < Ch"™. Further, for sufficiently small i € (O, E) , the linear
m
system (52) has a unique solution. Furthermore, we take ||[E;||; = ¥ |€,|- Then, whenever
=1

he (O,E), for some I > 0, there exists a constant C; < oo so that the uniform bound

-1 _
H [Qi FREROR + hznf,] <C; <o, (54)

1

_ n—1 _
holds. Also, from Lemma 3 there exist a positive constant C, that ) ||h‘f’n,p ||1 < Cy. Then,
p=0

from (52) and using ||, ||; < Ch™, we obtain
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[Enlly < Co Y [|1¥nplly [[Epll; + CrCH", n=0,1,--- , N~ 1. (55)
p=0
and it follows that
|Eull, = O(™) forn =0,1,--- N — 1. (56)

Subsequently, using (42), (47), (48) and (56) yields

max |ey (t, + wh)| < Coh™.
wel0,1]

Hence, the inequality (35) is obtained. Further, for 0 < a < 1, the proof is analo-
gous. [

5. Applications

All the computations in this section are carried out on an HP Laptop (notebook) with
properties 8 GB RAM INTEL 17 and 1255U 3.5 GHZ and 512 GB NVME M.255D and
using Wolfram Mathematica 13.3 and MATLAB R2024a in double precision. For the ease
of implementation, we take the number of collocation parameters to be m = 3,4. The
following notations are used in tables and figures.

The Gauss hypergeometric function ,F1[p, 1, s, z] is defined in the unit disk as the sum
of the hypergeometric series [33]

2Filp,1,8,7] Z Z

S

where |z| <1;p,r € C;s € C\Z; and (.); is the Pochhammer symbol. The error function
is defined as [34]
4
2 _2
Erflz] = %/e dx.

0
AE(t) = ly(t) —u(t)], t € L = [a, T},

where y is the exact solution, and u, is the approximate solution that defines the absolute
error function:
T
El = / (AB,(£))’dt, MAE), = maxAEy(t),

€Ly
a

are the square L, norm error and the maximum absolute error, respectively. Also, the local
and global order of convergence are defined by

MAE, E!
R* R, = —2.
n% = MAE,’ hj I

2 E2

Example 1. This is an example where the regqularity parameter @ > 2, being a fractional number,
is not fixed. We consider

2D2y(t) + 2

O]

DA +y() =10, 1< (1),

1 = g%+i / 1 =2 e%+i
Y\g) =" Tome Y \g) =1 T e
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with the exact solution and non-homogeneous term as given below:
1\ 2t | 44
yit) = [(t— i +ne” + 17,
1 @ 1 -2
fHy = n*t+ (t - 4> + 4 4 12 (477@2t + 122 + <t — 4) (@ — 1)@)

21-200 (4t — 1)9~ 1T () )

I'(}+w)

In this problem, for the application of the given Algorithm 1, we take # = 0,m = 3 and
the regularity parameter @ = 5/2,7/2,9/2,11/2,13/2,15/2. Table 1 shows the maximum
absolute error (MAE;,) and square Ly norm error (E}) and the order of convergence RY ),
and R, b by using the mean Chebyshev points (M-CP) for Example 1 with respect to severazl
values of N. Additionally, Table 2 presents the analogous quantities for the same values of
the parameters N, m, @ obtained by using the Gauss—Legendre points (G-LP). Furthermore,
the last columns of both Tables 1 and 2 show the determinant of the matrix A(®). These
tables justify that the local and global orders of convergence are at least O(h%) when the

: 5[1
exact solutiony € C [4, 1} .

Table 1. The error norms, convergence orders, and det A©) for Example 1 obtained by using the M-CP.

@ N MAE;, R:, E! R, detA©)
ry 12
5/2 10 6.4830 x 10~% 1.7791 x 107 0.00250
20 2.2697 x 1074 2.8563 2.2636 x 1078 7.8595 0.00140
40 7.9439 x 1075 2.8572 2.8375 x 1072 7.9776 0.00098
80 2.7878 x 107> 2.8495 3.5424 x 10~10 8.0101 0.00083
7/2 10 7.2600 x 107° 1.8369 x 10~° 0.00250
20 1.3398 x 107> 54187 6.6275 x 10~ 11 27.7158 0.00140

40 24216 x 10~° 5.5327 2.2789 x 10~12 29.0824 0.00098
80 43270 x 107 5.5965 7.5928 x 10~ 14 30.0135 0.00083

9/2 10 7.1755 x 10~° 1.1338 x 10~° 0.00250
20 9.3254 x 10~° 7.6946 1.9186 x 1011 59.0941 0.00140
40 1.1977 x 10~ 7.7861 3.1837 x 10713 60.2626 0.00098
80 1.5260 x 10~7 7.8486 5.2023 x 10~1° 61.1989 0.00083
11/2 10 1.9365 x 10~* 5.1845 x 10~ 0.00250
20 2.3288 x 107> 8.3154 7.3108 x 10~ 11 70.9154 0.00140
40 2.8515 x 10~° 8.1669 1.0826 x 10712 67.5310 0.00098
80 3.5266 x 10~7 8.0857 1.6457 x 10~14 65.7822 0.00083
13/2 10 3.1570 x 10~* 1.0053 x 108 0.00250

20 3.6854 x 1072 8.5662 1.3324 x 10710 75.4497 0.00140
40 4.4454 x 10~° 8.2904 1.9140 x 1012 69.6133 0.00098
80 5.4566 x 10~7 8.1468 2.8661 x 1014 66.7796 0.00083

15/2 10 43498 x 1074 1.5195 x 108 0.00250
20 4.9527 x 1075 8.7827 1.9079 x 1010 79.6447 0.00140
40 5.8977 x 10~° 8.3977 2.6686 x 10712 71.4950 0.00098
80 7.1922 x 10~7 8.2001 3.9435 x 10~ 14 67.6704 0.00083
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Table 2. The error norms, convergence orders, and det A(%) for Example 1 obtained by using the G-LP.

@ N MAE), R; , El Ry detA(©)
5/2 10 5.3795 x 107> 13718 x 10~ 0.0095
20 1.9239 x 105 2.7961 1.7319 x 1010 7.9205 0.0063
40 6.8404 x 10~° 2.8126 2.1751 x 1011 7.9624 0.0051
80 2.4252 x 10~° 2.8206 2.7252 x 10~12 7.9815 0.0046
7/2 10 6.7614 x 10~ 2.2650 x 10~13 0.0095
20 1.2348 x 107 5.4757 7.3007 x 10~15 31.0244 0.0063
40 22169 x 10~8 5.5699 2.3119 x 10716 31.5788 0.0051
80 3.9491 x 10~ 5.6137 7.2699 x 1018 31.8001 0.0046
9/2 10 1.8556 x 1078 2.2893 x 10716 0.0095
20 1.7731 x 1072 10.4653 1.6024 x 1018 142.8669 0.0063
40 1.6030 x 1010 11.0611 1.2336 x 10~20 129.8962 0.0051
80 1.4286 x 10~11 11.2208 9.5980 x 10~23 128.5268 0.0046
11/2 10 2.6778 x 1072 41769 x 10716 0.0095
20 1.0480 x 1010 25.5515 4.0885 x 1019 1021.6216 0.0063
40 4.1229 x 10712 25.4190 40042 x 10~22 1021.0529 0.0051
80 1.6698 x 10~13 24.6910 3.9265 x 10~ 1019.7886 0.0046
13/2 10 5.1669 x 107 2.1949 x 10715 0.0095
20 1.9575 x 1010 26.3954 2.1545 x 10718 1018.7515 0.0063
40 7.9070 x 10~12 24.7565 2.1110 x 10~2 1020.6281 0.0051
80 3.3107 x 1013 23.8832 2.0694 x 10~24 1020.0808 0.0046
15/2 10 7.6511 x 10~ 7.3628 x 1015 0.0095
20 2.5028 x 10~10 30.5702 7.1430 x 1018 1030.7724 0.0063
40 9.4049 x 10712 26.6117 7.1077 x 10~21 1004.9599 0.0051
80 3.8303 x 1013 24.5540 6.9541 x 10~24 1022.0890 0.0046

Figure 1 shows the approximate solution u;,, and Figure 2 illustrates the absolute error
function AE;, for Example 1 when N = 40,m = 3 with respect to @ using the M-CP as
collocation parameters.

Figure 1. The graph of the approximate solution u;, for Example 1 when N = 40, m = 3 with respect

to @ using the M-CP.
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0.2 ' t
Figure 2. The graph of the AE;, for Example 1 when N = 40, m = 3 with respect to @ using the M-CP.

Figure 3 gives the graph of the approximate solution u; depending on @, while Figure 4
presents the graph of AE; with respect to @, both by using the G-LP and N = 40,m = 3

for Example 1. We see from Figures 2 and 4 that the AE}, is higher when the regularity
parameter is taken as 5/2 and 7/2.

Figure 3. The graph of approximate solution u;, for Example 1 when N = 40, m = 3 with respect to @
using the G-LP.

=< 1078

AE 1

0.2 g

Figure 4. The graph of the AEj, for Example 1 when N = 40, m = 3 depending on @ using the G-LP.
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Example 2. This is an example where the fractional order « is not fixed, i.e., 1 < o < 2, and the
exact solution y is smooth:

is subject to

nN_1.,
N2) 758

65
32

y’(

where the exact solution and the non-homogeneous term are

y(t) =
f(t)

P2 52t 41,

1s

+

4t (80+143t%) NS JELI T

1

th
128T(2 — o)

((—5—0—04)(

—44+a)(-3+a) (—2+a)

ROy + DR 3l = £, te (31),

x5(24 ) (2t — 1)2* (24 — 260 — a3 — 6at(5+ 4t) + a(9 + 6t) + 12(3 4+ 4t(1 + 1)) )

+13t“"<

10395/7t 2 T(2 — )

rF-w

—V2t,F;

1m . 131

1+

2 R

)

In this example, the proposed Algorithm 1 is also applied for m = 3. Table 3 gives the
MAE,, E’;, and the ratios RZ »» R, 1 and the determinant of matrix AO) for various values
1 72

of N and « when M-CP is used. A close look at the ratios indicates that the numerical

method gives third-order convergence O (h%), remarking that RZ, , ~2%and R, 3

The analogous quantities are presented in Table 4 for G-LP.

~ (23)2.

Table 3. The error norms, convergence orders, and det A(%) for Example 2 obtained by using the M-CP.

w N MAE, R, E! Ry detA®
1.5 10 1.2612 x 10~4 1.5442 x 1077 0.118010
20 15152 x 107° 8.3237 2.1882 x 1011 70.5694 0.082311
40 1.8573 x 10~° 8.1581 3.2595 x 1013 67.1330 0.066086
80 2.3000 x 10~7 8.0752 49500 x 10~15 65.8485 0.057684
1.3 10 1.3570 x 10~4 1.7942 x 1072 0.089907
20 1.6443 x 107° 8.2528 2.5876 x 10~ 11 69.3384 0.065772
40 2.0252 x 10~° 8.1192 3.8923 x 10713 66.4800 0.055313
80 2.5143 x 1077 8.0547 59420 x 10~15 65.5049 0.050279
1.2 10 1.4165 x 10~4 1.9556 x 10~ 0.082713
20 1.7164 x 10~° 8.2527 2.8206 x 10711 69.3328 0.061921
40 2.1129 x 10~° 8.1234 42386 x 10713 66.5456 0.053035
80 2.6218 x 1077 8.0590 6.4633 x 10~15 65.5795 0.048861
1.1 10 1.4759 x 10~4 2.1221 x 10~°? 0.078016
20 1.7860 x 107° 8.2637 3.0525 x 10~ 11 69.5201 0.059551
40 2.1963 x 10~° 8.1319 45767 x 10713 66.6965 0.051716
80 2.7231 x 1077 8.0654 6.9675 x 10715 65.6864 0.048091
1.001 10 1.5317 x 10~4 2.2826 x 1077 0.074978
20 1.8503 x 107° 8.2781 32713 x 10711 69.7765 0.058109
40 22727 x 10~° 8.1414 4.8929 x 10713 66.8581 0.050963
80 2.8158 x 10~7 8.0712 7.4374 x 10715 65.7878 0.047679
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Table 4. The error norms, convergence orders, and detA(?) for Example 2 obtained using G-LP.

® N MAE, RZ,,E, El Ry det(A%)
1.5 10 1.5523 x 107 2.8048 x 10~1° 0.520922
20 1.3358 x 108 11.6208 1.8408 x 10~17 152.3685 0.405034
40 1.1620 x 10~° 11.4957 1.3516 x 1019 136.1941 0.347087
80 1.0184 x 1010 11.4101 1.0229 x 1021 132.1341 0.315164
1.3 10 45573 x 10~8 4.0353 x 10716 0.417067
20 3.3904 x 10~°? 13.4418 1.3828 x 1018 291.8209 0.338744
40 2.5551 x 10~10 13.2691 6.8916 x 10~ 200.6501 0.301922
80 1.9437 x 1011 13.1455 3.8457 x 1023 179.2027 0.283354
1.2 10 2.0151 x 10~8 2.0179 x 10~16 0.392175
20 1.3926 x 10~° 14.4701 3.6027 x 10~19 560.1077 0.324243
40 9.7632 x 10~ 11 14.2638 1.1446 x 10~21 314.7562 0.292946
80 6.9171 x 10712 14.1146 5.0524 x 10~24 226.5458 0.277638
1.1 10 6.5025 x 1077 1.5170 x 1016 0.376448
20 41659 x 10~10 15.6089 1.6210 x 10~17 935.8421 0.315603
40 2.7153 x 10~ 11 15.3423 2.1777 x 10~ 22 744.3633 0.287919
80 1.7906 x 10~12 15.1642 4.6867 x 10~ 464.6553 0.274636
1.001 10 7.7479 x 10~ 11 1.4279 x 1016 0.366557

20 3.0056 x 10~12 25.7782 1.3932 x 10~17 1024.9067 0.310488
40 1.5632 x 10~13 19.2272 1.3602 x 10~22 1024.2611 0.285126
80 8.8818 x 10~15 17.6000 1.3247 x 10~ 1026.7985 0.273074

Figure 5 shows the graph of the approximate solution u;,, and Figure 6 demonstrates
the absolute error AEj, both with respect to « for Example 2 when N = 80,m = 3 using
the M-CP. Further, the functions u;, and AE; with respect to a for the same parameters
are shown in Figures 7 and 8, respectively, using the G-LP. We view from Figures 6 and 8
that the absolute error is higher near the corner (t,«) = (1,2). These figures justify a good
approximation of the exact solution.

Example 3. This is an example in which the exact solution is unknown. Consider the following
problem:

ROy + DR vl = £, 1 (31),

y_ 1,6 (1y__ 1B /3%
N2) 78 "2 Y\2) "8 16

where 0 < a < 2, and the exact solution y is unknown, and

173
26t5—7t?+4t+1, f0<a<1

f(t) =
26t5_?t123+t(4—y’<;>) +1, ifl<a<?2.

The problem in Example 3 reduces to the classical Cauchy—Euler problem for a =1
with the exact solution y(t) = t'3/2 4+ 5 + 2t + 1. Table 5 shows the approximate solution
uy, of the problem in Example 3 at some mesh points obtained by using the G-LP when
N =80,m =4,for0 <a <land1l < a < 2. Table 5 also presents the exact solution
when « = 1. Further, Table 6 gives the approximate solution uy, for h = %, 810, 1%—0 and the
convergence order when & = 1.0001 and & = 0.9999 for Example 3 for m = 4 by using G-LP
for collocation. In Table 6, na means the order is not available at that point since the error is
0. Additionally, Table 7 presents the total computational time required for applying the
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algorithm for Example 3 when G-LP and M-CP points are used as collocation parameters.
It can be concluded from this table that the total computational time varies linearly with
respect to N. Finally, Figure 9 illustrates the graph of the approximate solution uy, for
N =80,m =4,0 < a < 2 for Example 3 using the G-LP for collocation.

Figure 5. The graph of the approximate solution u;, for N = 80, m = 3 with respect to « using the
M-CP for Example 2.

Figure 7. The graph of the approximate solution u;, for N = 80, m = 3 with respect to « using the
G-LP for Example 2.
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Figure 9. The graph of the approximate solution uy,(¢) for N = 80,m = 4and 0 < a < 2 for Example 3

using the G-LP for collocation.

Table 5. The approximate solution u;, obtained by using the G-LP when 0 <« < 1,1 < a < 2and
N = 80,m = 4, and the exact solution when « = 1 for Example 3.

t « = 0.0000001 «=0.3 a = 0.5 « = 0.7 «=0.9 « = 0.9999 a=1

0.50 2.0422985435 2.0422985435 2.0422985435 2.0422985435 2.0422985435 2.0422985435 2.0422985435
0.55 2.1767805121 2.1764037955 2.1758232163 2.1746903204 2.1725380227 2.1708588887 2.1708569500
0.60 2.3369024513 2.3347716925 2.3319658673 2.3271986993 2.3193731879 2.3139056592 2.3138995822
0.65 2.5274156028 2.5216636520 2.5147425376 2.5038899232 2.4875408103 2.4768453377 2.4768337160
0.70 2.7549968510 2.7434643682 2.7304274618 2.7110949449 2.6836631424 2.6665205545 2.6665022155
0.75 3.0284929630 3.0087827046 2.9875216050 2.9572869381 2.9162563165 2.8914648279 2.8914386034
0.80 3.3592046620 3.3286793244 3.2969387426 3.2532481862 3.1959458560 3.1621841421 3.1621487216
0.85 3.7612101952 3.7169586037 3.6722763258 3.6123322973 3.5357501179 3.4914661707 3.4914199851
0.90 4.2517280048 4.1905099616 4.1301429778 4.0507848212 3.9514084005 3.8947180844 3.8946592006
0.95 4.8515182766 4.7696929559 4.6905325451 4.5881098490 4.4617466989 4.3903338681 4.3902598857
1.00 5.5853233461 5.4787636267 5.3772403414 5.2474775023 5.0890786630 5.0000920558 5.0000000000
t =19 o =17 a=15 a=13 =11 a = 1.01 « = 1.00001
0.50 2.0422985435 2.0422985435 2.0422985435 2.0422985435 2.0422985435 2.0422985435 2.0422985435
0.55 2.1685531044 2.1694376642 2.1701085260 2.1705384260 2.1707822586 2.1708505494 2.1708569437
0.60 2.3034979414 2.3069732352 2.3098697446 2.3120010835 2.3134119334 2.3138562759 2.3138995394
0.65 2.4506782624 2.4587657163 2.4658149461 2.4713707428 2.4753607944 2.4767003017 2.4768335840
0.70 2.6146277713 2.6298871983 2.6435414918 2.6547572542 2.6632359905 2.6662024934 2.6665019185
0.75 2.8009911854 2.8266990317 2.8500965497 2.8698446529 2.8853034382 2.8908703942 2.8914380399
0.80 3.0166988503 3.0570373680 3.0941795395 3.1261217059 3.1517532229 3.1611793495 3.1621477597
0.85 3.2701646359 3.3304340391 3.3863863632 3.4351515048 3.4749961111 3.4898805355 3.4914184567
0.90 3.5715038824 3.6583631732 3.7394835794 3.8108721430 3.8699896105 3.8923376437 3.8946568947
0.95 3.9327709570 4.0545114009 4.1687095689 4.2699264243 4.3545935706 4.3868930719 4.3902565406
1.00 4.3682166429 4.5350713106 4.6921020473 4.8320202532 4.9499557991 4.9952644911 4.9999952937
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Table 6. The approximate solution uy, for h = %, 81*0' ﬁ obtained by using the G-LP when « = 1.0001,

a = 0.9999 and N = 80, m = 4, and the exact solution when « = 1 for Example 3.

« = 1.0001
U1 —uq U1 —uq
t ni ni wa w1 —u1 wa —u1 u;_u“;ﬁ logziu;_u‘*;o
0.5 2.042298543456040 2.042298543456040 2.042298543456040 0 0 na na
0.6 2.313899148354915 2.313899154236738 2.313899154719453 5.88182 x 1072 4.82715 x 10710  12.18488  3.60702
0.7 2.666499225421245 2.666499245233377 2.666499246682199 1.98121 x 108 1.44882 x 10~7  13.67465 3.77343
0.8 3.162139059025395 3.162139100430150 3.162139103305870 4.14048 x 108 2.87572 x 1077  14.39805 3.84780
0.9 3.894636067629396 3.894636138137670 3.894636142895072 7.05083 x 108 4.75740 x 10~°  14.82075 3.88955
1.0 4.999952824239302 4.999952931336956 4.999952938431949 1.07098 x 10~7 7.09499 x 10~°  15.09482  3.91598
« = 0.9999
U1 —u1 ui—ui
t " ni w1 ui —u1 na —u1 u;_u‘;ﬁ logziu;—u?ﬂ
0.5 2.042298543456040 2.042298543456040 2.042298543456040 0 0 na na
0.6 2.336382834484979 2.336382890186138 2.336382904938831 5.57012 x 1078 1.47527 x 1078  3.77566 1.90917
0.7 2.751974647483427 2.751974754449280 2.751974782928411 1.06966 x 10~7 2.84791 x 10~8  3.75594 1.90644
0.8 3.350897309586328 3.350897463143591 3.350897504104982 1.53557 x 107 4.09614 x 108  3.74883 1.90494
0.9 4.234669738339650 4.234669933390302 4.234669985474072 1.95051 x 107 5.20838 x 108  3.74494 1.90395
1.0 5.555168946791253 5.555169178255524 5.555169240105265 2.31464 x 1077 6.18497 x 108  3.74236 1.90917

Table 7. The total computational time (CPU(s)) with respect to N obtained when G-LP and M-CP are

used.
N 10 20 40 80 160 320
G-LP 1.19 2.12 3.17 6.25 13.33 27.63
M-CP 1.06 2.03 3.94 7.96 13.50 28.21

6. Conclusions

A fractional Cauchy-Euler problem in the Caputo sense is studied. The existence
and uniqueness of the solution are investigated using the contracting mapping principle.
Further, a collocation method and an algorithm is given for the numerical solution. Ad-
ditionally, convergence analyses are provided, and the developed method is applied on
some constructed fractional Cauchy—Euler (FrC-E) problems. The simulations justify the
theoretical results.

In future research, the authors may consider discussing the potential extension of
their method, specifically the application of the proposed numerical approach to higher-
dimensional Caputo fractional Cauchy—Euler problems. This could be advantageous
for addressing more complex systems. The authors can also conduct an error analysis
to pinpoint possible sources of numerical inaccuracies and enhance the algorithm for
improved precision and stability.

Moreover, they will consider the effectiveness of their method using different types of
fractional derivatives operators, such as the Riemanns-Liouville or Grunwald-Letnikov
derivatives.
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