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Abstract: In Riemannian geometry, a distance function is determined by an inner product on
the tangent space. In Riemann–Finsler geometry, this distance function can be determined
by a norm. This gives more freedom on the form of the so-called indicatrix or the set of unit
vectors. This has some interesting applications, e.g., in medical image analysis, especially
in diffusion weighted imaging (DWI). An important application of DWI is in the inference
of the local architecture of the tissue, typically consisting of thin elongated structures,
such as axons or muscle fibers, by measuring the constrained diffusion of water within the
tissue. From high angular resolution diffusion imaging (HARDI) data, one can estimate the
diffusion orientation distribution function (dODF), which indicates the relative diffusivity
in all directions and can be represented by a spherical polynomial. We express this dODF
as an equivalent spherical monomial (higher order tensor) to directly generalize the (second
order) diffusion tensor approach. To enable efficient computation of Riemann–Finslerian
quantities on diffusion weighted (DW)-images, such as the metric/norm tensor, we present a
simple and efficient algorithm to invert even order spherical monomials, which extends the
familiar inversion of diffusion tensors, i.e., symmetric matrices.
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1. Introduction

Diffusion tensor imaging is a technique based on nuclear magnetic resonance imaging, where one can
non-invasively measure the orientation-dependent diffusivity of water molecules in human tissue, such
as brain white matter [1,2]. As the behavior of water molecules inside tissue is influenced by the local
geometry, this allows the indirect study of the structure and orientation of tissue. One of the goals in
brain diffusion imaging is to use this information to trace the axonal fiber bundles that carry information
between neurons in different parts of the brain. There are numerous models that relate the diffusion
weighted imaging (DWI) signal to local physiological parameters [3]. One of the earlier models, and
essentially the only one that is currently used in the clinical setting, is diffusion tensor imaging (DTI). In
this model, one assumes anisotropic Gaussian diffusion.

By imaging the signal attenuation, first without an additional magnetic gradient and then comparing
this with the signal when a directed magnetic field is applied, one can measure the so-called apparent
diffusion coefficient (ADC) in each voxel. Measurements are repeated in several, e.g., 35 directions,
and a second order model is fitted to describe this radially-symmetric diffusion profile. The
diffusion length, typically measured at a scale of square micrometers per milliseconds, in direction
v = (cosφ sin θ, sinφ sin θ, cos θ), can be computed as:

D(v) =
3∑

i,j=1

Dijvivj (1)

where Dij is the element at the i-th row and j-th column of a 3× 3 matrix D (diffusion tensor) and vi is
the i-th component of vector v.

Throughout this paper, the following notation is used: we express scalars with regular lower case
fonts s (except for the diffusivity D), vectors with bold face lower cases v and tensors with bold face
upper case fonts T. Similar to the vectors, the components of the tensors are denoted with indices in the
subscript Tij .

In the DTI case, two popular ways to visualize the diffusion profile is to either plot the set of points
{
(
v ·D 1

2 · v
)
· v | |v| = 1}, i.e., a glyph or {D · v | |v| = 1}, that is, an ellipsoid (see Figure 1). Note

that in the D-induced metric, the vectors that constitute the ellipsoid have a unit length. The semi-axes
of these ellipsoids are λivi, where λi are the eigenvalues and vi the eigenvectors of the diffusion tensor.

Later, O’Donnell et al. connected the inverse of the diffusion tensor to a metric tensor [4,5]. Whereas
the diffusion tensor tells how far a particle can diffuse in a given time, say a millisecond, a metric tensor
tells how long the particle has to diffuse to reach, say, a micrometer distance from the starting point.
Together with the assumption that fiber bundles coincide with the shortest curves relative to this metric,
this interpretation of the diffusion tensor led to a fiber tracking algorithm, called geodesic tractography.
Of course, given the complex architecture of the white matter, such an assumption is not always valid.
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Nevertheless, whenever axon tracking can be cast into a shortest path problem, efficient methods for
extracting the geodesics become relevant and are valuable as such.

Figure 1. (A) The ellipsoid, i.e., the unit level set of the inverse of a diffusion tensor; and
(B) the glyph determined by the same diffusion tensor.

High resolution diffusion magnetic resonance imaging (HARDI) brought axon tracking to another
level by scanning far more imaging directions than is necessary for DTI. The diffusion profiles (glyphs)
could now have a more complex form than a symmetric peanut. The most obvious disadvantage of
the DTI model is the fact that it works very well when a voxel only contains a single fiber bundle, but
fails completely when there are two or more fiber populations with distinct orientations. A number
of models have been suggested to overcome this, but none of them has the intuitive Riemannian
interpretation as in DTI. In an effort to extend the Riemannian framework into HARDI, approaches
employing Riemann–Finsler geometry were suggested [6–10]. The essential difference with respect to
Riemannian geometry is that the distance function is determined by a position- and direction-dependent
norm function instead of a position-dependent inner product. Axons that intersect each other in a single
voxel, which were impossible to distinguish in the DTI setting, could now be resolved to some extent
using the Riemann–Finsler geometry [6]. An algorithm extending the regular streamline tracking to the
Finslerian framework, where the metric is determined by the Hessian of the local Finsler-norm, could
apparently successfully extract crossing bundles of fibers in human brain, such as typical of corpus
callosum, corona radiata and cingulum [8]. However, the approach in [8], while being a straightforward
higher order generalization of DTI, has a shortcoming that we wish to remove.

The Finsler-norm function was computed as the (multiplicative) Möbius-inverse [11] of the diffusion
profile, which is typically not a spherical tensor (monomial) itself.

We would like to treat diffusion and norm profiles on an equal footing, as is the case for the diffusion
and metric tensor in the Riemannian framework [4,12]. This requires that the (higher order) diffusion
and metric tensors can be related to each other via a unique inverse operation.

In this contribution, we describe a simple heuristic algorithm for computing the inverse of a higher
order tensor. In Section 2, we briefly provide the motivation for our approach, although, in essence,
equivalent to that of other authors [13,14], besides aesthetic, but also practical and efficient. In
Section 3, we describe our simple inversion algorithm in detail, as well as by means of visual illustration
and show some examples. We finish with conclusions in Section 5.
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2. The Parsimony of Monomials

By a (spherical) monomial, we mean a function of the following type:

3∑
i1,...,in=1

Ai1...invi1 . . .vin (2)

where Ai...n ∈ R, |v| = 1 and n is a fixed even positive number. This in contrast with a (spherical)
polynomial: ∑

n=0,2,...

(
3∑

i1,...,in=1

Ai1i2...invi1 . . .vin

)
(3)

In both cases, running through all unit vectors v on the two-sphere, one obtains a spherical surface
homeomorphic to the two-sphere.

The general protocol of converting raw HARDI data to a diffusion profile (a spherical polynomial
or an equivalent monomial) is described elsewhere [7,13,14], and we do not repeat it here. The
number of directions along which the ADC can be measured and the resulting angular resolution is,
in practice, limited. This implies that it makes no sense to use a very high order model to capture the
diffusion profile [15]. Therefore, a spherical polynomial of order from 2 to 6 is typically sufficient to
estimate the diffusion profiles. The conventional formula that translates the signal SD obtained with a
diffusion-sensitized gradient to an “apparent diffusion coefficient” D is as follows:

D =
ln(S0/SD)

b
(4)

Here, S0 is the signal without diffusion weighting magnetic gradient and:

b = (γG∆)2(∆− δ/3) (5)

where δ is the gradient pulse duration, ∆ is the time between gradient pulses, γ is the gyromagnetic
ratio and G is the magnitude of the magnetic gradient. In DWI, one cannot distinguish between the
two possible directions (forward/backward) along a specified orientation. For this reason, at least in the
conventional HARDI, the diffusion profile is always radially symmetric. As a consequence, any function
describing such a profile is also radially symmetric.

For the reasons mentioned above, we model diffusion profiles with fourth order monomials fitted
to the signal data as in [7,14]. It can be shown that a monomial expression is equivalent to spherical
harmonics or a polynomial expression of equal order [7,16,17]. Therefore, why use monomials?
One reason is that they are a compact expression that directly generalizes the DTI tensor concept.
Another reason is that in exploiting the Riemann–Finsler concepts of norms and metric tensors, one
computes from a position (x) -dependent norm a position and direction (x, y) -dependent metric tensor
by calculating the Hessian of the squared norm function with respect to y as follows:

Gij(x,y) =
1

2

∂2F 2(x)

∂yi∂yj
(6)

where G is the metric tensor and F is the norm function. Indeed, monomials are extremely simple/fast to
differentiate twice. The third reason is that, as we will show in the next section, an even order symmetric
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monomial can be inverted, so that the inverse is also (an equal order) monomial, and moreover, this
inversion can be done in a simple setting of matrix multiplication.

The main motivation for computing these position- and orientation-dependent glyphs and (Finsler)
metric tensors is that this gives a straightforward extension of DTI streamline tracking to HARDI,
allowing the extraction of multiple fiber orientations in a single voxel.

3. Inversion of Even Order Fully-Symmetric Tensors

Brazell et al. [18] show how even order tensors can be inverted in the sense of the so-called Einstein
contracted product. In our context, the tensors are totally symmetric, which allows some essential
simplifications to the more general formulation of inversion in [18].

To keep the notation simple, we define the Einstein contracted product (ECP) only for fourth order
tensors. For a general definition, see [18]. Let A and B be fourth order tensors. The ECP of these, C,
is a fourth order tensor with elements:

Cijkl =
3∑

m,n=1

Aijmn ·Bmnkl (7)

Recall that even order tensors can be regarded as nested matrices. In particular, a fourth order tensor
can be denoted by a matrix of matrices. For example, a fourth order tensor A can be explicitly written
down as follows:

A =



A1111 A1112 A1113

A1121 A1122 A1123

A1131 A1132 A1133


A1211 A1212 A1213

A1221 A1222 A1223

A1231 A1232 A1233


A1311 A1312 A1313

A1321 A1322 A1323

A1331 A1332 A1333


A2111 A2112 A2113

A2121 A2122 A2123

A2131 A2132 A2133


A2211 A2212 A2213

A2221 A2222 A2223

A2231 A2232 A2233


A2311 A2312 A2313

A2321 A2322 A2323

A2331 A2332 A2333


A3111 A3112 A3113

A3121 A3122 A3123

A3131 A3132 A3133


A3211 A3212 A3213

A3221 A3222 A3223

A3231 A3232 A3233


A3311 A3312 A3313

A3321 A3322 A3323

A3331 A3332 A3333




(8)

Further, recalling that in our case, the tensors are totally symmetric, we have, in particular, the
following equivalence:

Aijkl = Aklij (9)

This means that the ECP of A and B can be seen as componentwise products of all “inner” matrices.
Furthermore, if we “reshape” the inner matrices, ECP is actually a matrix product (see Figure 2).
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Figure 2. (A) An illustration of how the nested matrix should be reshaped to replace the
Einstein contracted product (ECP) with an ordinary matrix product; (B) the correspondence
between ECP and the matrix dot product after manipulating the tensor shape.

To find the inverse tensor A−1 of A, we need to solve this from the following equation:

sym

(
3∑

m,n=1

Aijmn ·A−1mnkl

)
= Iijkl (10)

where the left-hand side is the symmetrized ECP of A and A−1, and I is the fourth order identity tensor.
The fully symmetric identity tensor I is defined as follows:

Iijkl =
1

3
(δikδjl + δilδjk + δijδkl) (11)

where:

δij =

1, i = j

0, i 6= j
(12)

The symmetric identity tensor I in matrix notation is then:

1 0 0

0 1
3

0

0 0 1
3


0 1

3
0

1
3

0 0

0 0 0


0 0 1

3

0 0 0
1
3

0 0


0 1

3
0

1
3

0 0

0 0 0




1
3

0 0

0 1 0

0 0 1
3


0 0 0

0 0 1
3

0 1
3

0


0 0 1

3
1
3

0 0
1
3

0 0


0 0 0

0 0 1
3

0 1
3

0




1
3

0 0

0 1
3

0

0 0 1




(13)
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This inversion clearly generalizes the matrix inversion used to convert the familiar second order
diffusion tensor to a metric tensor. Due to the symmetries between the tensor elements, the inverse
operation can be performed in the three simple steps of Algorithm 1.

Algorithm 1: Computing the inverse of a symmetric fourth order tensor A.
1. Compute the Einstein product P of the chosen tensor A with a symmetric variable tensor V,

with components v1111, v1112, . . . , e.g., as a matrix product, as in Figure 2;
2. reshape the result to a four tensor and symmetrize with formula Psym

ijkl = 1
4!

∑
σ∈S4

Pσ(i)σ(j)Iσ(k)σ(l);
3. Solve the 15 equations Psym

1111 = I1111,P
sym
1112 = I1112, . . . ,P

sym
3333 = I3333.

Here, S4 refers to the set of all permutations of a set of four elements. For a visually intuitive
explanation on symmetrizing a fourth order tensor, see e.g., [7]. One should not directly solve the tensor
with the matrix inverse, since the highly symmetric tensor in matrix form is singular. By solving only the
15 necessary equations, we avoid a system of over-determined equations and get reliable results, which
are different from that obtained by the plain pseudo-inverse approach.

It is interesting to see that this also perfectly matches with the intuition of inverting the so-called
glyph, which is the set: {

3∑
i,j,k,l=1

Aijklyiykyl

∣∣∣∣∣ |y| = 1

}
(14)

The glyph (and the unit level set) of I is the unit two-sphere. For an illustration of dODF-based glyphs
and their ECP-inverses, see Figure 3. Clearly, in the orientations that correspond to larger diffusivity,
the ECP-inverse is small, just as the case with inverting the second order tensor. Using this inverted
tensor, one can further compute Finslerian quantities, such as geodesics, that can be exploited, e.g., in
the context of diffusion-based fiber tracking.

Figure 3. (Left) The glyph represents the diffusion orientation distribution function.
(middle) The glyph represents the ECP-inverse of this; and (right) another tensor glyph
with its inverse is plotted together. For visual comparison, lines of longitudes are indicated
in red and latitudes in blue.

4. Applications in Fiber Tracking

Once a proper diffusion-induced metric has been defined for a DWI image, one may apply
tractography in order to reconstruct the fibrous tissue structure of the underlying neural axons of the
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white matter. One prominent approach in deterministic tractography is to model the fibers as minimum
length paths, i.e., the geodesics in the given metric space. The main assumption in this technique is
that the fibers tend to follow the most efficient diffusion propagation, thereby corresponding to the
paths of shortest distance [19,20]. A recently-introduced geodesic tractography technique obtains the
pathways as solutions of Euler–Lagrange (EL) equations in Riemannian or Finslerian space [21,22].
This tractography approach can capture multi-valued geodesics connecting two given points or regions
by considering the geodesics as a function of position and direction. A manifold is defined using as
a metric the adjugate of the diffusion tensor or the inverted dODF. Please note that we use the dODF
obtained by fitting the HARDI data with a procedure described by Descoteaux et al. [23]. By applying
the inversion technique proposed here to the dODF-tensors and subsequently feeding them as input for
the tractography, we have obtained some preliminary results. The tractography was done in a 10×10×30

cube cut from the healthy human dataset obtained by a Philips scanner with resolution 2 × 2 × 2 mm,
b-value of 1000 s/mm2 and 128 gradient directions.

Given the region of interests, geodesics are computed from all discrete coordinates to a large number
of directions until they meet one of the boundaries. To determine which of the numerous geodesics
corresponds to the most likely fiber, we have used the line-plane intersection method, as in [22,24]. In
this way, the geodesics are cut once they enter one of the user-defined regions of interest. Figure 4
indicates the ODFs and the inverted ODFs for a part of the centrum semiovale. In Figure 5, few fiber
tracts for corpus callosum (CC) have been computed, and their corresponding ODFs and the inverted
ODFs per fiber voxel have been indicated. Figure 6 shows the tractography result for the area of corona
radiata (CR), CC and cingulum (CG).

Figure 4. Inverted fourth order orientation distribution function (ODF) field (top) and its
corresponding ODF field (bottom) from part of the centrum semiovale.
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Figure 5. Corpus callosum fibers: (left) the corresponding ODFs per fiber voxel and (right)
the corresponding inverted ODFs per fiber voxel.

Figure 6. Fiber tracts for corpus callosum (CC), corona radiata (CR) and cingulum (CG).

5. Conclusions

We have proposed to use a symmetrized contracted Einstein product in the inversion of higher even
order tensors in the context of HRDW-image analysis. We have shown that this approach generalizes
the approach of O’Donnell et al., which applies tools from Riemannian geometry in the DTI setting.
The unit level set of the ECP-inverted monomial generalizes the metric ellipsoid used in the DTI-setting.
By employing monomials in modeling the diffusion profiles, we obtain an intuitive and consistent
framework for the analysis and tractography on DW-images. We also illustrated how this inversion
can be efficiently computed using a simple Algorithm 1. This is useful, since, in the case a tensor is of
high order, the computation of indexed sums can easily become time consuming.
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