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Abstract: The definition of Azumaya algebras over commutative rings R requires the tensor
product of modules over R and the twist map for the tensor product of any two R-modules.
Similar constructions are available in braided monoidal categories, and Azumaya algebras
were defined in these settings. Here, we introduce Azumaya monads on any category A
by considering a monad (F,m,e) on A endowed with a distributive law A : FF' — FF
satisfying the Yang—Baxter equation (BD-law). This allows to introduce an opposite
monad (£, m - )\, e) and a monad structure on F'F*. The quadruple (F,m, e, \) is called
an Azumaya monad, provided that the canonical comparison functor induces an equivalence
between the category A and the category of F'F*-modules. Properties and characterizations
of these monads are studied, in particular for the case when F' allows for a right adjoint
functor. Dual to Azumaya monads, we define Azumaya comonads and investigate the
interplay between these notions. In braided categories (V,®, I, 7), for any V-algebra A,
the braiding induces a BD-law 74 4 : A® A - A® A, and A is called left (right) Azumaya,
provided the monad A ® — (resp. —® A) is Azumaya. If 7 is a symmetry or if the category V
admits equalizers and coequalizers, the notions of left and right Azumaya algebras coincide.
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1. Introduction

Azumaya algebras A = (A, m,e) over a commutative ring R are characterized by the fact that
the functor A ®r — induces an equivalence between the category of R-modules and the category of
(A, A)-bimodules. In this situation, Azumaya algebras are separable algebras, that is the multiplication
A®r A — Asplits as a (A, A)-bimodule map.

Braided monoidal categories allow for similar constructions as module categories over commutative
rings, and so, with some care, Azumaya algebras (monoids) and Brauer groups can be defined for
such categories. For finitely bicomplete categories, this was worked out by Fisher-Palmquist in [1];
for symmetric monoidal categories it was investigated by Pareigis in [2]; and for braided monoidal
categories, the theory was outlined by van Oystaeyen and Zhang in [3] and Femi¢ in [4]. It follows from
the observations in [2] that, even in symmetric monoidal categories, the category equivalence requested
for an Azumaya algebra A does not imply the separability of A (defined as for R-algebras).

In our approach to Azumaya (co)monads, we focus on the properties of monads and comonads on
any category A inducing equivalences between certain related categories. Our main tools are distributive
laws between monads (and comonads) as used in the investigations of Hopf monads in general categories
(see [5,6]).

In Section 2, basic facts about the related theory are recalled, including Galois functors.

In Section 3, we consider monads F = (F, m, e) on any category A endowed with a distributive law
A F'F — FF satisfying the Yang—Baxter equation (monad BD-law). The latter enables the definition
of a monad F* = (F* m* e'), where F* = F, m* = m - X and ¢* = e. Furthermore, \ can be
considered as distributive law \ : F*F — FF*, and this allows one to define a monad structure on F'F*.
Then, for any object A € A, F'(A) allows for an FF A_module structure, thus inducing a comparison
functor K : A — Arrn. We call (F,\) an Azumaya monad (in 3.3) if this functor is an equivalence
of categories. The properties and characterizations of such monads are given, in particular for the case
that they allow for a right adjoint functor (Theorem 3.10). Dualizing these notions leads to an intrinsic
definition of Azumaya comonads (Definition 3.14). Given a monad F = (F, m, e) with monad BD-law
A FF — FF, where the functor F’ has a right adjoint R, a comonad R = (R, d, <) with a comonad
BD-law k : RR — RR can be constructed (Proposition 3.15). The relationship between the Azumaya
properties of the monad F and the comonad R is addressed in Proposition 3.16. It turns out that for
a Cauchy complete category A, F is an Azumaya monad and FF* is a separable monad, if and only if
‘R is an Azumaya comonad and R"R is a separable comonad (Theorem 3.17).

In Section 4, our theory is applied to study Azumaya algebras in braided monoidal categories
(V,®, I, 7). Then, for any V-algebra A, the braiding induces a distributive law 74 4 : A® A — A® A,
and A is called left (right) Azumaya if the monad A® — : V — V (resp. — ® A : V — V) is Azumaya.
In [3], V-algebras, which are both left and right Azumaya, are used to define the Brauer group of V.
We will get various characterizations for such algebras, but will not pursue their role for the Brauer
group. In braided monoidal categories with equalizers and coequalizers, the notions of left and right
Azumaya algebras coincide (Theorem 4.18).

The results about Azumaya comonads provide an extensive theory of Azumaya coalgebras in braided
categories V, and the basics for this are described in Section 5. Besides the formal transfer of results
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known for algebras, we introduce coalgebras C over cocommutative coalgebras D, and for this, Section 3
provides conditions that make them Azumaya. This extends the corresponding notions studied for
coalgebras over cocommutative coalgebras in vector space categories by Torrecillas, van Oystaeyen and
Zhang in [7]. Over a commutative ring R, Azumaya coalgebras C turn out to be coseparable and are
characterized by the fact that the dual algebra C* = Hom(C, R) is an Azumaya R-algebra. Notice that
coalgebras with the latter property were first studied by Sugano in [8].

Let us mention that, given an endofunctor /' : A — A with a monad and a comonad structure,
a natural transformation A\ : F'F' — F'F is called a local prebraiding in (6.7 in [5]), provided it is
a monad, as well as a comonad BD-law. For example, the Yang—Baxter operator in the definition of
a weak braided Hopf algebra in Alonso Alvarez ef al. (Definition 2.1 in [9]) is (among other conditions)
required to be of this type. As pointed out by a referee, in Gordon et al. [10], it is suggested to generalize

Azumaya algebras by considering them as weak equivalences in an appropriate tricategory.

2. Preliminaries

Throughout this section, A will stand for any category.

2.1. Modules and comodules. For a monad 7 = (7', m, ¢) on A, we write A for the Eilenberg—Moore
category of 7 -modules and denote the corresponding forgetful-free adjunction by:

HT,ETIng—'UT:AT—)A.

Dually, if G = (G, 6,¢) is a comonad on A, we write AY for the Eilenberg-Moore category of
G-comodules and denote the corresponding forgetful-cofree adjunction by:

n9,e9: U9 4 ¢% : A — AY.

For any monad 7 = (7, m, e) and an adjunction 77, : 7" < R, there is a comonad R = (R, 4, ¢),
where m = ¢, ¢ 4 e (mates), and there is an isomorphism of categories (e.g., [5]):

U:Ar — AR, (A h) = (A, A RT(A) T R(A)). 2.1)

Note that, for any (A4, 8) € AR, W—(A4,8) = (A, T(A) 2% TR(A) & A).

2.2. Monad distributive laws. Given two monads 7 = (7, m,e) and S = (S, m’,¢') on A, a natural
transformation \ : T'S — ST is a (monad) distributive law of 7 over S if it induces the commutativity
of the diagrams:

TSS 25 578 52 58T

N e

TS A ST

N~ .

TS 7Y TST T STT.

Given a distributive law \ : T'S — ST, the triple ST = (ST, m'm - SAT,€’e) is a monad on A
(e.g., [11,12]). Notice that the monad structure on S7 depends on )\, and if the choice of \ needs to be
specified, we write (ST),.
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Furthermore, a distributive law A corresponds to a monad S N = (§ ,m, €) on A that is a lifting of S
to A7 in the sense that:

U7’§ = SUT, UTT/T\l = m’UT, UTé\: €/UT.

This defines the Eilenberg—-Moore category (A7) 5 of §,\—m0dules, whose objects are triples
((A,t),s), with (A, t) € A, (A, s) € Ags and a commutative diagram:

Aa

TS(A) ST(A) (2.2)
T(s) jS(t)
T(A) — A~ S(A).

There is an isomorphism of categories Py : As7), — (A7)g, by the assignment:

/

(A, ST(A) 2 A) s (A, T(A) 29 5T(A) & A),S(A) 2% s7(4) & A),
and for any ((A4,t),s) € (Ar)g,,
PrU(A 1), s) = (A, ST(A) 29 5(4) = A).

When no confusion can occur, we shall just write § instead of § 3

2.3 Proposition. In the setting of Section 2.2, let \ : T'S — ST" be an invertible monad distributive law.

(1) X7t ST — TS is again a monad distributive law;
2 A : TS — ST can be seen as a monad isomorphism (TS)y-1 — (ST), defining

a category isomorphism:

Ay: Ay, = Ais),, (A, ST(A) % A) s (A, TS(A) 25 ST(A) & A);

A—1Y
(3) A Yinduces a lifting 7Aj\71 :As — As of T to As and an isomorphism of categories:
& (Ar)g, — (he)r_,  ((A0),5) ((4,9),),

leading to the commutative diagram:

A, (A7)s,

AAL lqs

Ars), 5 (Bs)7 -

Proof. (1) and (2) followed by Lemma 4.2 in [13]; (3) is outlined in Remark 3.4 in [14]. O
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2.4. Comonad distributive laws. Given comonads G = (G, d,¢) and H = (H,¢’,¢’) on A, a natural

transformation x : HG — G H is a (comonad) distributive law of G over H if it induces commutativity
of the diagrams:

H HGG -5~ GHG -5~ GGH

V w H(S] T(SH

HG u GH HG u GH

\ yGl lG(S’
e'q Ge'

Given this, the triple (HG),. = (HG, HkG - §'6,€'c) is a comonad on A (e.g., [11,12]).
Also, the distributive law x corresponds to a lifting of the comonad # to a comonad H,. : A9 — A9,

leading to the Eilenberg—Moore category (Ag)ﬁ” of H,.-comodules whose objects are triples ((A, g), h)
with (A, g) € AY and (A, h) € A* with commutative diagram:

KA

There is an isomorphism of categories Q,. : A9~ — (Ag)ﬁ” given by:

(A, AL HG(A)) = (A AL HGA) =D G(A), A L HG(A) 1 1 (a)),
and for any ((A,g),h) € (Ag)ﬁﬁ,
Q7' ((A,9),h) = (A, AL H(A) 29 HG(A)).
The following observations are dual to 2.3.

2.5 Proposition. In the setting of Section 2.4, let k : HG — GH be an invertible comonad
distributive law.

(1) k' : GH — HG is a comonad distributive law of H over G;

(2) GH allows for a comonad structure (GH).-1 and k : HG — GH is a comonad isomorphism
(HG).. — (GH),.—1 defining a category equivalence:

AR A9 5 A (A AL HG(A)) — (A, A D HG(A) 5 GH(A);
(3) k7 !induces a lifting 5,_;71 : A" — A of G to AM and an equivalence of categories:
O (A9 — (A% ((A,9),h) = (A D), g),
leading to the commutative diagram:

AGG)x 2 (AG)F

.l s

AGH), 1 — (AH)@A.
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2.6. Mixed distributive laws. Given a monad 7 = (7,m,¢) and a comonad G = (G, d,¢) on A,
a mixed distributive law (or entwining) from 7 to G is a natural transformation w : TG — GT with
commutative diagrams:

TTG -2 7qT Lo GTT

e \ o) o

TG GT

\ AR

TGG —= GTG ——~ GGT.

Given a mixed distributive law w : TG — GT from the monad T to the comonad G, we write
G, = (@, 3, £) for a comonad on A7 lifting G (e.g., Section 5 in [12]).
It is well-known that for any object (A, h) of A,
G(A,h) = (G(A),G(h) - wa), (O)am =064 Eian =ea,

and the objects of (AT)QA are triples (A,h,9), where (A,h) € As and (A,9) € AY with
commuting diagram:

T(A)—ts AL G(A) (2.3)
T(ﬁ)l TG(h)
TG(A) ——— GT(A).

2.7. Distributive laws and adjoint functors. Let A\ : T'S — ST be a distributive law of a monad
T = (T,m,e) over amonad S = (S,m/,¢') on A. If 7 admits a right adjoint comonad R (with
1,€ : T'4 R), then the composite:

Aot SR RTSR AR RoTR 55 RS

is a mixed distributive law from S to R (e.g., [5,15]) and the assignment:
(A, v:ST(A) - A) — (A, h,: S(A) — A, 0, : A— R(A)), with

RST(A) 2Y% Ra),

S(ea) Rer(a))

hy, : S(A) ST(A) 25 A, ¥, : A2 RT(A)

yields an isomorphism of categories A s7), ~ (A$>ﬁ’\

2.8. Invertible distributive laws and adjoint functors. Let \ : 7S — ST be an invertible distributive
law of a monad 7 = (T,m,e) over a monad S = (S,m/,¢’) on A. Then, A™! : ST — TS is
a distributive law of the monad S over the monad 7 (2.3), and if S admits a right adjoint comonad
H (with 77,€ : S - H), then the previous construction can be repeated with \ replaced by A~!. Thus,
the composite:

nTH

0. 7H X gsra 27, gprsm M

HT
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is a mixed distributive law from the monad 7 to the comonad 7. Moreover, there is an adjunction
a, §A . ﬁ()\—l)o : A — Ar, where 3’,\ is the lifting of S to A+ considered in 2.2 (e.g., Theorem 4
in [16]), and the canonical isomorphism W from (2.1) yields the commutative diagram:

(Ar)s, == (Ar)" o 2.4)
U‘SA‘AL \Uﬁ(kl)o
Ar A

Note that Ur(«) = 77 and U7 () = E.

2.9. Entwinings and adjoint functors. For a monad 7 = (7, m,e) and a comonad G = (G, J,¢),
consider an entwining w : TG — GT. If T admits a right adjoint comonad R (with 7, : T - R), then
the composite:

W : GRE RTGR PR RGTR 9% RG

is a comonad distributive law of G over R (e.g., [5,15]), inducing a lifting g] of G to A® and,
thus, an Eilenberg—Moore category (A®)% of G,-comodules whose objects are triples ((A, d), g) with
commutative diagram (see Section 2.4):

G(A) <2— A—L = R(A) (2.5)

The following notions will be of use for our investigations.

2.10. Monadic and comonadic functors. Let n,¢ : I 4 R : B — A be an adjoint pair of functors.
Then, the composite RF" allows for a monad structure RF on A and the composite /'R for a comonad
structure /'R on B. By definition, R is monadic and F' is comonadic, provided the respective comparison
functors are equivalences,

Kr:B— Arr, Bw— (R(B),R(ep)),

Kp:A— B Aw (F(A),F(na)).
For an endofunctor we have, under some conditions on the category:

2.11 Lemma. Let F' : A — A be a functor that allows for a left and a right adjoint functor and assume
A to have equalizers and coequalizers. Then, the following are equivalent:

(a) I is conservative;
(b) F'is monadic;
(¢c) F'is comonadic.

If F = (F,m,e) is a monad, then the above are also equivalent to:

(d) the free functor ¢or : A — Ax is comonadic.
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Proof. Since F' is a left, as well as a right adjoint functor, it preserves equalizers and coequalizers.
Moreover, since A is assumed to have both equalizers and coequalizers, it follows from Beck’s
monadicity theorem (see [17]) and its dual that F' is monadic or comonadic if and only if it
1s conservative.

(a)<(d) follows from Corollary 3.12 in [18]. O

2.12. 7 -module functors. Given amonad 7 = (7, m, e) on A, a functor R : B — A is said to be a (left)
T -module if there exists a natural transformation o : TR — R witha-eR=1anda-mR =« - Ta.

This structure of a left 7-module on R is equivalent to the existence of a functor R : B — A with
commutative diagram (see Proposition II.1.1 in [19])

B—2 Ar

R |or

A.

If R is such a functor, then R(B) = (R(B),ap) for some morphism ap : TR(B) — R(B) and
the collection {avp, B € B} forms a natural transformation o : TR — R making R a 7 -module.
Conversely, if (R, o : TR — R) is a T-module, then R : B — A7 is defined by R(B) = (R(B), ag).

For any 7-module (R : B — A, &) admitting an adjunction F' < R : B — A with unitn : 1 — RF,
the composite:

tm: T—~TRF -~ RF

is a monad morphism from 7 to the monad RF on A generated by the adjunction F' 4 R. This yields
a functor A, : Agr — Ar.

If tz : T — RF is an isomorphism (i.e., At§ is an isomorphism), then R is called a 7-Galois module
functor. Since R = Atﬁ - Kr (see 2.10), we have (dual to Theorem 4.4 in [20]):

2.13 Proposition. The functor R is an equivalence of categories if and only if the functor R is monadic
and a T -Galois module functor.

2.14. G-comodule functors. Given a comonad G = (G, d,¢) on a category A, a functor L : B — A is
a left G-functor if there exists a natural transformation o : L — GL witheL-a =1landdL-a = Ga - a.
This structure on L is equivalent to the existence of a functor L : B — AY with commutative diagram
(dual to 2.12):
B—L- A9
PN
A.

If a G-functor (L, ) admits a right adjoint S : A — B, with counito : LS — 1, then (see Propositions
I1.1.1 and I1.1.4 in [19]) the composite:

tr: LS 5 GLS 5% @

is a comonad morphism from the comonad generated by the adjunction L 4 S to G.

L : B — A is said to be a G-Galois comodule functor provided ¢7 : LS — G is an isomorphism.
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Dual to Proposition 2.13, we have (see also [6,21]):

2.15 Proposition. The functor L is an equivalence of categories if and only if the functor L is comonadic
and a G-Galois comodule functor.

2.16. Right adjoint for L. If the category B has equalizers of coreflexive pairs and L < S, the functor
L (in 2.14) has a right adjoint S, which can be described as follows (e. g., [19,20]), with the composite:
S __
v S . SLS il SG,
the value of S at (A,9) € AY is given by the equalizer:

S(A,9) L2 5 (A)

SG(A).

YA

If & denotes the counit of the adjunction L - S, then for any (A,9) € A9,

U9(@(a0) = 0a- Llica) (2.6)
where o : LS — 1 is the counit of the adjunction L — S.

2.17. Separable functors. (e.g., [22]) A functor F' : A — B between any categories is said to be
separable if the natural transformation:

F—,— : A(_’ _) — B(F<_)7F<_>>

is a split monomorphism.
If F:A— Band G : B — D are functors, then:

(i) if F' and G are separable, then G'F is also separable;
(i1) if GF is separable, then F' is separable.

2.18. Separable (co)monads. (2.9 in [15]) Let A be any category.

(1) For amonad F = (F,m,e) on A, the following are equivalent:

(a) m has a natural section w : F' — F'F', such that F'm - wF =w-m = mF - Fuw;
(b) the forgetful functor Uz : Ax — A is separable.

(2) For acomonad G = (G, d,¢) on A, the following are equivalent:

(a) ¢ has a natural retraction ¢ : GG — G, such that oG - G = 0 - o = G - /G,
(b) the forgetful functor U9 : A9 — A is separable.

2.19. Separability of adjoints. (2.710 in [15]) Let G : A — A and F' : A — A be an adjoint pair of
functors with unit 7 : 1, — F'G and counit & : GF — 1,.

(1) Fis separable if and only if 7 : 1, — F'G is a split monomorphism;
(2) G is separable if and only if € : GF' — 14 is a split epimorphism.
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Given a comonad structure G on GG with corresponding monad structure F on F' (see Section 2.1),
there are pairs of adjoint functors:

g
A5 Ay Ar-Zen, A YA A-TSA9,

(1) ¢Y is separable if and only if ¢+ is separable;
(2) UY is separable if and only if Ur is separable, and then, any object of AY is injective relative to
U9 and every object of A is projective relative to Us.

The following generalizes criteria for separability given in Theorem 1.2 in [22].

2.20 Proposition. Let U : A — B and F : B — A be a pair of functors.

() If there exist natural transformations 1 = FU L 1, such that v’ - k = 1, then both FU and U
are separable.
(i) If there exist natural transformations 1 - UF 5 1, such that ' - n = 1, then both UF and F

are separable.

Proof. (i) Inspection shows that:

(FU)_ _ A(r,k")
- -

A=, —) A(FU(-), FU(-)) A=, —)
is the identity, and hence, F'U is separable. By 2.17, this implies that U is also separable.

(i1) is shown symmetrically. ad

3. Azumaya Monads and Comonads

An algebra A over a commutative ring R is Azumaya provided A induces an equivalence between Mg
and the category 4M 4 of (A, A)-bimodules. The construction uses properties of the monad A ®z — on
Mg, and the purpose of this section is to trace this notion back to the categorical essentials to allow
the formulation of the basic properties for monads on any category. Throughout, A will again denote

any category.

3.1 Definition. Given an endofunctor F' : A — A on A, a natural transformation \ : FF — F'F is said

to satisfy the Yang—Baxter equation provided it induces the commutativity of the diagram:

FFF 2 pprp M ppp

vl |

FFF A prp X pRE

Foramonad F = (F,m,e) on A, amonad distributive law \ : FF — F'F satisfying the Yang—Baxter
equation is called a (monad) BD-law (see Definition 2.2 in [13]).

Here, the interest in the YB-condition for distributive laws lies in the fact that it allows one to define

opposite monads and comonads.
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3.2 Proposition. Let F = (F,m,e) be a monad on A and \ : FF' — FF a BD-law.
(1) F* = (F*,m* e) is amonad on A, where F* = F, m* =m -\, and * = e.
(2) \defines a distributive law \ : F)F — FF* making F F» = (FF’\, m, e) a monad where:

m=mm"-F\F: FFFF - FF, e:=ee:1— FF.

(3) The composite FFF = FFF =% FF 2 F defines a left FF*-module structure on the
functor F' : A — A.

(4) There is a comparison functor K r : A — A rzx given by:

F(Aa)
4

A v (F(A), FFF(A) FFP(A) 27 pRia) ™ pA)).

Proof. (1) is easily verified (e.g., Remark 3.4 in [14], Section 6.9 in [5]).

(2) can be seen by direct computation (e.g., [5,13,14]).

(3) can be proven by a straightforward diagram chase.

(4) follows from 2.12 using the left 7 F*-module structure of F' defined in (3). O

When no confusion can occur, we shall just write /& instead of K r.

3.3 Definition. A monad F = (F, m,e) on any category A with a BD-law \ : F'F' — FF is said to be

Azumaya provided the comparison functor K r : A — A rzx is an equivalence of categories.
3.4 Proposition. If (F, \) is an Azumaya monad on A, then the functor F' admits a left adjoint.

Proof. With our previous notation, we have the commutative diagram:

Kr

A

Urra
P l]—']—'

A

Since Urzx : Arzr — A always has a left adjoint and since K r is an equivalence of categories, the
composite F' = Urzx - K 7 has a left adjoint. O

This observation allows for a first characterization of Azumaya monads.

3.5 Theorem. Let F = (F,m,e) be a monad on A and \ : FF — FF a BD-law. The following
are equivalent:

(@) (F,\) is an Azumaya monad;

(b) the functor F' : A — A is monadic and the left FF*-module structure on F defined in
Proposition 3.2 is Galois;

(c) the functor F' : A — A is monadic (with some adjunction n,¢ : L - F), and the composite
(asin2.12):

R pppp BAL prppp P ppp M B

is an isomorphism of monads F F» — T, where T is the monad on A generated by this adjunction
LAF.
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Proof. That (a) and (b) are equivalent follows from Proposition 2.15.

(b)<(c) In both cases, F' is monadic, and thus, F' allows for an adjunction, say L - F' with unit
n: 1 — FL. Write T for the monad on A generated by this adjunction. Since the left 7 F*-module
structure on the functor F'is the composite:

FFF A rrr P PR F,

it follows from 2.12 that the monad morphism ¢z : FF* — T induced by the diagram:

A]:]:A

FFA
d)]:}-)\

FFn FAL FmL

FF 2 prrL 2 prrp 225 pRL 2N PL

is the composite:

Thus, F'is FF ’\—Galois if and only if ¢ is an isomorphism. ad

3.6. The isomorphism A zxx ~ (Agx)z. According to 2.2, for any monad BD-law \ : FF — FF,
the assignment:

(A, FF(A) % A) — (A, F(A) 22 FR(A) S A), F(A) 24 FR(A) & A)

yields an isomorphism of categories Py : Arzx — (Azx)z where for any module ((A,h),g) €
(Ap)z,
P (A k), g) = (A, FF(A) £ F(4) % A).

There is a functor Kz : A — (Azx) 2,
A — ((F(A), FF(A) 24 FF(A) ™4 F(A)), FF(A) 24 F(A)),

with K » = 73)\_1 - K and a commutative diagram:

Py 1
A (A]_—/\) —>A]:]:A
62 lUf lUFFA
A]:)\ A
FA

Proof. Direct calculation shows that:
PAK #(A) = ((F(A), FF(A) % FF(A) ™ F(A)), FF(A) ™% F(A)),
forall A € A. O

It is obvious that K » : A — Axz is an equivalence (i.e., F is Azumaya) if and only if K : A —
(Azx)# is an equivalence. To apply Proposition 2.13 to the functor Kz, we will need a functor left
adjoint to ¢ =» whose existence is not a consequence of the Azumaya condition. For this, the invertibility
of A plays a crucial part.
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3.7 Proposition. Let F = (F,m,e) be a monad on A with an invertible monad BD-law )\ : FF — FF.
(1) X\™': FF* — FAF is a distributive law inducing a monad (F*F)y-» = (F*F,m, ) where:

m=m'm-FX'F: FFFF — FF, e=ecc:1— FF,

and )\ is an isomorphism of monads (F)F)y-1 — (FFM)x.
(2) There is an isomorphism of categories:

B (p)p, > (A m e (AR).0) = (A.g).h).
(3) A7 induces a comparison functor K’ : A — (Af)(ﬁ) (~Amr), )
A1 A
A ((F(A), FF(A) 24 F(A)), FF(A) 2 FF(A) 22 F(A)),

with commutative diagrams:

Ai(Af)(ﬁ)k_l A2 (Ap)5,
d (7)),
Proof. (1), (2) follow by Proposition 2.3; (3) is shown similarly to 3.6. O

For A invertible, it follows from the diagrams in Sections 3.6, 3.7 that /' is an Azumaya monad if and
only if the functor

K}_— A — <A]:)(.7/5\),\—1

is an equivalence of categories.
Note that if \ : FF — FF is a BD-law, then \ can be seen as a monad BD-law \ : FAF* — FAFA,

and it is not hard to see that the corresponding comparison functor:

Kr A — (A(}-,\)A)(]/__;)/\

takes A € A to

m)‘ m)‘
(F(A), FFF(A) 229 pppay 2000 ppcay 04 poay)y,
Now, if A2 = 1, then A = A\~ and (F*)* = F. Thus, the category (A ) 7, can be identified
with the category (Ax) =
A,
K. It now follows from the preceding remark:

. Modulo this identification, the functor KX jﬂ corresponds to the functor

3.8 Proposition. Let F = (F,m,e) be a monad on A with a BD-law )\ : FF — FF. If \*> = 1, then
(F, \) is an Azumaya monad if and only if (F*, \) is so.

3.9. Azumaya monads with right adjoints. Let 7 = (F, m, ¢) be a monad with an invertible BD-law
A FF — FF. Assume F' to admit a right adjoint functor R, with 7, : F' - R, inducing a comonad
R = (R 9, 5) (see 2.1). Since A\ : FAF — FF* is an invertible distributive law, there is a comonad
R = R( A-1), on Az lifting the comonad R and that is right adjoint to the monad F (see 2.7), yielding
a category 1som0rph1sm. R

Wra (A]:A)j_—\)\ — (A]:A)R7

where, for any ((A, %), g) € (Ar)z, .
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U (A h), g) = (A h), ) with §:A RF(A) B R(A),

and a commutative diagram (see (2.4)):

N ~

A" (Ap)z —2= (AR (3.2)
k lUﬁA lUﬁ
A]:)\ = A]_‘)\ .

K \I/
For K : A = (Ap )z (Ap) one has for any A € A,
K(A) = ((F(A),ma - Aa), R(ma) - rea))-

Therefore, the A-component o4 of the induced R-comodule structure o : OFr — 7/?\,¢]:>\ on the
functor ¢ »» induced by the commutative diagram (3.2) (see Section 2.14), is the composite:

77F(A)

aq: F(A) 9% RER(A) 7Y RR(a).

It then follows that, for any (A, h) € Az, the (A, h)-component ¢4 ) of the corresponding comonad
morphism ¢ : ¢ - Uzx — R is the composite:

77F(A) R( R(h)

toan : F(A) 29 prRA) 22 ppay 29 p(a), (3.3)

These observations lead to the following characterizations of Azumaya monads.

3.10 Theorem. Let F = (F,m,e) be amonad on A, \ : FF — FF an invertible monad BD-law, and
R a comonad right adjoint to F (withn,€ : ' 4 R). Then, the following are equivalent:

(@) (F,\) is an Azumaya monad;
(b) (1) ¢z is comonadic; and
(1) @z is ﬁ—Galois, that is:
tan in(3.3)is an isomorphismfor any (A, h) € Ap or
x: FF LRI v§ o ol ARULEING rj o) QRKIENG rj o) RN RF' is an isomorphism.

Proof. Recall first that the monad JF is of effective descent type means that ¢ » is comonadic.

By Proposition 2.15, the functor & making the triangle (3.2) commute is an equivalence of categories
(i.e., the monad F is Azumaya) if and only if the monad F* is of an effective descent type and the
comonad morphism ¢ : ¢ Urx — R is an isomorphism. Moreover, according to Theorem 2.12 in [6],
t is an isomorphism if and only if for any object A € A, the ¢ (A ) -component t4_, (a) : Fopr(A) —
R¢rx(A) is an isomorphism. Using now that ¢z (A) = (F(A), m) = ma - \a), it is easy to see that
Xa =ty (a) forall A € A. This completes the proof. O

The existence of a right adjoint of the comparison functor /& can be guaranteed by conditions on the

base category.
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3.11. Right adjoint for K. With the data given above, assume A to have equalizers of coreflexive
pairs. Then:

(1) the functor K : A — (AR R (see 3.9) admits a right adjoint R : (Ap)7€ — A whose value at
((A,h),0) € (Ap) is the equalizer:

19

\/

l((A h),9)

R((A, h),0) ————

(2) forany A € A, R K(A) is the equalizer:

R(ma) Mpa)

F(A) RF(A)

Rm %7

RFF(A)

% (4)

RK(A)

Proof. (1) According to 2.16, R((A, h),¥) is the object part of the equalizer of:

9

A R(A),
Y(A,h)
U_,ye
where -y is the composite Uz 25U O Ur =U pF U pR It follows from the description
of ¢ that y(4 ) 1s the composite
A2 p(A) 9 RERA) 27 pra) B R(a)

which is just the composite R(h) - 77 4, since:

® 7pa) €a = RF(ea) 7, by naturality of 7j and

e my-F(eq) =1 because e is the unit for F.

(2) For any A € A, K(A) fits into the diagram (3.2). O

3.12 Definition. Write F for the subfunctor of the functor F' determined by the equalizer of the diagram:

Rm-nF

/\
F RF

RFF

We call the monad F central if Fr is (isomorphic to) the identity functor.

Since R is right adjoint to the functor K, K is fully faithful if and only if R K ~
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3.13 Theorem. Assume A to admit equalizers of coreflexive pairs. Let F = (F,m,e) be a monad on
A X\ FF — FF an invertible BD-law and R a comonad right adjoint to F. Then, the comparison
Sfunctor K : A — (Ap)ﬁ is:

(1) full and faithful if and only if the monad F is central;

(i) an equivalence of categories if and only if the monad F is central and the functor R is

conservative.

Proof. (i) follows from the preceding proposition.

(ii) Since F is central, the unit y : 1 — R K of the adjunction K -1 R is an isomorphism by (i).
If ¢ is the counit of the adjunction, then it follows from the triangular identity Re - n R = 1 that Re is
an isomorphism. Since R is assumed to be conservative (reflects isomorphisms), this implies that ¢ is

an isomorphism, too. Thus, K is an equivalence of categories. O

Dualizing the notion of an Azumaya monad leads to Azumaya comonads.

3.14 Definition. For a comonad G = (G, d,¢) on A, a comonad distributive law r : GG — GG (see 2.4)
satisfying the Yang—Baxter equation is called a comonad BD-law (or just a BD-law).
The pair (G, k) is said to be an Azumaya comonad provided that the (obvious) comparison functor

K. : A — A%" is an equivalence.

We leave it for the reader to dualize results about Azumaya monads to Azumaya comonads.

Recall that comonad BD-laws are obtained from monad BD-laws by adjunctions (see 7.4 in [5]):

3.15 Proposition. Ler F = (F,m,e) be a monad on A and \ : FF — FF a monad BD-law. If F’

has a right adjoint functor R, then there is a comonad (R, 0, ) with a comonad YB-distributive law
k: RR — RR, where m 46, ¢ 4 e and \ 4 k. Moreover, \ is invertible if and only if k is so.

The next observation shows the transfer of the Galois property to an adjoint functor.

3.16 Proposition. Assume F = (F,m,e) to be a monad on A with an invertible monad BD-law \ :
FF — FF and 7,2 : F 4 R an adjunction inducing a comonad R = (R, ¢, ) with invertible comonad
BD-law k : RR — RR (see Proposition 3.15). Then, the functor ¢ rx is R-Galois if and only if the
functor o7 is F-Galois.

Proof. By Theorem 3.10 and its dual, we have to show that, for any (A, h) € Az, the composite:

toam : F(A) 29 REP(A) B0,

is an isomorphism if and only if, for any (A, §) € AR", this is so for the composite:

F(0)

toag : F(A) 2% FR(A) 2% FRR(A) 222 R(A).

By symmetry, it suffices to prove one implication. Therefore, suppose that the functor ¢z is
R-Galois. Since m — 4, § is the composite:

R RFR PR RREFR EEME RRER BRE RR.
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Considering the diagram:

R FRipR 2mR €
FR(A) Y FRER(A) —E5 pRp2p2R(A) — 2" prepp(A) % pR2(a)
F(B)T \ lEFR(A) lERFQR(A) lERFR(A) LER(A)

NFR(A) 2R Rm R(A) R4
——— > RF*R RFR(A) R(A)

RF?*(A

in which the top left triangle commutes by one of the triangular identities for /' 4 R and the other partial

diagrams commute by naturality, one sees that (4 ¢) is the composite:

BO, RER(A)

WF(A) REp

F(A) 22 REF(A) 224 RE(A) 24 R(A).

Since (A, 0) € AR, the pair (A, F'(A) o, FR(A) <% A), being U~(A, 6) (see 2.1), is an object
of the category A zx. It then follows that ¢4 9) = t(4z,.r(9)). Since the functor ¢xx is assumed to be
ﬁ—Galois, the morphism ¢4 z,,.r(9)), and, hence, also £ (4 g), s an isomorphism, as desired. O

In view of the properties of separable functors (see 2.19) and Definition 3.3, for an Azumaya monad
F, FF?is a separable monad if and only if F is a separable functor. In this case, ¢ is also a separable
functor, that is the unit e : 1 — F’ splits. Dually, for an Azumaya comonad R, R'R" is separable if and
only if the functor R is separable. Thus, we have:

3.17 Theorem. Under the conditions of Proposition 3.16, suppose further that A is a Cauchy complete

category. Then, the following are equivalent:

(@) (F,\) is an Azumaya monad, and F F* is a separable monad;

(b) (F, ) is an Azumaya monad, and the unit e : 1 — F is a split monomorphism;
(©) ¢orris R-Galois, and e : 1 — Fisa split monomorphism;

(d) (R, k) is an Azumaya comonad, and the counit € : R — 1 is a split epimorphism;
(e) ¢R" is F-Galois, and ¢ : R — 1 is a split epimorphism;

) ¢ is F-Galois, and RR" is a separable comonad.

Proof. (a)=-(b)=-(c) follow by the preceding remarks.

(c)=(a) Since A is assumed to be Cauchy complete, by Corollary 3.17 in [18], the splitting of e
implies that the functor ¢ r» is comonadic. Now, the assertion follows by Theorem 3.10.

Since ¢ is the mate of e, ¢ is a split epimorphism if and only if e is a split monomorphism (e.g., 7.4
in [5]), and the splitting of ¢ implies that the functor ¢*" is monadic. Applying now Theorem 3.10, its
dual and Proposition 3.16 gives the desired result. O

4. Azumaya Algebras in Braided Monoidal Categories

4.1. Algebras and modules in monoidal categories. Let (V,®,1,7) be a strict monoidal
category ([17]). An algebra A = (A, m,e) in V (or V-algebra, V-monoid) consists of an object A of
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V endowed with multiplication m : A ® A — A and unit morphism e : I — A, subject to the usual
identity and associative conditions.

For a V-algebra A, a left A-module is a pair (V, py), where V is an objectof Vand py : AQV — V
is a morphism in V, called the left action (or A-left action) on V/, such that py(m ®@ V) = py (A ® py)
and py(e®@ V) = 1.

Left A-modules are objects of a category 4) whose morphisms between objects f : (V,py) —
(W, pw) are morphism f : V' — W in V, such that py (A ® f) = f - py. Similarly, one has the category
V4 of right A-modules.

The forgetful functor 4U: 4V — V, taking a left .A-module (V, py/) to the object V', has a left adjoint,
the free .A-module functor:

ba: VoV, Vs (AV,mae V).

There is another way of seeing the category of left .A-modules involving modules over the monad
associated with the V-algebra A.
Any V-algebra A = (A, m, e) defines a monad A; = (A ® —,n, 1) on V by putting:

ey =exV: VARV,
o Uy =mRXV :ARARV - AR V.

The corresponding Eilenberg—Moore category V4, of A;-modules is exactly the category 4V of left
A-modules, and 4U - F'is the familiar forgetful-free adjunction between V4, and V. This gives in
particular that the forgetful functor 4U: 4V — V is monadic. Hence, the functor 4U creates those
limits that exist in V.

Symmetrically, writing A, for the monad on V, whose functor part is — ® A, the category V4 is
isomorphic to the Eilenberg—Moore category )4, of A,.-modules, and the forgetful functor U : V4 — V
is monadic and creates those limits that exist in V.

If V admits coequalizers, A is a V-algebra, (V, ov) € V4 aright A-module and (W, py) € 4V a left
A-module, then their tensor product (over .A) is the object part of the coequalizer:

ov W

VAW VoW —V s W.

V@pw

4.2. Bimodules. If A and B are V-algebras, an object VV in V is called an (A, B)-bimodule if there are
morphisms py : AQV — Vand gy : V® B — Vin V, such that (V, py) € 4V, (V,0v) € Vg and
ov(pv ® B) = py(A® py). A morphism of (A, B)-bimodules is a morphism in V, which is a morphism
of left A-modules, as well as of right 5-modules. Write 4} for the corresponding category.

Let Z be the trivial V-algebra (I,1;: [ =1 ® 1 — I,1;: [ — I). Then, 7V = V7 = V, and for any
V-algebra A, the category 47 is (isomorphic to) the category of left A-modules 4, while the category
7V 4 is (isomorphic to) the category of right A-modules V4. In particular, V7 = V.

4.3. The monoidal category of bimodules. Suppose now that }V admits coequalizers and that the
tensor product preserves these coequalizer in both variables (i.e., all functors V ® — : V — V, as
wellas — @V : V — Vfor V € V preservedcoequalizers). The last condition guarantees that if A, B
and C are V-algebras and if M € 4Vgand N € gV, then M @ N € 4V,
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e if D is another V-algebra and PP € ¢Vp, then the canonical morphism:

induced by the associativity of the tensor product, is an isomorphism in 4V,

o (4V4,— ®a —,A) is a monoidal category.

Note that (co)algebras in this monoidal category are called .A-(co)rings.

4.4. Coalgebras and comodules in monoidal categories. Associated with any monoidal category
VYV = (V,®,1), there are three monoidal categories V°P, V" and (V°P)" obtained from )V by reversing,
respectively, the morphisms, the tensor product and both the morphisms and tensor product, i.e.,
VP = (VP @ 1),V = (V,Q", 1), where V& W := W ® V and (V)" = (VP , ", I) (see, for
example, [23]). Note that (V)" = (V")°P.

Coalgebras and comodules in a monoidal category V = (V,®, 1) are, respectively, algebras and
modules in VP = (VP @, I). If C = (C, §, ) is a V-coalgebra, we write V° (resp. ©V) for the category
of right (resp. left) C-comodules. Thus, V¢ = (V)¢ and ¢V = (V). Moreover, if C’ is another
V-coalgebra, then the category V¢ of (C,C’)-bicomodules is ¢(V°)e. Writing C; (resp. C,) for the
comonad on V with functor-part C' ® — (resp. — ® (), one has that V¢ (resp. €))) is just the category of

C;-comodules (resp. C.-comodules).

4.5. Duality in monoidal categories. One says that an object V' of V admits a left dual, or left adjoint, if
there exist an object VV* and morphisms db : / = V®V*andev : V*®V — I, such that the composites:
VE vevrey Ny v B2y gy g v 280 v

yield the identity morphisms. db is called the unit and ev the counit of the adjunction. We use the
notation (db,ev : V* 4 V) to indicate that V* is left adjoint to V' with unit db and counit ev. This
terminology is justified by the fact that such an adjunction induces an adjunction of functors:

db® —,ev® — V'@ — 4V® — V-V,
as well as an adjunction of functors:
— ®db, - ®ev: — VA -V : V-V,
i.e., forany X,Y €V, there are bijections:
VV*X,Y)~ VX, VRY) and VX RVY)~V(X, Y V).
Any adjunction (db,ev : V* 4 V') induces a V-algebra and a V-coalgebra,
Syve=(VaV VeV oVl L2 vy oy db: 1 — VeV,
Croy=VaV, VeV L2 v oy VeV, ev: VIV — ).

Dually, one says that an object V of }V admits a right adjoint if there exist an object V* and morphisms
db I -5 Vi®Vandev : V ® V! — I, such that the composites:

# foev ev
Vi L gy eyt 2 vty By gytgy &2y

yield the identity morphisms.
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4.6 Proposition. Let V' € V be an object with a left dual (V*,db, ev).
(i) For a V-algebra A and a left A-module structure pyy : ARV — V on 'V, the morphism:

tpy AR AV oV 22 v g v

(the mate of py under V(A®@ V,V) ~V(A,V & V*)) is a morphism from the V-algebra A to the
V-algebra Sy y-.
(i) For a V-coalgebra C and a right C-comodule structure oy : V — V ® C, the morphism:

oy VIOV I gV e 2%

(the mate of oy under V(V.V @ C) ~ V(V* @V, C)) is a morphism from the V-coalgebra €y y+
to the V-coalgebra C.

4.7 Definition. Let V' € V be an object with a left dual (V*,db, ev).

(i) ForaV-algebra A, a left A-module (V, py) is called Galois if the morphism t(y,,, : A = V@V*
is an isomorphism between the V-algebras A and Sy« and is said to be faithfully Galois if, in
addition, the functor V& — : V — V is conservative.

(ii) For a V-coalgebra C, a right C-comodule (V, oy ) is called Galois if o) - VeV = Cis

an isomorphism between the V-coalgebras €y~ and C and is said to be faithfully Galois if, in
addition, the functor V & — :V — V is conservative.

4.8. Braided monoidal categories. A braided monoidal category is a quadruple (V, ®, I, 7), where
(V, ®, I) is a monoidal category, and 7, called the braiding, is a collection of natural isomorphisms:

w VW s WaeV, V,IWeV,

subject to two hexagon coherence identities (e.g., [17]). A symmetric monoidal category is a monoidal
category with a braiding 7, such that 7y - 7y = 1 forall VW € V. If V is a braided category
with braiding 7, then the monoidal category V" becomes a braided category with braiding given by

Tv.w = Tw,v. Furthermore, given V-algebras A = (A, my, e4) and B = (B, mp, ep), the triple:
A®B=(A®B,(ms®@mp)  (A® 754 ® B),e4 @ ep)

is again a V-algebra, called the braided tensor product of A and B.
The braiding also has the following consequence (e.g., [24]):

If an object V in V admits a left dual (V*,db: I — V@V* ev: V*®@V — I), then (V*, db’, ev’)

is right adjoint to V' with unit and counit:

—1

I B Ve T yviey, o VeVt S vier S

Thus, there are isomorphisms (V*)f ~ V and (V*)* ~ V, and one uses the:

4.9 Definition. An object V' of a braided monoidal category V is said to be finite if V admits a left (and,

hence, also a right) dual.
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For the rest of this section, V = (V, ®, I, 7) will denote a braided monoidal category.

Recall that a morphism f : V' — W in V is a copure epimorphism (monomorphism) if for any X € V),
the morphism f ® X : V® X — W ® X (and, hence, also, the morphism X @ f : X @V — X @ W)
is a regular epimorphism (monomorphism).

4.10 Proposition. Let V be a braided monoidal category admitting equalizers and coequalizers.
For a finite object V' € V with left dual (V*,db, ev), the following are equivalent:

(@) V& —:V — Vis conservative (monadic, comonadic);
(b) ev: V*®V — [ is a copure epimorphism;
(c) —®V :V — Vis conservative (monadic, comonadic),
(d) db: I — V ® V* is a pure monomorphism.

Proof. Since V' is assumed to admit a left dual, it admits also a right dual (see 4.8). Hence, the
equivalence of the properties listed in (a) (and in (c)) follows from 2.11. It only remains to show the
equivalence of (a) and (b), since the equivalence of (c) and (d) will then follow by duality.

(a)=Mb) If V®—:V — Vis monadic, then it follows from Theorem 2.4 in [25] that each component
of the counit of the adjunction V* ® — 4 V' ® —, which is the natural transformation ev ® —, is a regular
epimorphism. Thus, ev : V* ® V' — I is a copure epimorphism.

(b)=(a) To say that ev : V* ® V — [ is a copure epimorphism is to say that each component of
the counit ev ® — of the adjunction V* @ — 4 V' ® — is a regular epimorphism, which implies (see,
e.g., [25]) that V ® — : )V — V is conservative. O

4.11 Remark. In Proposition 4.10, if the tensor product preserves regular epimorphisms, then (b) is
equivalent to requiring ev : V* @ V. — [ to be a regular epimorphism. If the tensor product in
V preserves regular monomorphisms, then (d) is equivalent to requiring db : I — V @ V* to be

a regular monomorphism.

4.12. Opposite algebras. For a V-algebra A = (A, m, e), define the opposite algebra A™ = (A, m",e")
in V with multiplication m™ = m - 74 4 and unit ¢” = e. Denote by A° = A ® A” and by ‘A =
A” ® A the braided tensor products. Then, A is a left A°-module, as well as a right “4-module by the
structure morphisms:

A@ A" @A 24 f o A0 A 22 Ao A A,

TA,AQA meA

ARAT QA S5 AQARA S A A D A

By properties of the braiding, the morphism 744 : A ® A — A ® A induces a distributive law
from the monad (A7), to the monad .4; satisfying the Yang—Baxter equation, and the monad A;(.A7); is
just the monad (A€);. Thus, the category of A;(A7);-modules is the category 4.) of left A°-modules.
Symmetrically, the category of A, (.A7),-modules is the category Ve4 of right “A-modules.

4.13. Azumaya algebras. Given a V-algebra A = (A, m,e), by Proposition 3.2, there are
two comparison functors:

K12V = Vg, =aV, K.V =V ), = Ve,
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given by the assignments:

KV i— AV, A A AV 22 Ao AgV 225 Ag V),

K, Vi— VRAVOARARA L Vg A A L2 V @ A)

with commutative diagrams:

Ves 4.1)

The V-algebra A is called left (resp. right) Azumaya provided (A;, 74 4) (resp. (A,,Ta4)) is
an Azumaya monad.

4.14 Remark. It follows from Proposition 3.8 that if 7'317 4 = 1, the monad A, (resp. A,) is Azumaya if
and only if (A7), (resp. (A7),) is. Thus, in a symmetric monoidal category, a V-algebra is left (right)
Azumaya if and only if its opposite is so.

A basic property of these algebras is the following.

4.15 Proposition. Let V be a braided monoidal category and A = (A, m,e) a V-algebra. If A is left
Azumaya, then A is finite in ).

Proof. It is easy to see that when V' and 4c) are viewed as right V-categories (in the sense of [26]),
K is a V-functor. Hence, when K is an equivalence of categories (that is, when A is left Azumaya), its
inverse equivalence R is also a V-functor. Moreover, since R is left adjoint to K, it preserves all colimits
that existin 4- . Obviously, the functor ¢ 4¢), : V — 4¢V is also a V-functor, and moreover, being a left
adjoint, it preserves all colimits that exist in V. Consequently, the composite R - Gaey, -V — Vis
a V-functor and preserves all colimits that exist in . It then follows from Theorem 4.2 in [26] that there
exists an object A*, such that R - P4y, =~ A* ® —. Using now that R- ®(4e), 18 left adjoint to the functor
A®—:V — V,itis not hard to see that A* is a left dual to A. O

4.16. Left Azumaya algebras. Ler (V,®,1,7) be a braided monoidal category and A = (A, m,e)
a V-algebra. The following are equivalent:
(a) A is a left Azumaya algebra;
(b) the functor A® — : V — V is monadic, and the left (A®);-module structure on it induced by
the left diagram in (4.1) is Galois;
(c) () A is finite with left dual (A*,db : I — A® A*ev : A*® A — I), and the functor
AR —:V — Vis monadic; and

(i1) the composite X, :

A A 28420 4o Ag A A* 2 Ao A A0 AT TS A9 An AT PEA Ag A

is an isomorphism (between the V-algebras A° and Sy +);
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(d) (i) A is finite with right dual (Aﬁ,db' ] 5 A Aev AR A — I), and the functor
Gary, 2V — Var), =arV is comonadic; and

(i1) the composite X :

Al@meA A'R7A A

AR A
is an isomorphism.

Proof. (a)<(b) follows by Proposition 2.13.

(a)<(c) If A is a left Azumaya algebra, then A has a left dual by Proposition 4.15. Thus, in both
cases, A is finite, i.e., there is an adjunction (db, ev : A* 4 A). Then, the functor A*® — : V — Vs left
adjoint to the functor A® — : V — V, and the monad on V generated by this adjunction is (S4 a+);. Itis
then easy to see that the monad morphism ¢, : (A°); — (S4,4-); corresponding to the left commutative
diagram in (4.1), is just Xy ® —. Thus, g, is an isomorphism if and only if ,, is so. It now follows from
Theorem 3.5 that (a) and (c) are equivalent.

(a)<(d) Any left Azumaya algebra has a left (and a right) dual by Proposition 4.15. Moreover, if A
has a right dual A%, then the functor A*® — is right adjoint to the functor A® —. The desired equivalence
now follows by applying Theorem 3.10 to the monad 4; and using that the natural transformation y is
just Yy @ —. ad

4.17 Proposition. In any braided monoidal category, an algebra is left (resp. right) Azumaya if and only
if its opposite algebra is right (resp. left) Azumaya.

Proof. We just note that if (V,®, I, 7) is a braided monoidal category and A is a V-algebra, then
(_a)': A® — — — ® A7 is an isomorphism of monads A; — (A7),, while the symmetric
(ta-)': — ® A— A™ ® — is an isomorphism of monads A, — (A7),. 0

Under some conditions on V, left Azumaya algebras are also right Azumaya and vice versa:

4.18 Theorem. Let A = (A, m,e) be a V-algebra in a braided monoidal category (V,®,1,T) with

equalizers and coequalizers. Then, the following are equivalent:

(a) A is a left Azumaya algebra;

(b) the left A°-module (A, m - (A ® m")) is faithfully Galois;

(¢) Ais finite with right dual (A*,db' : I — A*®@ A ev' : A® A* — I); the functor ¢ 4r), : V —
Viar), =47V is comonadic; and the composite X in 4.16 (d) is an isomorphism;

(d) A is finite with right dual (A*,db’ : [ — A*@ A ev' : AQ A* — I); the functor —@A : V — V

is monadic; and the composite X:

Alem® A

db’'®ARA Aﬂ®A®A®A—>Aﬁ®A®AMﬂ>Aﬁ®A

tor
Ag A LOASA Nt A0 Ag A S2TAA%A,

is an isomorphism (between the V-algebras ‘A and & 4 4);
(e) the right “A-module (A, m - (m™ @ A)) is faithfully Galois;
(f) Ais a right Azumaya algebra.
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Proof. In view of Proposition 4.10 and Remark 4.11, (a), (b) and (c) are equivalent by 4.16.

Each statement about a general braided monoidal category ) has a counterpart statement obtained by
interpreting it in V". Doing this for Theorem 4.16, we obtain that (d), (e) and (f) are equivalent.

(c)<(d) The composite  is the upper path and Y, is the lower path in the diagram

AR AP AAN o A A AY™A, Ao A A— YT Ao Ao AN At g A

At Am
T Ab A7 ot
‘m

ARA—>A'QARARA—AIQARARA—A'® A® A,
db’-A-A At A Al.m.A

where 7 = 74 4 and - = ®. The left square is commutative by naturality, the pentagon is commutative
since 7 is a braiding and the parallelogram commutes by the associativity of m. Therefore, the diagram
is commutative, and hence, X = X - 74 4, that is Y is an isomorphism if and only if x; is so. Thus, in
order to show that (c) and (d) are equivalent, it is enough to show that the functor ¢4y, : V — 4-V'is
comonadic if and only if the functor — ® A : V — V is monadic. Since V is assumed to have equalizers
and coequalizers, this follows from Lemma 2.11 and Proposition 4.10. O

4.19 Remark. A closer examination of the proof of the preceding theorem shows that if a braided
monoidal category V admits:
e coequalizers, then any left Azumaya V-algebra is right Azumaya,
e equalizers, then any right Azumaya V-algebra is left Azumaya.
In the setting of 4.12, by Proposition 3.2, the assignment:
Vi (A9V, A AV X2 A V), A AV 225 Ag V)

yields the comparison functor K : V — (Viar), )z = (aV)z-

Now, assume the functor A ® — : V — V to have a right adjoint functor [A, —] : V — V with unit
nt 1 — [A, A® —]. Then, there is a unique comonad structure [A, —] on [A, —] (right adjoint to A;;

see Section 2.1), leading to the commutative diagram:

y— K (4 V)% Y (V)] (4.2)
drary, lU;‘\l v
AtV — AV,

where W = W(4-),. This is just the diagram (3.2), and Theorem 3.10 provides characterizations of left

Azumaya algebras.
4.20 Theorem. Let A = (A, m,e) be an algebra in a braided monoidal category (V,®,1,T), and
assume A ® — to have a right adjoint A, —| (see above). Then, the following are equivalent:

(a) A is left Azumaya;
(b) the functor ¢(ar), : V — 47V is comonadic, and for any V' €V, the composite:

A m
v AR AV U4 14 Ag A Ae V] LI 14 A0 A Al
a4 A A V] LV 14 A0 V)

is an isomorphism;



Axioms 2015, 4 56

(c) Alis finite; the functor ¢ sy, : V — a7V is comonadic; and the composite:

[A,m@A]
e

A AT 4 A A A (A, A Al 277 14, 4]

is an isomorphism.

Proof. (a)<(b) follows by Theorem 3.10.
(a)<>(c) Since A turns out to be finite, there is a right dual (A% db’,ev’) of A. Then, A*®@ — : V — V

and [A, —] : V — V are both right adjoint to A ® — : )V — V), and thus, there is an isomorphism of

functors t : [A, —] — A* ® — inducing the commutative diagram:

A
V"V 4 Ae V] 4.3)
ltA®V
dv'@V
AAQARV.

Rewriting the morphism Y from 4.16(d) yields the morphism Y in (c). ad

A symmetric characterization is obtained for right Azumaya algebras provided the functor — ® A has
a right adjoint {A, —}.

4.21 Remark. In [3], van Oystaeyen and Zhang defined Azumaya algebras A = (A, m,e) in'V by
requiring A to be left and right Azumaya in our sense (see 4.13). The preceding Theorem 4.20 together
with its right-hand version correspond to the characterization of these algebras in Theorem 3.1 in [3]. As
shown in Theorem 4.18, if V admits equalizers and coequalizers, it is sufficient to require the Azumaya
property on one side.

Given an adjunction (db,e : V* 4 V) in V, we know from 4.5 that Sy, = V ® V* is a V-algebra.
Moreover, it is easy to see that the morphism V* @ V @ V* YOV v+ defines a left Sy y+-module
structure on V*, while the composite V @ V* @ V' VEN, v defines a right Syv«-module structure on V.

Recall from [3] that an object V' € V with a left dual (V*, db, ev) is right faithfully projective if the
morphism ev : V* ®g,, .. V' — [ induced by ev : V* ® V' — I is an isomorphism. Dually, an object
V € V with aright dual (V*,db’, ev') is left faithfully projective if the morphism ev’ : V/ ®5ys Vi T
induced by ev’ : V ® V* — I is an isomorphism.

Since, in a braided monoidal category, an object is left faithfully projective if and only if it is right
faithfully projective (e.g., Theorem 3.1 in [4]), we do not have to distinguish between left and right
faithfully projective objects, and we shall call them just faithfully projective.

4.22 Theorem. Let (V, ®, I, T) be a braided closed monoidal category with equalizers and coequalizers.
Let A = (A, m,e) be a V-algebra, such that the functor A ® — admits a right adjoint [A, —| (hence,
— ® A also admits a right adjoint { A, —}). Then, the following are equivalent:

(a) Ais left Azumaya;

(b) A is right Azumaya;

(¢c) A is faithfully projective, and the composite:

[Am®A]

Ao AT 14 A0 A A (A, A® Al 270 4, 4),

where 0 is the unit of the adjunction A ®@ — - [A, —], is an isomorphism;
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(d) A is faithfully projective, and the composite:

A AW 4 A A Ay YO 04 A A} BT

{A,m™}

— {4, 4},
where 14 is the unit of the adjunction — @ A - {A, —}, is an isomorphism.

Proof. That (a) and (b) are equivalent follows from Theorem 4.18.

(a)<(c) Since in both cases, A is finite and, thus, the functor A ® — : )V — ) has both left and right
adjoints, in view of Proposition 4.10, we get from Lemma 2.11 that the functor ¢(4r), : V — 4V is
comonadic if and only if the functor A ® — : V — V is conservative. According to 2.5.1, 2.5.2 in [27],
A is faithfully projective if and only if A is finite and the functor A ® — : }V — ) is conservative, and
hence, the equivalence of (a) and (c) follows by Theorem 4.20.

Similarly, one proves that (b) and (d) are equivalent. O

4.23. Braided closed monoidal categories. A braided monoidal category V is said to be left closed if
each functor V' @ — : V — V has a right adjoint [V, —] : V — V; we write ¥ ,evV : V @ — - [V, —].
YV is called right closed if each functor — ® V' : V — V has a right adjoint {V, —} : V — V; we write
nv,evy - —® V A {V,—}. V being braided left closed implies that V is also right closed. Therefore,

assume ) to be closed.

If Ais a V-algebra and (V, py) € 4V, then forany X € V),
VoX AoV e X 225 Ve X) e 4V,

and the assignment X — (V ® X, py ® X) defines a functor V® — : V — 4V. When V admits
equalizers, this functor has a right adjoint 4[V, —] : 4V — V, where, for any (W, py/) € 4V, [V, W] is
defined to be the equalizer in V of:

VW —=[A V.W],

where one of the morphisms is [py, W] and the other one is the composition:

[A®V, pw]
—

v, w] L2V gy A W [A®V,W].

Symmetrically, for V, W € V4, one defines {V, W} 4.
The functor K =¥ - K : V — (ATV)[Z’\‘} (in diagram (4.2)) has as right adjoint R : (ATV)[‘T:] -V

(see 2.16), and since W is an isomorphism of categories, the composition R - W is right adjoint to the
functor K : V — (a-V)z. Using now that P (see 3.6) is an isomorphism of categories, we conclude
that R - ¥ - P is right adjoint to the functor P~ - K : V — 4. V. Forany (V, h) € 4V, we put:

AV =R -U-P(V,h).

Taking into account the description of the functors P, ¥ and R, one gets that 1/ can be obtained as
the equalizer of the diagram:

[A,eRARV]

[AA@A@V][ [A,V].

A
%4 oy [A, AR V]
[4,AQe®V] [A,h]




Axioms 2015, 4 58

Symmetrically, for any (V, h) € Ve, we define V4 as the equalizer of the diagram:

AVRA®e}

VI A v e A}

{A,h}
AV A A} —={A,V}.
{AV @e®A} {A,R}
The functor P~ - K : ¥V — 4.V is just the functor A ® — : V — 4.V and admits as a right adjoint
the functor 4c[A, —] : 4V — V (see 4.23). As right adjoints are unique up to isomorphism, we get
an alternative proof for Femi¢’s Proposition 3.3 in [4]:

4.24 Proposition. Let V be a braided closed monoidal category with equalizers. For any V-algebra A,

the functors: (=), ac[A,—]: 4V =V
and the functors: (— )4 {A, —}eg: Veg =V

are isomorphic.

These isomorphisms allow for further characterizations of Azumaya algebras.

4.25 Theorem. Let V be a braided closed monoidal category with equalizers. Then, any V-algebra
A = (A, m,e) is left (resp. right) Azumaya if and only if:

(1) the morphism e : [ — A is a pure monomorphism, and

(i) forany (V,h) € 4V, with the inclusion iy : AV — V, we have an isomorphism:

AV 28 AgV 22N A9 A@V 5 V;

(resp. for any (V, h) € Ve, with the inclusion iy : V* — V, we have an isomorphism:

VA YA 2l vy AR AL V)

VAV =5
Proof. The V-algebra A is left Azumaya provided the functor K; : V — 4 is an equivalence of
categories. It follows from Equation (2.6) that the composite:

h-(ARe®V)- (A®Qiy) :ARAV =V

is just the ¥ - P(V, h)-component of the counit of K, 1 R and, hence, is an isomorphism. Moreover, by
Proposition 2.15, the functor ¢ 4-y, : V — 4V is comonadic, whence the morphism e : I — A is a pure
monomorphism (e.g., Theorem 2.1 in [18]). This proves one direction.

For the other direction, we note that, under Conditions (i) and (ii), the counit of the adjunction P~ -
K; < R -V - P (and hence, also, of the adjunction K; = ¥ - K 4 R) is an isomorphism and the functor
¢4ry, (and hence, also, K) is conservative (e.g., Theorem 2.1 in [18]), implying (as in the proof of
Theorem 3.13 (ii)) that &, is an equivalence of categories.

The right version of the theorem follows by duality. ad

4.26 Definition. A V-algebra A is called left (resp. right) central if there is an isomorphism [ ~ 4.[A, —]
(resp. I ~ {A, — }eq). Ais called central if it is both left and right central.

4.27 Proposition. Let )V be a braided closed monoidal category with equalizers. Then:
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(1) any left (resp. right) Azumaya algebra is left (resp. right) central;
(i1) if, in addition, V admits also coequalizers, then any V algebra that is Azumaya on either side

is central.
Proof. (i) follows by Theorem 4.25, while (ii) follows from (i) and Theorem 4.18. O

Recall that for any V-algebra A, an .A°-module M is U 4e-projective provided for morphisms g :
N — Land f : M — Lin 4V with Uye(g) a split epimorphism, there exists an h : M — N in 4V
with gh = f. This is the case if and only if M is a retract of a (free) .A°-module A° ® X with some
X €V (e.g., [28]). We apply this in the characterization of separable algebras.

4.28 Proposition. The following are equivalent for a V-algebra A = (A, m,e):

(a) A is a separable algebra;
(b) m: A® A — Ahasasectioné : A— A® AinV, such that:

(A@m)- (@A) =¢-m=(meA)- (A®);

(c) the left A°-module (A, m - (A ®m7)) is 4eU-projective;
(d) the functor 4eU : 4¢V — V is separable.

4.29 Proposition. Consider V-algebras A and B, such that the unit ¢ : I — B of B is a split
monomorphism. If A ® B is separable in V, then A is also separable in V.

Proof. Since [ is a retract of B in V, A is aretract of A ® B in 4V. Since A ® B is assumed to be
separable in V, A ® B is a retract of (A ® B)® in (AzB)< V and, hence, also in 4.V. Thus, A is a retract
of A°® B® ~ (A® B)®in 4. V. Since A° @ B® = ¢ 4.(B°), it follows that A° ® B is 4.U-projective,
and since retracts of a 4.U-projectives are 4eU-projective, A is 4.U-projective, and A is separable by
Proposition 4.28. O

Following [2], a finite object V" in V is said to be a progenerator if the counit morphismev : V@V —

I is a split epimorphism. The following list describes some of its properties.

4.30 Proposition. Assume V to admit equalizers and coequalizers. For an algebra A = (A, m,e) in V
with A admitting a left adjoint (A*,db, ev) (see 4.5), consider the following statements:

(1) Ais a progenerator;

(2) the morphism db : I — A ® A* is a split monomorphism;

(3) the functor A® — :V — V is separable;

(4) the unit morphism e : I — A is a split monomorphism;

(5) the functor A® — :V — V is conservative (monadic, comonadic);

(6) A® A*isa separable V-algebra.

One always has (1) < (2) & (3) < (4) = (5) and (1) = (6).

If 1 is projective (w.r.t. regular epimorphisms) in'V, then (5) = (1).
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Proof. Since A admits a left adjoint (A*, db, ev), the functor A* ® — : V — V is left, as well as right
adjoint to the functor A ® — : V — V. Forany V' € V, the composite:

T_*l RV
VIV Ao A oV L LA 0AQV

is the V-component of the unit of the adjunction A ® — 4 A* ® — : V — V), while the morphism
A @AV 2% Vis the V-component of the counit of the adjunction A*® — 4 A® —:V — V. To
say thatdb : I — A ® A* (resp. ev : A* ® A — I) is a split monomorphism (resp. epimorphism) is to
say that the unit (resp. counit) of the adjunction A ® — 4 A*® — (resp. A*® — 4 A® —)is asplit
monomorphism (resp. epimorphism). From the observations in 2.17, one gets (1)<(2)<(3).

By Proposition 4.10, the properties listed in (5) are equivalent. Since V admits equalizers, it is Cauchy
complete, and (3)=-(5) follows from Proposition 3.16 in [18].

If e : I — Ais a split monomorphism, then the natural transformation e ® — : 1, - A ® — is a split
monomorphism; applying Proposition 2.20 to the pair of functors (A ® —,1y,) gives that the functor
A® — :V — Vis separable, proving (4)=(3).

If A is a progenerator, then ev : A*® A — [ has a splitting ( : I — A* ® A. Consider the composite:

b AL Ao A A A oA T

We claim that ¢ - ¢ = 1. Indeed, we have:
ev-A*dm-(RA-e =ev-AAQm- A RARe-(=ev-(=1.

The first equality holds by naturality, the second one, since e is the unit for the V-algebra A, and the
third one since, ( is a splitting for ev : A* ® A — . Thus, (2) implies (4).

Now, if A is again a progenerator, then the morphismev : A*® A — [ hasasplitting( : [ - A*® A,
and direct inspection shows that the morphism:

E=AR(RA  ARA* 5 AR A* @ A A*

is a splitting for the multiplication A ® ev ® A* of the V-algebra A ® A* satisfying condition (b) of
Proposition 4.28. Thus, A ® A* is a separable V-algebra, proving the implication (2)=>(6).

Finally, suppose that [ is projective (w.r.t. regular epimorphisms) in V' and that the functor A ® — :
YV — V is monadic. Then, by Theorem 2.4 in [25], each component of the counit of the adjunction
A*®— 4 A®— is aregular epimorphism. Since ev : A*® A — [ is the /-component of the counit, ev is
a regular epimorphism and, hence, splits, since [ is assumed to be projective w.r.t. regular epimorphisms.
Thus, A is a progenerator. This proves the implication (5)=-(1). O

4.31 Theorem. Let V be a braided monoidal category with equalizers and coequalizers. For an algebra
A = (A, m,e) inV, the following are equivalent:
(a) A is a separable left Azumaya V-algebra;
(b) A is a progenerator, and the morphism X, : A® A — A® A* in 4.16 (c) is an isomorphism
between the V-algebras A° and Sy _a+;
(¢) e: I — Aisa split monomorphism, and (A,m - (A® mT)) €4¢V is a Galois module.
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Proof. (a)<(c) In view of Proposition 4.28, this is a special case of 3.17.
(b)<(c) is an easy consequence of Proposition 4.30 and Theorem 4.16. O

To bring back our general theory to the starting point, let R be a commutative ring with identity
and Mp the category of [R-modules. Then, for any M, N &€ Mk, there is the canonical twist map
TN : M ®@g N — N ®gr M. Putting [M, N| := Hompg(M, N), then (Mg, — @ —, R, [—,—],7) is
a symmetric monoidal closed category. We have the canonical adjunction n*, &M : M ®p — - [M, —].

4.32. Algebras in Mg. For any R-algebra A = (A, m.e), a4 : A®r A - A ®p Ais an invertible
(involutive) BD-law allowing for the definition of the (opposite) algebra A” = (A, m - 7, e). The monad
A ®p — is Azumaya provided the functor K : Mg — 4<M,

AQrm™®@rM
LoRm TR,

M +— (AR M, AR A®p A®r M Ao Ao M 22" Aop M),

is an equivalence of categories. Obviously, this holds if and only if A is an Azumaya R-algebra in the
usual sense. We have the commutative diagram:

—

Mp M v (4 M)A (4.4)
ATM — ATM

where (e ®r AT)* is the restriction of scalars functor induced by the ring morphism e ®z A™ : A™ —
Axg AT
As is easily seen, for (M,h) € 4-M, the (M, h)-component ¢y ) : A ®p M — [A, M] of the

comonad morphism ¢ : ¢y, Uary, — [A, —] corresponding to the functor K = U - K, takes any

l
element a ® g m to the map b — h((ba) ®g m). Thus, writing a - m for h(a ® m), one has for a,b € A

and m € M,
tony (@ ®@pm) = (b (ba) - m).
In particular, for any N' € Mg, {4 ,-) (v)(a @r b &g n) = (c— (bca) - n).
Since the canonical morphism ¢ : R — A factors through the center of A, it follows from
Theorem 8.11 in [18] that the functor A ® p — : Ml — 4M (and hence, also, A™ @ — : Mlp — 4-M)
is comonadic if and only if ¢ is a pure morphism of R-modules. Applying Theorem 4.20 and using that

K is an equivalence of categories if and only if K = W - K is so, we get several characterizations of
Azumaya R-algebra.

4.33 Theorem. An R-algebra A is an Azumaya R-algebra if and only if the canonical morphism i :
R — A'is a pure morphism of R-modules and one of the following holds:

(a) forany M € 4-M, there is an isomorphism:
ARpr M — [A,M], a®gpm— [br (ba)-m];
(b) for any N € M, there is an isomorphism:

ARrA®r N - [A,ARr N|, a®rb®gn > [c— bca @r nl;
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(¢) Apg is finitely generated projective, and there is an isomorphism.:
ARrA— [A/A], a®rbw— [c+ becal;
(d) for any (A, A)-bimodule M, the evaluation map is an isomorphism:
ARrM* > M, a®rm+— a-m.

Proof. (a) follows by Theorem 3.10; (b) and (c) are derived from Theorem 4.20.

(c¢) An R-module is finite in the monoidal category M if and only if it is finitely generated and
projective over [? and Theorem 4.15 applies.

(d) is a translation of Theorem 4.25 into the present context. O

For a (von Neumann) regular ring R, ¢ : R — A is always a pure R-module morphism, and hence,

over such rings, (equivalent) Properties (a) to (d) are sufficient to characterize Azumaya algebras.

5. Azumaya Coalgebras in Braided Monoidal Categories

Throughout, (V, ®, I, 7) will denote a strict monoidal braided category. The definition of coalgebras
C=(C,A,e)inV isrecalled in 4.4.

5.1. The coalgebra C¢. Let C be a V-coalgebra. The braiding 7¢ ¢ : C®C — C'®C provides a comonad
BD-law allowing for the definition of the opposite coalgebra C™ = (C",A™ = 17¢¢ - A,e” = ¢) and
a coalgebra:

C°=C0C,(CRTC)A®AT),e®e).

With the induced distributive law of the comonad C; over the comonad (C7),, we have an isomorphism
of categories V(€ )iCt ~ P — €%y
5.2 Definition. (see 3.14) A V-coalgebra C is said to be left Azumaya provided for the functor C; =
C®—:V =V, the pair (C, 7c.c @ —) is an Azumaya comonad, i.e., the comparison functor:

K. VoY, Vis (CoV,0eV 2oV 2% cgceCaV),

is an equivalence of categories. It fits into the commutative diagram

K.

1% cy =P (5.1)
Co- jCeU
V.
C is said to be right Azumaya if the corresponding conditions for C, = — ® C' are satisfied.

Similar to 4.15, we have:

5.3 Proposition. Ler C = (C,A,¢) be a coalgebra in a braided monoidal category V. If C is left
Azumaya, then C'is finite in V.
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Proof. Suppose that a V-coalgebra C is left Azumaya. Then, the functor C' ® — : V — )V admits a
right adjoint [C, —] : V — V by the dual of Proposition 3.4. Write ¥ for the composite (C' ® A7) - A :
C - C®C®C. Then, forany V € V, K. (V) = (C ® V,9 ® V), and thus, the VV-component of the
left C¢-comodule structure on the functor C' @ — : V — V), induced by the commutative diagram (5.1),
is the morphism ¥ @ V : C @V — C ® C ® C ® V. From 2.14, we then see that the V' -component ¢y
of the comonad morphism induced by the above diagram is the composite:

CRC®(ev®)y
—

celov] Y cwcecelc, V] CoCaV,

where ev® is the counit of the adjunction C @ — - [C, —].
Next, let oy : [C, I]®@V — [C, V] be the transpose of the morphism (ev®); @V : C®[C, [|QV — V,
and consider the diagram:

Celo 1 eV JHOnEY

CRoy L CRCRCRoy l

C®[C,V] CoCoCI[C,V]

CRCCRCIIeV
RC(ev®) 1@V

CCxV.

IQ[C,V] CRCR(ev®)y

In this diagram the rectangle is commutative by the naturality of composition. Since oy is the

transpose of the morphism (ev®);®V/, the transpose of oy, which is the composite C®[C, [|@V Ceov,

eVC
Cw|[C,V] (—)—V—> V,is (ev®);®V . Hence, the triangle in the diagram is also commutative. Now, since:
CRC®E);aV)- We[CIeV)=t;®V,

it follows from the commutativity of the diagram thatt; ®V =ty - (C®oy ); since C is assumed to be left

Azumaya, both t; and ¢, are isomorphisms, and one concludes that C'®ay is an isomorphism. Moreover,

the functor C ® — : 1V — V is comonadic, hence conservative. It follows that oy : [C, ] @ V — [C, V]
is an isomorphism for all V' € V. Thus, the functor [C,I] ® — : V — V is also right adjoint to the
functor C @ — : V — V. It is now easy to see that [C, [] is right adjoint to C. O

The dual of Theorem 3.5 provides the first characterizations of left Azumaya coalgebras.

5.4 Theorem. For a V-coalgebra C = (C, A, ¢), the following are equivalent:

(a) Cis a left Azumaya V-coalgebra;

(b) the functor C @ — :V — V is comonadic, and the left (C¢);-comodule structure on it, induced
by the commutative diagram (5.1), is Galois;

(¢) (i) C is finite with right dual (C*,db’ : I — C* ® C,ev’' : C ® C* — I); the functor C @ — :
YV — V is comonadic; and

(1) the composite X, :

Coct 22% oot S22 oo et L% e C e e ct L5, cg 0

is an isomorphism (between the V-coalgebras S ¢: and C°);
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(d) () C is finite with left dual (C*,db : I — C ® C*)ev : C* @ C — I), and the functor
by, 2 V — VD = YV is monadic; and
(i1) the composite X :

Coc L crecoc N crwcec TR crocacec Y% ce e
is an isomorphism.

Proof. (a) and (b) are equivalent by the dual of Theorem 3.5.
The equivalences (a)<(c) and (a)<>(d) follow from Proposition 5.3 by dualizing the proofs of the
corresponding equivalences in Theorem 4.16. O

Similarly, the dual form of Theorem 4.16 yields conditions for right Azumaya coalgebras C, that is
making C, = — ® C' an Azumaya comonad. Dualizing Theorem 4.18 gives:

5.5 Theorem. Let C = (C, A, ¢) be a V-coalgebra in a braided monoidal category V with equalizers
and coequalizers. Then, the following are equivalent:

(a) C is a left Azumaya coalgebra;

(b) the left C-comodule (C, (C @ A7) - A) is cofaithfully Galois;

(c) there is an adjunction db',ev’ : C' 4 C*; the functor — @ C :V — V is comonadic; and the

composite X in 5.4 (¢) is an isomorphism;
(d) the right °C-comodule (C,(A™ @ C) - A) is cofaithfully Galois;
(e) C is aright Azumaya coalgebra.

Under suitable assumptions, the base category }V may be replaced by a comodule category over
a cocommutative coalgebra. For this, we consider the:

5.6. Cotensor product. Suppose now that V = (V,®,[,7) is a braided monoidal category with
equalizers and D = (D, Ap,ep) is a coalgebra in V. If (V,p") € VP and (W, ") € PV, then their
cotensor product (over D) is the object part of the equalizer:

pVeow

Vel WM v oW VeDoW

Ve
Suppose, in addition, that either:
-forany VeV, V®—-:V —=Vand —®V : V — V preserve equalizers, or
- V 1s Cauchy complete, and D is coseparable.
Each of these condition guarantee that for V, W, X € PVP,
o VP W ePVYP;
e the canonical morphism (induced by the associativity of the tensor product):
VoPW)el X -V eP (WeP X)

DvD.

’

is an isomorphism in
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o (PVYP —@P — D, 7), where T is the restriction of 7, is a braided monoidal category.

When D is cocommutative (i.e., 7Tp p - A = A), then for any (V, p") € PV, the composite p; =
7'5,1‘/ -pV .V — V ® D, defines a right D-comodule structure on V. Conversely, if (W, 0"V) € VP, then
oV = TW.D * oV : W — D ® W defines a left D-comodule structure on . These two constructions
establish an isomorphism between DY and VP, and thus, we do not have to distinguish between left and
right D-comodules. In this case, the cotensor product of two D-comodules is another D-comodule, and

cotensoring over D makes PV (as well as V) a braided monoidal category with unit D.

5.7. D-coalgebras. Consider V-coalgebras C = (C,Ac¢,ec) and D = (D,Ap,ep) with D

cocommutative. A coalgebra morphism «y : C — D is called cocentral provided the diagram:

Ac C®y

C C®C——C®D
Act lTC,D
CeC pve DxC

is commutative. When this is the case, (C, ) is called a D-coalgebra.

To specify a PV-coalgebra structure on an object C' € V is to give C' a D-coalgebra structure
(C = (C,A¢,ec),7). Indeed, if v : C — D is a cocentral morphism, C can be viewed as an object
of PV (and VP) via:

c2oec S pec, (C2Scec S ceD 2 DeO),

and A factors through the ic ¢ : C ®P C' — C' @ C by some (unique) morphism A} : C' — C ®p C,
thatis A¢ = icc - Ap.

The triple Cp = (C, AL, ) is a coalgebra in the braided monoidal category V.

Conversely, any ?V-coalgebra, (C, AL : C — C @P C,e¢ : C — D) induces a V-coalgebra:

C=(C,C2 caPcieS oo, c D,

and the pair (C, e¢) is a D-coalgebra.
Related to any V-coalgebra morphisms v : C — D, there is the corestriction functor:

(=) V=PV, (Vid") = (Vi(ve V) - o),

and usually, one writes (V), = V. If the category “V admits equalizers, then one has the
coinduction functor:

CP —: PV Y. W (CPW,Ac @2 W),

defining an adjunction:
(=), 40P —:PY =Y.

Considering C as a (D, C)-bicomodule by C' 200 rC D ®pr C, the corestriction functor is
isomorphic to C ®° — : €Y — Py,
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If (C,v) is a D-coalgebra, then the category “»(PV)) can be identified with the category ¢V, and
modulo this identification, the functor

Cp@P — PV = 2(PY)
corresponds to the coinduction functor C @ — : PV — €Y.

5.8. Azumaya D-coalgebras. Let D be a cocommutative V-coalgebra. Then, a D-coalgebra
C = (C, A¢, ec) is said to be left Azumaya provided the comonad (C;, 7c.c @ —), where:

CIIC(X)D—ZDV—)DV,

is Azumaya, i.e., (see 3.14), the comparison functor K> : PV — CoPCTY defined by:

D AT oD
Vs (CaPV,CaPv A8, ool oghy £258 Y

CePCcePV)
is an equivalence of categories. In this setting, specializing Theorem 5.4 yields various characterizations
of Azumaya D-coalgebras. For vector space categories, Azumaya D-coalgebras C over a cocommutative

coalgebra D (over a field) were defined and characterized in Theorem 3.14 in [7].

Now, let R be again a commutative ring with identity and Mp the category of R-modules.
As an additional notion of interest, the dual algebra of a coalgebra comes in.

5.9. Coalgebras in Mg. An R-coalgebra C = (C, A, ¢) consists of an R-module C' with R-linear
maps comultiplication A : ¢ — C ®p C and counit ¢ : C' — R subject to coassociativity and
counitality conditions. C' @ — : Mizp — M, is a comonad, and it is customary to write M := Mg(@_
for the category of left C-comodules. We denote by Hom® (M, N) the comodule morphisms between
M,N € °M. In general, “M need not be a Grothendieck category, unless C is a flat R-module
(e.g., 3.14 in [29]).

The dual module C* = Homg(C,R) has an R-algebra structure by defining for
f,geC* fxg=(9g® f)-A (the definition opposite to 1.3 in [29]), yielding the monad C* =
(C*, %.€*), and there is a faithful functor:

DM — oM, (M, o) = C*®pM 2% C*@pC oM 22 M,
where ev denotes the evaluation map. The functor @ is full if and only if for any N € Mg,
ay : C®r N — Homg(C*,N), c@nw [f+— f(c)n],

is injective, and this is equivalent to C'z being locally projective (a-condition, e.g., 4.2 in [29]). In this
case, M can be identified with the full subcategory o[c-C] C ¢-M subgenerated by C' as C*-module
(see [29,30)).

The R-module structure of C' is of considerable relevance for the related constructions, and for

convenience, we recall:
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5.10 Remark. For Cy the following are equivalent:

(a) CRk is finitely generated and projective;

(b) C ®r — : M — Mgy has a left adjoint;

(¢) Homg(C,—) : Mr — Mg, has a right adjoint;

(d) C*®r — — Homg(C,—), f®r — — (c— f(c) - —), is a (monad) isomorphism;

(e) C ®g — — Hompg(C*,—), c®r — +— (f — f(c) - —), is a (comonad) isomorphism;

(f) ® : °M — oM is a category isomorphism.
If this holds, there is an algebra anti-isomorphism Endg(C') ~ Endg(C*) and we denote the canonical
adjunction by n® ¢ : C ®@p — 4 C* @5 —.

5.11. The coalgebra C¢. As in 5.1, the twist map 7c¢ : C ®r C — C ®p C provides an (involutive)
comonad BD-law allowing for the definition of the opposite coalgebra C™ = (C7,A7,¢7) and

a coalgebra:
Cc=(CorC™,(CorTORCT)(A®RAT),e®R¢).

The category ““M of left C*-comodules is just the category of (C,C)-bicomodules (e.g., [31], 3.26
in [29]). A direct verification shows that the endomorphism algebra of C' as a C°-comodule is just the

center of C*, that is,
Z(C*) = Hom® (C,C) € “Hom(C, C) ~ C*.
If Cr is locally projective, an easy argument shows that C' ® g C' is also locally projective as
an R-module, and then, "M is a full subcategory of (¢e)«M.
5.12 Definition. An R-coalgebra C is said to be an Azumaya coalgebra provided (C @ —, Tc,c ®r —)
is an Azumaya comonad (on M), i.e., (see 3.14) the comparison functor K : Mp — ¢“M defined by:

CRA™QrM
T

M — (CorM,CorM 222 C0pCop M C®C®rC QM)

is an equivalence of categories. We have the commutative diagram:

M —X C“M

Ce
m LU

M.

By Proposition 2.15, the functor K is an equivalence provided:

(i) the functor C' ®p — : kM — rM is comonadic, and
(ii) the induced comonad morphism C' ® g Homg(C, —) — C* ®p —

is an isomorphism.

If R ~ End®(C) ~ Z(C*), the isomorphism in (ii) characterizes C' as a C®-Galois comodule
as defined in 4.1 in [32], and if Cg is finitely generated and projective, the condition reduces to
an R-coalgebra isomorphism C ®p C* ~ C°.

An R-coalgebra C = (C, A, ¢) is said to be coseparable provided C' @ — : Ml — M, is a separable
comonad. This is equivalent to requiring A : C' — C ®p C to split in ©“M. For more characterizations

of these coalgebras, we refer to Section 3 and 3.29 in [29].
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For any coseparable coalgebra C, Z(C*) is a direct summand of C*.

Indeed, let w : C' ®g C' — C' denote the splitting morphism for A; we obtain the splitting sequence
of Z(C*)-modules:

. ce Hom®* (C\w) ce .
C* ~ Hom" (C,C ®p C) ——— Hom" (C,C) ~ Z(C™).

For an Azumaya coalgebra C, the free functor ¢r), : Mz — ¢ M is monadic by the dual of
Theorem 3.5, and hence, in particular, it is conservative. It then follows that, for each X € Mg, the
morphism ¢ ®p X : C' ®r X — X is surjective. For X = R, this yields that ¢ : C' — R is surjective
(hence, splitting). By Theorem 3.17, this means that C is also a coseparable coalgebra.

It follows from the general Hom-tensor relations that the functor K : Mz — M has a right adjoint
“Hom(C, —) : ““M — Mg, (e.g., 3.9 in [29]), and we denote the unit and counit of this adjunction by n
and ¢, respectively.

Besides the characterizations derived from Theorem 5.4, we have from Theorem 3.17:

5.13. Characterization of Azumaya coalgebras. For an R-coalgebra C, the following are equivalent:

(a) C is an Azumaya coalgebra;
() () ex: C®r“Hom(C, X) — X is an isomorphism for any X € "M,
(i) n,, : M C“Hom(C,C ®g M) is an isomorphism for any M € Mp.
(¢c) Cis a C°-Galois comodule; C* is a central R-algebra; and the functor C @ — : RM — gM
is comonadic;
(d) C* is an Azumaya algebra.

As shown in Proposition 5.3, an Azumaya coalgebra C is finite in Mg, that is C' is finitely generated
and projective (see Remark 5.10). Coalgebras C with Cg finitely generated and projective for which
C* is an Azumaya R-algebra were investigated by Sugano in [8]. As an easy consequence, he also
observed that an R-algebra A with Ay, finitely generated and projective is Azumaya if and only if A* is

an Azumaya coalgebra.
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