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Abstract

The purpose of this paper is to establish the Oettli–Théra theorem in the setting of KM-type
fuzzy b-metric spaces. To achieve this, we first prove a lemma that removes the constraints
on the space coefficients, which significantly simplifies the proof process. Based on the
Oettli–Théra theorem, we further demonstrate the equivalence of Ekeland variational
principle, Caristi’s fixed point theorem, and Takahashi’s nonconvex minimization theorem
in fuzzy b-metric spaces. Notably, the results obtained in this paper are consistent with
the conditions of the corresponding theorems in classical fuzzy metric spaces, thereby
extending the existing theories to the broader framework of fuzzy b-metric spaces.

Keywords: fuzzy b-metric space; Oettli-Théra theorem; Ekeland variational principle;
Caristi’s fixed point theorem; Takahashi’s nonconvex minimization theorem
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1. Introduction
In 1993, Oettli and Théra [1] established a new theorem that links equilibrium problems

with variational principles, which is now widely recognized as the Oettli–Théra theorem.
This result not only demonstrated equivalence to the famous Ekeland variational principle
(EVP) [2] but also generalized a new nonconvex minimization principle proposed by
Takahashi (see [3]). This theorem is a pivotal result in nonlinear analysis, particularly in
the study of vector equilibrium problems and their generalizations. It provides conditions
for the existence of solutions to systems of inequalities and has profound connections to
variational principles, optimization, and fixed point theory. Many scholars have studied
this theorem and its equivalences, as shown in references [4–8]. Currently, research on
the Oettli–Théra theorem and EVP primarily focuses on functional forms and domain
spaces. The explored functional forms include vector-valued, set-valued, and interval-
valued functions. Additionally, the considered spaces encompass uniform spaces, b-metric
spaces, fuzzy metric spaces and others (see [5–19]).

On the other hand, Kramosil and Michalek [19] first proposed the concept of fuzzy metric
space (FMS) in 1975, which later became known as KM-type FMS. In KM-type FMS, a fuzzy
set (typically represented by a value between 0 and 1 indicating the degree of membership) is
used to replace the classical distance function. This membership value can be interpreted as
“the degree to which two points exhibit a certain distance (or similarity)”. Subsequently, fuzzy
metric spaces have been extensively studied in the literature [16,17,20,21] and its references.
The significance of KM-type fuzzy metric spaces lies in their role as one of the important
cornerstones of fuzzy analysis. They successfully generalize the classical concept of metric
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into fuzzy set theory, providing a powerful mathematical tool and analytical framework for
dealing with uncertainty and fuzziness in the real world. In 1994, George and Veeramani [22]
improved the concept of KM-type FMS and defined the Hausdorff topology in this FMS, later
known as GV-FMS. Afterwards, many classic results were discussed in such spaces, such
as [16,23]. It is worth noting that in 2016, Abbasi et al. [16] studied the Caristi’s fixed point
theorem (CFPT) in complete GV space and provided the corresponding variational principle.
After that, Wu et al. [17] also discussed CFPT in fuzzy quasi-metric spaces. Additionally, Zhu
et al. [24], Xiao [25] and Qiu [15] extended fixed point theorems and EVP to fuzzy metric
spaces. However, the fuzzy metric spaces in these papers are fundamentally different from
the KM-type. Furthermore, Czerwik [26] introduced the concept of b-metric spaces in 1993,
which provides a broader type of spatial framework than metric spaces. Many scholars have
conducted extensive research in this space and provided various types of fixed point theorems
and numerous examples; see [18,26,27].

Based on the concepts proposed in references [19,22,26], Sedghi and Shobe [28] com-
bined the b-metric space with the KM-type FMS, introducing a new type of space called
the KM-type fuzzy b-metric space (in short, Fb-MS) in 2012. The KM-type Fb-MS, building
upon fuzzy metrics, further relaxes the fuzzy form of the triangle inequality by introducing
a constant s, thereby effectively combining fuzzy sets with b-metrics. This provides a more
flexible and broader mathematical framework for describing and analyzing real-world sys-
tems that are both fuzzy and do not fully satisfy strict metric axioms, while also expanding
the application boundaries of fuzzy mathematical theory. Many scholars discussed the
properties of such spaces and established some fixed point theorems in them, as shown
in [29–32].

To the best of our knowledge, the Oettli–Théra theorem and its related topics have not yet
been thoroughly investigated within the framework of KM-type fuzzy b-metric spaces [28,30].
The aim of this paper is then to present the versions of the Oettli–Théra theorem, EVP,
Caristi-Kirk’s fixed point theorem (CKFPT), and Takahashi’s nonconvex minimization
theorem (in short, TMT) in fuzzy b-metric spaces, as well as the equivalence chain of these
principles. Before presenting these theorems, we establish a key lemma that removes the
influence of the coefficients in the triangle inequality of fuzzy b-metric spaces. This influence
is eliminated for the first time by revealing the essential local properties of fuzzy function.
Furthermore, we provide specific examples to illustrate the feasibility and effectiveness of
the Oettli–Théra theorem. It is worth noting that our results generalize classical theorems
from fuzzy metric spaces to a broader range of fuzzy b-metric spaces, while maintaining
consistency in their conditions.

The remaining paper is organized as follows: In Section 2, we introduce some basic
definitions and properties of Fb-MS. Besides, we provide some specific examples to illustrate
these properties. In Section 3, we present the Oettli–Théra theorem using the newly
established lemmas. Moreover, we provide an example to demonstrate the feasibility of
the theorem. In Section 4, as applications of the Oettli–Théra theorem, we establish EVP,
CKFPT, and TMT in fuzzy b-metric spaces. Furthermore, we demonstrate the equivalence
between these theorems and the Oettli–Théra theorem. Notably, the above results we
obtained are improvements to the relevant conclusions in [1–3,8,16].

2. Preliminaries
This section first reviews the fundamental concepts of t-norm and KM-type Fb-MS

and then discusses their basic topological properties, including convergence, completeness,
and continuity. Throughout the paper, we denote the set of all non-negative integers by N
and the set of all positive integers by N+.
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Definition 1 ([16,19,21]). A binary operation ⋄ : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-norm
if it satisfies the following conditions:

(1) ⋄ is associative and commutative,
(2) ⋄ is continuous,
(3) u ⋄ 1 = u for all u ∈ [0, 1],
(4) u ⋄ v ≤ p ⋄ q whenever u ≤ p and v ≤ q, for each u, v, p, q ∈ [0, 1].

From [16,17,19], we can see some paradigmatic examples of continuous t-norms
as follows:

(1) u ∧ v = min{u, v} (minimum t-norm);
(2) u · v = uv (product t-norm);
(3) u ⋄L v = max{u + v − 1, 0} (the Lukasiewicz t-norm);

(4) u ⋄SW(λ) v = max
{

u+v−1+λuv
1+λ , 0

}
(λ ∈ (−1,+∞), the Sugeno-Weber t-norm).

Archimedean condition: The t-norm ⋄ is called Archimedean if for any pair u, v ∈
(0, 1), there is n ∈ N such that

un = u ⋄ u ⋄ · · · ⋄ u︸ ︷︷ ︸
n

< v.

This condition can be simplified to: if u, v ∈ (0, 1] and u ⋄ v ≥ u, then v = 1. It is easy to see
that ·, ⋄L and ⋄SW(λ) are Archimedean; however, ∧ is not Archimedean.

Definition 2 ([28,30,31]). Let F be a nonempty set and s ≥ 1 be a real number. A fuzzy set L
in F ×F × (0,+∞) → (0, 1] is a fuzzy b-metric on F if for all u, v, w ∈ F , and α, β > 0 the
following conditions hold:

(1) L(u, v, α) > 0,
(2) L(u, v, α) = 1 if and only if u = v,
(3) L(u, v, α) = L(v, u, α),
(4) L(u, v, ·) : (0, ∞) → [0, 1] is continuous,

(5) L(u, v, α + β) ≥ L
(
u, w, α

s
)
⋄ L

(
w, v, β

s

)
.

Then (F ,L, ⋄) is called to be a fuzzy b-metric space.

Remark 1. If L(u, v, α + β) ≥ L(u, w, α) ⋄ L(w, v, β) is used instead of (5), then (F ,L, ⋄) is a
FMS. It is important to note that the class of fuzzy b-metric spaces is indeed broader than that of
fuzzy metric spaces, as a fuzzy b-metric reduces to a fuzzy metric when the parameter s = 1.

Specifically, we construct examples that show a fuzzy b-metric on F (with s ≥ 1) does
not necessarily reduce to a standard fuzzy metric on F , as shown below.

Example 1 ([28]). Let L(u, v, α) = e
−|u−v|p

α and u ⋄ v = uv, where p ≥ 1 is a real number. Then
L is a fuzzy b-metric with s = 2p−1. But for any p > 1, it is easy to see that L is not a fuzzy metric.

Example 2. Let F = [0, 2] and

L(u, v, α) = e−|u−v|e
− α
|u−v|2+1

,

for all u, v ∈ F and α > 0. We show that L is a fuzzy b-metric with s = 5. However, L(u, v, α) is
not a fuzzy metric.
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Obviously, conditions (1)–(4) in Definition 2 are satisfied. Next, we prove the triangle
inequality in fuzzy b-metric spaces. For all u, v, w ∈ F , we will show that

e−|u−v|e
− α+β

|u−v|2+1 ≥ e−|u−w|e
− α

5[|u−w|2+1] ⋄ e−|w−v|e
− β

5[|w−v|2+1]
.

Here, we take u ⋄ v = uv. Then, we only need to prove

|u − v|e−
α+β

|u−v|2+1 ≤ |u − w|e
− α

5[|u−w|2+1] + |w − v|e
− β

5[|w−v|2+1] .

In fact, for all u, v, w ∈ F , we have |u − v|2 + 1 ≤ 5
[
|u − w|2 + 1

]
. Thus, we can infer that

α+β

|u−v|2+1 ≥ α
5[|u−w|2+1] . Similarly, we can infer that

|u − v|e−
α+β

|u−v|2+1 ≤ |u − w|e−
α+β

|u−v|2+1 + |w − v|e−
α+β

|u−v|2+1

≤ |u − w|e
− α

5[|u−w|2+1] + |w − v|e
− β

5[|w−v|2+1] .

Hence, for each u, v, w ∈ F and α, β > 0, we obtain that

L(u, v, α + β) = e−|u−v|e
− α+β

|u−v|2+1

≥ e−|u−w|e
− α

5[|u−w|2+1] · e−|w−v|e
− β

5[|w−v|2+1]

= L
(

u, w,
α

5

)
⋄ L

(
w, v,

β

5

)
.

Thus condition (5) of Definition 2 holds, and L(u, v, α) is a fuzzy b-metric.
Especially, let u = 0, v = 2, w = 1 and α = β = 1. Then, we know that L(u, v, α + β) =

e−2e−
α+β

5 = e−2e−
2
5 , L(u, w, α) = e−e−

1
2 and L(w, v, β) = e−e−

1
2 . Since 2e−

2
5 > 2e−

1
2 , we have

L(u, v, α + β) = e−2e−
2
5 < e−2e−

1
2 = e−(e−

1
2 +e−

1
2 ) = L(u, w, α) · L(w, v, β).

Therefore, L(u, v, α) does not satisfy the triangle inequality of fuzzy metric spaces.

Theorem 1 (Refer to [28,30,31]). Suppose that (F ,L, ⋄) is a Fb-MS. A sequence {un} in F
converges to u if and only if limn→∞ L(un, u, α) = 1, for all α > 0. And u is unique.

Definition 3 (Refer to [28,30]).

(1) A sequence {un} in a Fb-MS (F ,L, ⋄) is a Cauchy sequence if for each ε ∈ (0, 1) and each
α > 0 there exists n0 ∈ N such that L(um, un, α) > 1 − ε for all m, n > n0.

(2) We say that a Fb-MS (F ,L, ⋄) is complete if any Cauchy sequence in F is convergent.

It worth noting that if (F ,L, ⋄) is a FMS, then L is a continuous function on F ×F ×
(0,+∞) (See [28]). On the other hand, a fuzzy b-metric can be discontinuous, as shown in
the following example.

Example 3. For all u, v ∈ [0, 2] and α > 0, define

L(u, v, α) =

{
α

α+|u−v| , uv ̸= 0,
α

α+5|u−v| , uv = 0.
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Then, from [30], we can easily know that L(u, v, α) is a fuzzy b-metric. Next, we will show that the
fuzzy b-metric is not continuous about u and v. Let un = 1

n (n ∈ N+); thus, for any n ∈ N+, we
have un ̸= 0. Since for all α > 0,

lim
n→∞

L(un, 0, α) = lim
n→∞

L
(

1
n

, 0, α

)
= lim

n→∞

α

α + | 1
n − 0|

= 1,

we obtain that un converges to u = 0. Let v = 1, for any α > 0, we have

lim
n→∞

L(un, 1, α) = lim
n→∞

α

α + | 1
n − 1|

=
α

α + 1
>

α

α + 5
= lim

n→∞
L(0, 1, α).

Therefore, L(u, v, α) is not continuous.

Definition 4 (Refer to [28,30]). A function l : R → R is called to be s-nondecreasing if l(β) ≥
l(α) for all β > sα.

Lemma 1 (Refer to[28]). Let (F ,L, ⋄) be a Fb-MS. Then L is s-nondecreasing with respect to α,
for all u, v ∈ F . Hence

L(u, v, snα) ≥ L(u, v, α), ∀n ∈ N.

Definition 5. Let (F ,L, ⋄) be a Fb-MS. A mapping ϑ is called upper semicontinuous (lower
semicontinuous) if and only if lim supn→∞ ϑ(un) ≤ ϑ(u) (lim infn→∞ ϑ(un) ≥ ϑ(u)) for any
sequence {un} which converges to u ∈ F .

3. Oettli–Théra Theorem in KM-Type Fuzzy b-Metric Spaces
In this section, we establish the Oettli–Théra theorem within the framework of com-

plete KM-type fuzzy b-metric spaces. Before that, we present several key lemmas used to
prove our theorems as below.

Lemma 2. Let (F ,L, ⋄) be a Fb-MS with s ≥ 1, and u, v ∈ F are given. Then we have
limα→0+ L(u, v, α) = infα>0 L(u, v, α).

Proof. First, we put αn = ( 1
s )

n = 1
s , 1

s2 , · · · (n = 1, 2, · · · ). From Lemma 1 we can con-
clude that

L(u, v, αn+1) ≤ L(u, v, s · αn+1) = L(u, v, αn).

Obviously, {L(u, v, αn)}n∈N+ is a decreasing sequence. Note that L(u, v, α) has a lower
bound, hence, limn→∞ L(u, v, αn) exists. For brevity, we denote limn→∞ L(u, v, αn) by
Lin f (u, v).

Next, we will prove Lin f (u, v) := limn→∞ L(u, v, αn) = infα>0 L(u, v, α). If α ≥ 1,
obviously, we have L(u, v, α) ≥ Lin f (u, v). If 0 < α < 1, then there exists n ∈ N, such that

α ∈
(

1
sn , 1

sn−1

]
. Since α > 1

sn = s · 1
sn+1 = s · αn+1, we get

L(u, v, α) ≥ L
(

u, v,
1

sn+1

)
= L(u, v, αn+1).

Hence, for all α > 0, L(u, v, α) ≥ Lin f (u, v). By the definition of Lin f (u, v), it can be inferred
that for any ε > 0, there exists N ∈ N such that n ≥ N, |L(u, v, αn)−Lin f (u, v)| < ε, and
so, L(u, v, αn) < Lin f (u, v) + ε. Then from the definition of infimum, we can obtain that
Lin f (u, v) = infα>0 L(u, v, α).
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Finally, we demonstrate limα→0+ L(u, v, α) = Lin f (u, v). For any ε > 0, as

lim
n→∞

L(u, v, αn) = Lin f (u, v),

there exists N′ ∈ N, such that L(u, v, αN′) < Lin f (u, v) + ε. Take δ =
αN′

s , then for any
α ∈ (0, δ), we have αN′ > sα, and

Lin f (u, v) ≤ L(u, v, α) ≤ L(u, v, αN′) < Lin f (u, v) + ε.

It implies that
∣∣∣L(u, v, α)−Lin f (u, v)

∣∣∣ < ε. Hence,

lim
α→0+

L(u, v, α) = Lin f (u, v) = lim
n→∞

L(u, v, αn) = inf
α>0

L(u, v, α).

In the sequel, we use Lin f (u, v) = limα→0+ L(u, v, α) = infα>0 L(u, v, α) to prove that
Lin f (u, v) satisfies the triangle inequality in a Fb-MS.

Lemma 3. Let (F ,L, ⋄) be a Fb-MS. For every u, v, w ∈ F ,

Lin f (u, v) ≥ Lin f (u, w) ⋄ Lin f (w, v).

Proof. For all u, v, w ∈ F and α > 0,

L(u, v, 2α) ≥ L
(

u, w,
α

s

)
⋄ L

(
w, v,

α

s

)
.

Letting α → 0+, we have

Lin f (u, v) = lim
α→0+

L(u, v, 2α) ≥ lim
α→0+

[
L
(

u, w,
α

s

)
⋄ L

(
w, v,

α

s

)]
= lim

α→0+
L
(

u, w,
α

s

)
⋄ lim

α→0+
L
(

w, v,
α

s

)
= Lin f (u, w) ⋄ Lin f (w, v).

Lemma 4. Suppose that (F ,L, ⋄) is a Fb-MS and ϑ : F → [0, 1] is a mapping. For any u ∈ F ,
define the set

S(u) := {v ∈ F|ϑ(v) ⋄ L(u, v, α) ≥ ϑ(u), ∀α > 0}.

Then for every v ∈ S(u), S(v) ⊂ S(u).

Proof. In fact, by the definition of Lin f , we notice that

S(u) := {v ∈ F|ϑ(v) ⋄ L(u, v, α) ≥ ϑ(u), ∀α > 0}

⇔ S′(u) := {v ∈ F|ϑ(v) ⋄ Lin f (u, v) ≥ ϑ(u)}.

Since v ∈ S(u), we have
ϑ(v) ⋄ Lin f (u, v) ≥ ϑ(u).

For any w ∈ S(v),
ϑ(w) ⋄ Lin f (v, w) ≥ ϑ(v).
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Hence, for every α > 0, we can deduce that

ϑ(w) ⋄ Lin f (u, w) ≥ ϑ(w) ⋄ Lin f (u, v) ⋄ Lin f (v, w)

≥ ϑ(v) ⋄ Lin f (u, v)

≥ ϑ(u).

Therefore, we can conclude that w ∈ S(u), that is, S(v) ⊂ S(u).

In the following text, for all u ∈ F and α > 0, we define the set

S(u) := {v ∈ F|ϑ(v) ⋄ L(u, v, α) ≥ ϑ(u), ∀α > 0}.

We also have S(u) = {v ∈ F|ϑ(v) ⋄ Lin f (u, v) ≥ ϑ(u)}. Next, using the above lemmas, we
present the Oettli–Théra theorem in the setting of KM-type fuzzy b-metric spaces.

Theorem 2 (Oettli–Théra Theorem). Let (F ,L, ⋄) be a complete Fb-MS and let ϑ : F →
[0, 1] be a non-trivial and upper semicontinuous mapping. Suppose that ⋄ is a continuous and
Archimedean t-norm. Consider u0 ∈ F such that ϑ(u0) ̸= 0. Assuming that D ⊂ F satisfies the
following property:

for every u ∈ S(u0) \ D, there exists u′ ̸= u such that ϑ(u′) ⋄ L(u, u′, α) ≥ ϑ(u) for all
α > 0.

Then S(u0) ∩ D ̸= ∅.

Proof. First, by u0 ∈ S(u0), we have S(u0) ̸= ∅. Suppose that S(u0) ∩ D = ∅, then for
every u ∈ S(u0), there exists u′ ̸= u such that ϑ(u′) ⋄ L(u, u′, α) ≥ ϑ(u) for all α > 0. Now,
choose u1 ∈ S(u0) such that

ϑ(u1) ≥ sup
u∈S(u0)

ϑ(u)− 1
2

.

As u1 ∈ S(u0), by Lemma 4 we have S(u1) ⊂ S(u0). Similarly, we take un+1 ∈ S(un)

such that
ϑ(un+1) ≥ sup

u∈S(un)

ϑ(u)− 1
2n .

By the property of ⋄ and un+1 ∈ S(un), we have

ϑ(un+1) ≥ ϑ(un+1) ⋄ Lin f (un+1, un) ≥ ϑ(un), ∀n ∈ N.

Hence, we know that {ϑ(un)}n∈N is a increasing sequence. As

sup
u∈S(un)

ϑ(u)− 1
2n ≤ ϑ(un+1) ≤ sup

u∈S(un)

ϑ(u),

letting n → ∞, we can deduce that

lim
n→∞

ϑ(un) = p = lim
n→∞

sup
u∈S(un)

ϑ(u). (1)

Next, we will show that {un} is a Cauchy sequence in F . Before that, we first prove
the following statement holds true:

∀ ε ∈ (0, 1), ∃ N ∈ N such that Lin f (um, un) > 1 − ε, ∀m, n > N. (2)
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If the statement is not valid, then there exists ε0 ∈ (0, 1) such that for every N ∈ N, there
exists mk > nk > N, such that

Lin f (umk , unk ) ≤ 1 − ε0.

Note that {ϑ(un)} is a increasing sequence, hence, for all n ∈ N, we have ϑ(un) ≤
limm→∞ ϑ(um) = p. Using the definition of limit and Equation (1), we know that for
every ε′ ∈ (0, 1), there exists N′ ∈ N such that for any n > N′, p(1 − ε′) ≤ ϑ(un) ≤ p.
Hence, let the above N = N′. Since umk ∈ S(unk ), we have

p ⋄ (1 − ε0) ≥ ϑ(umk ) ⋄ Lin f (umk , unk ) ≥ ϑ(unk ) ≥ p(1 − ε′).

As ε′ is arbitrary, we get p ⋄ (1 − ε0) ≥ p. This is contradicted by Archimedean condition.
Hence, the statement (2) holds true.

From Lemma 2, we have Lin f (um, un) = infα>0 L(um, un, α). This implies that for each
ε ∈ (0, 1) and α > 0, there exists N ∈ N such that L(um, un, α) > 1 − ε for each m, n > N.
Therefore, {un} is a Cauchy sequence. By the completeness of (F ,L, ⋄), there exists ū ∈ F
such that un → ū(n → ∞), i.e., limn→∞ L(un, ū, α) = 1, for each α > 0.

Then, we will show that limn→∞ Lin f (un, ū) = 1. Let ε > 0. By (2), there exists N ∈ N
such that

Lin f (up, uq) > 1 − ε, ∀p, q > N.

For every m, n > N and α > 0, by combining Lemma 2 and (2), we can conclude that

L(un, ū, α) ≥ L
(

un, um,
α

2s

)
⋄ L

(
um, ū,

α

2s

)
≥ Lin f (un, um) ⋄ L

(
um, ū,

α

2s

)
≥ (1 − ε) ⋄ L

(
um, ū,

α

2s

)
.

(3)

Since {un} converges to ū, we have limm→∞ L(um, ū, α) = 1 for all α > 0. Hence, by letting
m → ∞ in (3), we get

L(un, ū, α) ≥ (1 − ε) ⋄ 1 ≥ 1 − ε, ∀α > 0.

Therefore, we conclude that limn→∞ Lin f (un, ū) = 1.
Finally, we prove ū ∈ S(un), and the conclusion holds true. From Lemma 3, we have

Lin f (um, un) ≥ Lin f (um, ū) ⋄ Lin f (ū, un). Letting m → ∞,

lim
m→∞

Lin f (um, un) ≥ lim
m→∞

Lin f (um, ū) ⋄ Lin f (ū, un) = Lin f (ū, un).

Similarly, we have Lin f (ū, un) ≥ Lin f (um, ū) ⋄ Lin f (um, un) and

Lin f (ū, un) ≥ lim
m→∞

Lin f (um, ū) ⋄ lim
m→∞

Lin f (um, un) = lim
m→∞

Lin f (um, un).

Thus,
lim

m→∞
Lin f (um, un) = Lin f (ū, un). (4)

Moreover, for any m > n, we have ϑ(um) ⋄ Lin f (um, un) ≥ ϑ(un). Letting m → ∞, we
get limm→∞ ϑ(um) ⋄ limm→∞ Lin f (um, un) ≥ ϑ(un). From ϑ is upper semicontinuous and
Equation (4), we have

ϑ(ū) ⋄ Lin f (ū, un) ≥ lim sup
m→∞

ϑ(um) ⋄ lim
m→∞

Lin f (um, un) ≥ ϑ(un).
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Hence, ū ∈ S(un) for all n ∈ N. On the other hand, from the property of D, there
exists u′ ̸= ū such that ϑ(u′) ⋄ L(u′, ū, α) ≥ ϑ(ū) for all α > 0, that is, u′ ∈ S(ū). Then,
u′ ∈ S(un) for all n ∈ N. From (1) we have ϑ(u′) ≤ limn→∞ supu∈S(un)

ϑ(u) = p and
ϑ(u′) ⋄ L(u′, ū, α) ≥ ϑ(ū) = p ≥ ϑ(u′). Then from the Archimedean condition, we have
L(u′, ū, α) = 1, which contradicts u′ ̸= ū. Therefore, we conclude that S(u0) ∩ D ̸= ∅.

Example 4. Let (F ,L, ·) be the same space in Example 2. Obviously, (F ,L, ·) is complete.
Suppose that ϑ : F → [0, 1] defined by ϑ(u) = e−u, for all u ∈ F . In fact, from Theorem 2, we
know that for each u0 ∈ F ,

S(u0) =
{

u ∈ F|e−u · e−|u0−u| ≥ e−u0
}
= {u ∈ F||u0 − u| ≤ u0 − u},

that is, S(u0) = [0, u0]. Let D ⊂ F be a subset satisfying the condition that for every u ∈
S(u0)\D, there exists u′ ̸= u such that ϑ(u′) ⋄ L(u, u′, α) ≥ ϑ(u), for all α > 0. Assume that
D̂ = {u ∈ F|S(u) = {u}}. It is obviously that D̂ ⊂ D. Since S(u0) ∩ D̂ = {0} ̸= ∅, thus
S(u0) ∩ D ̸= ∅.

Lemma 5. Consider a KM-type Fb-MS endowed with Sugeno–Weber t-norm ⋄SW(λ), λ ∈ (−1,+∞).
Then the triangle inequality holds if and only if

(1 + λ)L(u, v, α + β) + 1 ≥ L
(

u, w,
α

s

)
+ L

(
w, v,

β

s

)
+ λL

(
u, w,

α

s

)
· L

(
w, v,

β

s

)
for all u, v, w ∈ F and α, β > 0.

Proof. The desired result follows directly from the definition of Sugen–Weber t-norms.

The following two corollaries are different from Theorem 2, as the t-norm no longer
requires the Archimedean condition.

Corollary 1. Let (F ,L, ⋄) be a complete Fb-MS and let ϑ : F → R∗ be an u.s.c. and upper
bounded function. Also assume that ⋄ is a continuous t-norm such that u ⋄ v ≥ u ⋄L v for all
u, v ∈ [0, 1]. In addition, consider u0 ∈ F such that ϑ(u0) ̸= 0. Suppose that D ⊂ F such that for
every u ∈ S(u0)\D, there exists u′ ̸= u such that L(u, u′, α) ≥ 1 + ϑ(u)− ϑ(u′) for all α > 0.
Then S(u0) ∩ D ̸= ∅.

Proof. Consider a Fb-MS with t-norm ⋄L. Define L′(u, v, α) = eL(u,v,α)−1 on F × F ×
(0,+∞). Next, we claim that (F ,L′, ·) is a complete Fb-MS. Then we only need to show
that the triangle inequality holds. Since (F ,L, ⋄L) is a complete Fb-MS, from Lemma 5, for
all u, v, w ∈ F and α, β > 0, we can obtain that

L(u, v, α + β) ≥ L
(

u, w,
α

s

)
⋄ L

(
w, v,

β

s

)
≥ L

(
u, w,

α

s

)
⋄L L

(
w, v,

β

s

)
≥ L

(
u, w,

α

s

)
+ L

(
w, v,

β

s

)
− 1,

which implies that

L′(u, v, α + β) = eL(u,v,α+β)−1 ≥ eL(u,w, α
s )+L

(
w,v, β

s

)
−2

= L′
(

u, w,
α

s

)
· L′

(
w, v,

β

s

)
.
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On the other hand, by the definition of L′, it is easy to see that if {un} is a Cauchy sequence
in (F ,L, ⋄L) then it is a Cauchy in (F ,L′, ·), so (F ,L′, ·) is a complete Fb-MS. Next, define
ϑ′(u) = eϑ(u), for all u ∈ F . One can deduce that ϑ′ is a nontrivial u.s.c. and upper bounded
function from F into [0,+∞). Hence,

S′(u0) = {u ∈ F|ϑ′(u) · L′(u, u0, α) ≥ ϑ′(u0), ∀α > 0} ⊂ S(u0).

From the assumption of Corollary 1, we know that for every u ∈ S(u0)\D, there exists
u′ ̸= u such that L(u, u′, α) ≥ 1 + ϑ(u)− ϑ(u′), ∀α > 0. Thus, for every u ∈ S′(u0)\D we
have u′ ̸= u and ϑ′(u′) · L(u′, u, α) ≥ ϑ′(u) for all α > 0. Without loss of generality we can
assume that p ≤ 1. Since otherwise we can consider ϑ′/p, where p = sup{ϑ′(u) : u ∈ F}.
Therefore, Theorem 2 concludes that S′(u0) ∩ D ̸= ∅, and so, S(u0) ∩ D ̸= ∅.

Corollary 2. Let (F ,L, ⋄) be a complete Fb-MS and let ϑ : F → R∗ be an u.s.c. and upper
bounded function. Also assume that ⋄ is a continuous t-norm such that u ⋄ v ≥ u ⋄SW(λ) v for
all u, v ∈ [0, 1]. Additively, consider u0 ∈ F such that ϑ(u0) ̸= 0. Let D ⊂ F such that for
every u ∈ S(u0)\D, there exists u′ ̸= u such that ϑ(u′)L(u, u′, α) ≥ ϑ(u) for all α > 0. Then
S(u0) ∩ D ̸= ∅.

Proof. Consider F endowed with ⋄SW(λ), where λ > −1. Define L′(u, v, α) = logλ+2[(λ +

1)L(u, v, α) + 1] = logτ+1(τL(u, v, α) + 1) and ϑ′(u) = logτ+1 ϑ(u), (τ = λ + 1), for all
u, v ∈ F and α > 0. Also, we can easily know that ϑ′ is a nontrivial u.s.c. and upper
bounded function from F into R+. We claim that (F ,L′, ⋄L) is a complete fuzzy b-metric
space. To demonstrate that, we only prove the triangle inequality, that is, for all u, v, w ∈ F
and α, β > 0,

L′(u, v, α + β) ≥ L′(u, w,
α

s
) ⋄L L′(w, v,

β

s
) = L′

(
u, w,

α

s

)
+ L′

(
w, v,

β

s

)
− 1.

Firstly, by the definition of L′, we can deduce that

L′
(

u, w,
α

s

)
+ L′

(
w, v,

β

s

)
= logτ+1

(
τL′

(
u, w,

α

s

)
+ 1

)
+ logτ+1

(
τL′

(
w, v,

β

s

)
+ 1

)
= logτ+1

(
τ

[
τL′

(
u, w,

α

s

)
L′

(
w, v,

β

s

)
+ L′

(
u, w,

α

s

)
+ L′

(
w, v,

β

s

)]
+ 1

)
.

From Lemma 5, we have

τL′
(

u, w,
α

s

)
L′

(
w, v,

β

s

)
+ L′

(
u, w,

α

s

)
+ L′

(
w, v,

β

s

)
≤ (τ + 1)L(u, v, α + β) + 1.

Next, we can infer that

L′(u, v, α + β) + 1

= logτ+1(τL(u, v, α + β) + 1) + 1

= logτ+1[(τ + 1)(τL(u, v, α + β) + 1)]

= logτ+1[τ[(τ + 1)L(u, v, α + β) + 1] + 1]

≥ logτ+1

[
τ

[
τL′

(
u, w,

α

s

)
L′

(
w, v,

β

s

)
+ L′

(
u, w,

α

s

)
+ L′

(
w, v,

β

s

)]
+ 1

]
.
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Hence, L′(u, v, α + β) + 1 ≥ L′(u, w, α
s
)
+L′

(
w, v, β

s

)
, (F ,L′, ⋄L) is a fuzzy b-metric space.

By the definition of L′, it is easy to see that if {un} is a Cauchy sequence in
(
F ,L, ⋄SW(λ)

)
then it is a Cauchy in (F ,L′, ⋄L), so (F ,L′, ⋄L) is a complete fuzzy b-metric space. From
the assumption of Corollary 2, we know that for every u ∈ S(u0)\D, there exists u′ ̸= u
such that ϑ(u′)L(u, u′, α) ≥ ϑ(u) for all α > 0. Thus, we have

L′(u, u′, α) = logτ+1(τL(u, u′, α) + 1)

≥ logτ+1[(τ + 1)L(u, u′, α)]

≥ logτ+1 L(u, u′, α) + 1

≥ logτ+1 ϑ(u)− logτ+1 ϑ(u′) + 1

= ϑ′(u)− ϑ′(u′) + 1.

Therefore, L′ and ϑ′ satisfied the conditions in Corollary 1, and we can obtain that S(u0) ∩
D ̸= ∅.

Remark 2. According to Corollary 1 and 2, if the minimum norm ∧ is used instead of ⋄, the
conclusions still hold true. This indicates that under specific conditions, the t-norm does not need to
satisfy the Archimedean condition.

4. Application
Building upon the Oettli–Théra theorem, we establish EVP, which is significant in

optimization problems.

Theorem 3 (EVP). Let (F ,L, ⋄) be a complete Fb-MS and let ϑ : F → [0, 1] be a non-trivial
and upper semicontinuous mapping. Assume that ⋄ is a continuous t-norm and satisfies the
Archimedean condition. Consider u0 ∈ F such that ϑ(u0) ̸= 0. Then there exists ū ∈ S(u0) and
α0 > 0 such that for any u ∈ F\{ū},

ϑ(u) ⋄ L(ū, u, α0) < ϑ(ū).

Proof. For all u ∈ F , define a set-valued mapping H : F → 2F as follows,

H(u) := {v ∈ F|ϑ(v) ⋄ L(u, v, α) ≥ ϑ(u), v ̸= u, ∀α > 0}.

Choose D := {u ∈ F : H(u) = ∅}. If û /∈ D, that is, H(û) ̸= ∅, then, there exists v ∈ F
with v ̸= û such that

ϑ(v) ⋄ L(û, v, α) ≥ ϑ(û), ∀α > 0.

Hence, for all û ∈ S(u0), the conditions of Theorem 2 are satisfied. Consequently, there
exists ū ∈ D, such that H(ū) = ∅, that is, for all u ̸= ū, there exists α0 > 0 such that
ϑ(u) ⋄ L(u, ū, α0) < ϑ(ū).

Remark 3. According to Theorem 3, we can generalize Theorem 3.9 in [16] from fuzzy metric
spaces to fuzzy b-metric spaces without adding any conditions. Also, we can derive Theorem 2.2
in [2].

Due to the universality of Fb-MS, we further apply the Oettli–Théra theorem to fixed
point problems and minimization problems, thereby extending its scope.
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Theorem 4 (CFPT). Let (F ,L, ⋄) be a complete Fb-MS and let T : F → F be a mapping.
Suppose that ⋄ is a continuous and Archimedean t-norm, and ϑ : F → [0, 1] is a non-trivial upper
semicontinuous function. Assume that for all u ∈ F and α > 0

ϑ(T u) ⋄ L(T u, u, α) ≥ ϑ(u)

holds. Then T has a fixed point.

Proof. From Theorem 3, we know that there exists ū ∈ F and α0 > 0 such that for all
u ̸= ū,

ϑ(u) ⋄ L(u, ū, α0) < ϑ(ū).

We claim that ū = T ū, otherwise, ū ̸= T (ū). By the conditions of Theorem 4, we have

ϑ(T ū) ⋄ L(T ū, ū, α) ≥ ϑ(ū) (5)

for all α > 0. Moreover, from Theorem 3, we know that ϑ(T ū) ⋄ L(T ū, ū, α0) < ϑ(ū),
which contradicts (5). Hence, ū = T ū.

Similarly, we can give the version of set-valued Caristi-Kirk’s fixed point theorem.

Theorem 5 (CKFPT). Let (F ,L, ⋄) be a complete Fb-MS and ϑ : F → [0, 1] be a non-trivial and
upper semicontinuous function. Let T be a set-valued mapping from F into 2F . Suppose that for
all u ∈ F , there exists v ∈ T (u) such that

ϑ(v) ⋄ L(u, v, α) ≥ ϑ(u), ∀α > 0.

Then there exists ū ∈ F such that T (ū) = {ū}.

Remark 4. Similar to Corollaries 1 and 2, if we replace ⋄ with u ⋄ v ≥ u ⋄L v or u ⋄ v ≥ u ⋄SW(λ) v
in Theorem 4, we can derive ([16] Corollaries 3.3, 3.4).

Next, we establish TMT in fuzzy b-metric spaces, which can solve the minimization
problem.

Theorem 6. (TMT) Let (F ,L, ⋄) be a complete Fb-MS and let ϑ(u) : F → [0, 1] be a non-
trivial and upper semicontinuous function. Assume that ⋄ is a continuous t-norm and satisfies
the Archimedean condition. Suppose that for each û ∈ F with ϑ(û) < supu∈F ϑ(u), there exists
u′ ̸= û such that

ϑ(u′) ⋄ L(û, u′, α) ≥ ϑ(û), ∀α > 0.

Then there exists ū ∈ F such that ϑ(ū) = supu∈F ϑ(u).

Proof. First, we suppose that for all û ∈ F , ϑ(û) < supu∈F ϑ(u). By the assumptions of
Theorem 6, we know that there exists u′ ̸= û such that

ϑ(u′) ⋄ L(û, u′, α) ≥ ϑ(û), ∀α > 0.

Next, for all û ∈ F , we define T (û) = u′, hence, T satisfies the conditions of
Theorem 4. Thus, we obtain that T has a fixed point, i.e., there exists ũ ∈ F such that
ũ = T (ũ), which contradicts the definition of T . Therefore, there exists ū ∈ F such that
ϑ(ū) = supu∈F ϑ(u).
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Remark 5. It is worth noting that we can derive Theorems 3.1 and 3.13 in [16] from Theorems 4
and 6.

Theorem 7 (Equivalence). Theorems 2–4 and 6 are equivalent.

Proof. Since
Theorem 2 ⇒ Theorem 3 ⇒ Theorem 4 ⇒ Theorem 6,

next, we only need to verify Theorem 6 ⇒ Theorem 2. Suppose that S(u0) ∩ D = ∅. Then
for every u ∈ S(u0), there exists u′ ̸= u such that

ϑ(u′) ⋄ L(u, u′, α) ≥ ϑ(u), ∀α > 0. (6)

Notably, inequality (6) states that u′ ∈ S(u), and so, u′ ∈ S(u0). Hence, for all u ∈ S(u0),
the conditions of Theorem 6 are satisfied, and we can obtain that there exists ū ∈ S(u0)

such that ϑ(ū) = supu∈S(u0)
ϑ(u). Furthermore, for each u ∈ S(u0) with u ̸= ū, we have

ϑ(u) < ϑ(ū) and L(u, ū, α) < 1 for all α > 0. This implies that

ϑ(u) ⋄ L(u, ū, α) < ϑ(ū) ⋄ 1 = ϑ(ū), ∀α > 0,

a contradiction with (6). Therefore, S(u0) ∩ D ̸= ∅.

5. Conclusions
We propose some new properties of fuzzy b-metrics and provide corresponding lemmas

to demonstrate the existence of the right limit of fuzzy b-metrics when α tends to 0+. This
effectively removes the restriction on the triangle inequality coefficient in fuzzy b-metric
spaces. By utilizing these lemmas, we establish the Oettli–Théra theorem for the first time in
KM-type fuzzy b-metric spaces, which is an extension of the results in existing fuzzy metric
spaces, fundamentally expanding the application scope of the Oettli–Théra theorem.

The extended Oettli–Théra theorem can also derive EVP, CFPT, and TMT, greatly
enriching the research on optimization problems, fixed point problems, and minimization
problems in KM-type fuzzy b-metric spaces. Notably, these conclusions generalize and
enhance the relevant results in references [1–3,16,17,19]. Furthermore, the results also
demonstrate the utility of the methods proposed in this paper, providing a research tool for
further exploration in this field.
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31. Raki, D.; Mukheimer, A.; Doenovi, T.; Mitrović, Z.D.; Radenović, S. On some new fixed point results in fuzzy b-metric spaces. J.

Inequal Appl. 2020, 2020, 99. [CrossRef]
32. Batul, S.; Mehmood, F.; Hussain, A.; Sagheer, D.; Aydi, H.; Mukheimer, A. Multivalued contraction maps on fuzzy b-metric

spaces and an application. AIMS Math. 2022, 7, 5925–5942. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2010/276294
http://dx.doi.org/10.1016/j.jmaa.2006.12.076
http://dx.doi.org/10.1137/17M111883X
http://dx.doi.org/10.1080/02331934.2022.2123240
http://dx.doi.org/10.1007/s11784-024-01123-w
http://dx.doi.org/10.1080/02331934.2019.1589469
http://dx.doi.org/10.1016/j.fss.2021.10.003
http://dx.doi.org/10.12785/amis/090131
http://dx.doi.org/10.1016/j.fss.2013.09.003
http://dx.doi.org/10.14736/kyb-2016-6-0929
http://dx.doi.org/10.1016/j.topol.2021.107801
http://dx.doi.org/10.2298/FIL1506217A
http://dx.doi.org/10.1016/j.fss.2017.05.001
http://dx.doi.org/10.1016/0165-0114(94)90162-7
http://dx.doi.org/10.1016/j.fss.2011.12.008
http://dx.doi.org/10.1016/S0165-0114(99)00096-2
http://dx.doi.org/10.1016/j.fss.2011.10.010
http://dx.doi.org/10.1080/02331934.2020.1727902
http://dx.doi.org/10.3390/math11224625
http://dx.doi.org/10.15837/ijccc.2016.2.2443
http://dx.doi.org/10.1186/s13660-020-02371-3
http://dx.doi.org/10.3934/math.2022330

	Introduction
	Preliminaries
	Oettli–Thra Theorem in KM-Type Fuzzy b-Metric Spaces
	Application
	Conclusions
	References

