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1. Introduction

Dieudonné modules appear as representations of Hopf algebras, in different settings. Categories of
Hopf algebras are equivalent to those of Dieudonné modules, the equivalence being given by the functor
that represents each Hopf algebra by its Dieudonné module. This equivalence suggests the definition
of categories of Dieudonné modules, which can be enriched by considering universal bilinear products
(or, in another direction, universal cobilinear coproducts), whose equivalent at the level of Hopf algebras
give monoidal (or comonoidal) structures.

Here, we start with categories of Dieudonné modules in their own right, not simply as the equivalent
of categories of Hopf algebras, and enrich them in a different way: we define Yang–Baxter operators
on such Dieudonné modules, exploring some examples, and only then do we look at the effect these
operators might have on the equivalent Hopf algebras.

In Section 2, we define Yang–Baxter operators for Dieudonné modules, presenting several examples.
These come mostly from the Dieudonné modules for the Hopf algebras one obtains by applying Morava
K-theory to Eilenberg–MacLane spaces. In Section 3, we review the equivalence between categories
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of Hopf algebras and of Dieudonné modules. For a (suitable) Hopf algebra H (over a perfect field of
characteristic p), each coalgebra map H ⊗H → H induces a map on Dieudonné modules. If this map
can be viewed as part of a Yang–Baxter operator, we analyze the conditions that the original coalgebra
map must necessarily satisfy. Section 4 works in the opposite direction: maps of Dieudonné modules
induce maps of Hopf algebras (via the category equivalence), and we apply this fact to construct, for
each Yang–Baxter operator on a Dieudonné module DH , a pair of ring structures on H . We also obtain
a corresponding pair of coring structures on H (and a third one, induced by a diagonal map on DH).
Both of these constructions can be viewed as a representation of the original Yang–Baxter operator, as
can be confirmed by their application to the examples of Section 2.

2. Generalized Yang–Baxter Operators for Dieudonné Modules

Fix a prime p. Zp will denote the ring of p-adic integers.

Definition 2.1. A Dieudonné module M∗ is a graded abelian group together with a degree-preserving
Zp-action and two homomorphisms F : M∗ →M∗ and V : M∗ →M∗, such that:

F (Mn) ⊆Mpn for all n,
V (Mpn) ⊆Mn for all n,

V (x) = 0 if x ∈Mk and k 6= pn for any n,
V F = FV = p,

ps+1Mpsk = 0 if (k, p) = 1 for any s.

The p in the fourth condition must be understood as p-times the identity morphism. The grading is
usually over the non-negative integers.

In most cases, a Dieudonné module M∗ will be denoted just by M , and the inner grading will be
implicit in our notation, as will be the actions of V and F on the degree of the elements on which
they operate.

It is convenient to interpret Dieudonné modules M simply as (graded) left modules over the ring
R = Zp[F, V ]/(FV − p). We proclaim that deg(F ) = 1 and deg(V ) = −1, and put deg(ax) =

pdeg(a)deg(x) for any a ∈ R and x ∈ M . ax is defined as zero if this previous calculation of deg(ax)

does not result in an integer. This alternative view of Dieudonné modules will be preferred throughout
this work.
DM∗ (orDM, for short) denotes the category of (graded) Dieudonné modules, with morphisms what

one would expect: graded group homomorphisms f : M → N preserving the action of R; that is, such
that f(ax) = af(x) for all a ∈ R and x ∈M .

Example 2.2. The ring R (with grading as above defined) is a Dieudonné module, with V and F acting
by means of the ring operation.

Example 2.3. The polynomial ring Zp[F, V ] is a Dieudonné module, with V and F acting by means of
the ring operation (again, the grading is the one defined above).

The next two examples come from the Dieudonné modules associated with the Hopf algebras that
are obtained when one applies Morava K-theory (with vn = 1) to some Eilenberg–MacLane spaces.
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These Hopf algebras, and the corresponding Dieudonné modules, are periodically graded. We adapt
this situation to our definition, by modifying the periodical grading into a Z-grading in a consistent way.
The correspondence between categories of Hopf algebras and of Dieudonné modules will be discussed
in Section 3.

Example 2.4. Fix n ∈ N.

Consider, for each k ∈ N0 and i ∈ {0, · · · , n − 1}, an element ak(i) of degree pkn+i; Define
N as the free Z/(p)-module generated by the ak(i); V acts on N by:

V (ak(i)) =



ak(i−1) if i 6= n

ak−1
(0) if i = n and k 6= 0

0 if i = n and k = 0

Furthermore,

F (ak(i)) =


0 if i 6= 0

ak+1
(n−1) if i = 0

This gives an action of R on N .
The previous elements ak(i) generalize the a(i) one encounters in the Morava K-theory of

Eilenberg–MacLane spaces. These were defined in [1]. By changing the notation, we can view
them as belonging to a polynomial algebra. Put:

V m
k = ak(n−1−m) for m = 0, · · · , n− 1 and k ∈ Z, with degree pkn pn−1−m.

Define V (V m
k ) =


V m+1
k if m 6= n

V 0
k−1 if m = n

and

F (V m
k ) =


0 if m 6= 0

V n−1
k if m = 0

One can check, from the definition of degree for each V m
k , that V divides the degree by p (for terms

with degree a power of p) and F multiplies the degree by p.
We can interpret each V m

k as the m-th power of V 1
k (and this last element has degree p(k+1)n−2).
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Define M = Z/(p) [V0, V1, · · · ] / (V n
0 = 0, V n

k = V 0
k−1 for k 6= 0).

From what was declared above, M is as a Dieudonné module. The relations in the quotient of
the polynomial algebra are suggested by what occurs for the Morava K-theory of Eilenberg–MacLane
spaces, which inspired the definition of the action of V (and F ) on the polynomial algebra. This will be
explored below.

Fix an integer j. Let I = (i0, · · · , in−1), where ik ∈ {0, 1}. Define s(I) as the sequence
(i1, i2, · · · , in−1, 0), a left translation, and s−1(I) as the sequence (0, i0, i1, · · · , in−2), a right translation.

Theorem 2.5. ([2,3]) The periodically graded Dieudonné module D(K(n) ∗(K(Z/(pj), q)) is a free

Z/(pj) module on generators aI = ai0(0) · · · a
in−1

(n−1), where ik ∈ {0, 1} and
n−1∑
k=0

ik = q, in degree
n−1∑
k=0

ikp
k,

with:

V (aI) =

as(I) if i0 = 0

(−1)q−1pa(i1,i2,··· , in−1,1) if i0 = 1

and

F (aI) =

pas
−1(I) if in−1 = 0

(−1)q−1a(1,i0,i1,··· , in−2) if in−1 = 1

We will not define here Dieudonné modules for periodically-graded Hopf algebras, and so, one must
not interpret the object in the previous theorem as an instance of our definition of Dieudonné modules.
The Dieudonné theory for periodically-graded Hopf algebras (and periodically-graded Hopf rings) is
developed in [4]. We adapt this result to obtain a Z-graded Dieudonné module whose generators are
modeled by those described above.

Example 2.6. Fix n and q < n in N.

We consider maps of sets I : N0 → {0, 1}, such that I(k) = 0, except eventually on n consecutive
integers, say (i, · · · , i+ n− 1), and, moreover, satisfying

∑n−1
j=0 I(i+ j) = q. We require also that any

such I satisfies I(0) = 0. Give each I degree
∑n−1

j=0 I(i+ j) pi+j .
For each I , define the left translation s(I) as s(I)(k) = I(k + 1) for all k ∈ N0. Define the

right translation s−1(I) as s−1(I)(k) = I(k − 1) for all k ∈ N and s−1(I)(0) = 0. By construction,
deg(s(I)) = p−1 deg(I) and deg(s−1(I)) = p deg(I).

Consider the free module M over Z/(pj) on all such maps. This can be given a Dieudonné module
structure by putting V (I) = s(I) and F (I) = p s−1(I).

We want to enrich the category DM with additional structure. This structure, via the equivalence
between the category of Dieudonné modules and a corresponding category of Hopf algebras [5,6], will
also add structure to those Hopf algebras H , and it will be interesting to see how that reflects on the
operations in the definition of each H . One way to enrich DM, giving it a braided group or quantum
flavor, is to define generalized Yang–Baxter operators for Dieudonné modules.
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Let M be a Dieudonné module inDM and A : M ⊗ZM →M ⊗ZM a bilinear morphism. 1 : M →
M denotes the identity morphism. For this A, define:

A12 = A⊗Z 1 : M ⊗Z M ⊗Z M →M ⊗Z M ⊗Z M

and

A23 = 1⊗Z A : M ⊗Z M ⊗Z M →M ⊗Z M ⊗Z M

Definition 2.7. If M is a Dieudonné module in DM, a generalized Yang–Baxter operator for M is an
invertible bilinear map A : M ⊗Z M →M ⊗Z M , such that:

A12 A23 A12 = A23 A12 A23 (as a composition of maps)

That is, these Aij satisfy braided group relations.

Example 2.8. For any Dieudonné module M , the identity map A : M ⊗Z M → M ⊗Z M is trivially a
generalized Yang–Baxter operator.

Example 2.9. For any Dieudonné module M with a chosen basis, define A : M ⊗Z M → M ⊗Z M on
basis elements by A(x⊗ y) = y ⊗ x (and expand by linearity on both arguments).

This is an invertible map, and moreover, the Yang–Baxter condition is in this case satisfied on basis
elements, for:

A12 A23 A12 (x⊗ y ⊗ z) = A12 A23 (y ⊗ x⊗ z) = A12 (y ⊗ z ⊗ x) = z ⊗ y ⊗ x

and

A23 A12 A23 (x⊗ y ⊗ z) = A23 A12 (x⊗ z ⊗ y) = A23 (z ⊗ x⊗ y) = z ⊗ y ⊗ x.

Call this the switch Yang–Baxter operator.

Example 2.10. Define α : R → R as the identity on all powers of V and F , except on those F k with
p - k, where α(F k) = F pk, and expand to R by linearity.

Furthermore, define β : R → R as the identity on all powers of V and F , except on those V pk with
p - k, where β(V pk) = V k, and again, expand by linearity.

Both α and β are invertible: the inverse of α is similar to β, but exchange the role of the powers of V
with those of F (the same happens for the inverse of β.)

Put A = α ⊗ β, which is invertible. Then, if S, T and U are any powers of V or F , we can easily
check thatA12 A23 A12 (S⊗T⊗U) = A23 A12 A23 (S⊗T⊗U), and so, A is a generalized Yang–Baxter
operator.

For example, if S ⊗ T ⊗ U = V n ⊗ F pm ⊗ V pq, with p - m and p - q, we get:

A12 A23 A12 (V n ⊗ F pm ⊗ V pq) = A12 A23 (V n ⊗ F pm ⊗ V pq)

= A12 (V n ⊗ F pm ⊗ V q) = V n ⊗ F pm ⊗ V q

and
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A23 A12 A23 (V n ⊗ F pm ⊗ V pq) = A23 A12 (V n ⊗ F pm ⊗ V q)

= A23 (V n ⊗ F pm ⊗ V q) = V n ⊗ F pm ⊗ V q

Example 2.11. The previous example is a particular case of a more general situation. Suppose we look
for α : R → R and β : R → R that map each power of F or V into another power of either (and not
into a linear combination of more than one such power).

Then, if again A = α⊗ β and S, T and U are any powers of V or F , we get:

A12 A23 A12 (S ⊗ T ⊗ U) = α2(S)⊗ βαβ(T )⊗ β(U)

and

A23 A12 A23 (S ⊗ T ⊗ U) = α(S)⊗ αβα(T )⊗ β2(U)

An invertibleA of this form will be a generalized Yang–Baxter operator if both α and β are idempotent
and satisfy βαβ = αβα.

This last equation is satisfied if, like in the previous example (where α and β where idempotent), the
two operators commute, but that is not necessary.

Take for instance α(F k) = F pk if p - k or p|k, but p2 - k and the identity elsewhere, and β(F k) = F p2k

if p - k and the identity elsewhere.
Then, these homomorphisms do not commute:
If p - k, αβ(F k) = α(F p2k) = F p2k, but βα(F k) = β(F pk) = F pk.
However, if p - k, αβα(F k) = αβ(F pk) = α(F pk) = F p2k and βαβ(F k) = βα(F p2k) =

β(F p2k) = F p2k.
Furthermore, if p|k, but p2 - k, αβα(F k) = αβ(F pk) = α(F pk) = F pk and βαβ(F k) = βα(F k) =

β(F pk) = F pk.
This, together with the fact that on all other powers of F or V , both α and β are the identity, proves

that A = α⊗ β is a generalized Yang–Baxter operator.

Example 2.12. For the Dieudonné module in Example 2.4, define β : M →M by β(V p r
k ) = V r

k if p - r
and pr ≤ n, and the identity elsewhere.

Furthermore, define α : M → M by α(V
r (n−1)
k ) = V

pr (n−1)
k if p - r and r ≤ k, and the identity

elsewhere.
This gives a Yang–Baxter operator A = α⊗ β : M ⊗M →M ⊗M .
This example is an expansion of Example 2.10. The limitations on the range of values that r may take

(both for α and β above) allow for the behaviors of the V r
k to be mutually independent. The choice of

those V r
k where β does not act as the identity comes from the relation V n−1

k = Fk in the Dieudonné ring
for the Morava K-theory of Eilenberg–MacLane spaces, as described in [3,7].

Example 2.13. If, in the setting of the previous example, we allow the behaviors of the V r
k to affect those

for different values of k; we can put:

β(V p r
k ) = V r

k if p - r and pr < (n+ 1)k n, and the identity elsewhere, and
α(V

r (n−1)
k ) = V

pr (n−1)
k if p - r and r(n− 1) < (n+ 1)k n, and the identity elsewhere.
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This way, the only restrictions on the values of r are those that come from the order of each element in
the polynomial algebra: since V n+1

k = Vk−1 (and V n
0 = 0), we have V (n+1)k n

k = 0 (and V (n+1)k n−1
k 6= 0).

This reflects the relations between the various generators in the equivalent Hopf algebra.

Example 2.14. For the Dieudonné module in Example 2.6. and again inspired by the Morava K-theory
generators a(j), put β(I) = s(I) if I(n − 1 − pr) = 1 (with p - r and pr ≤ n) and I(j) = 0 for
j < n − 1 − pr, and the identity elsewhere, and α(I) = s−1(I) if I(n − 1 − r(n − 1)) = 1 (with p - r
and r < k) and I(j) = 0 for j < n− 1− r(n− 1), and the identity elsewhere.

This example can be viewed as a generalization of Example 2.12: an element I : N0 → {0, 1} where
I(j) = 0 for all j, except for a certain index i ≤ n − 1 has an interpretation as a a(i) = V n−1−i

1 , with
degree pi.

These α and β form a Yang–Baxter operator A = α⊗ β, since they are both idempotent and βαβ =

αβα (for this last property, it is useful to notice that α and β cannot be both different from the identity
on any given I).

3. The Influence of the Dieudonné Module Yang–Baxter Operators on the Corresponding
Hopf Algebras

Definition 3.1. The Witt polynomialsωn, for n ≥ 0, are given by:

ωn(x) = xp
n

0 + pxp
n−1

1 + · · ·+ pnxn

where x = (x0, x1, · · · ).

The Witt polynomials are important for the next result.

Theorem 3.2. ([8]) There exists a unique Hopf algebra structure on the polynomial algebra
Zp[x0, x1, · · · ], such that the Witt polynomials ωn are primitive.

From now on, whenever we refer to the Hopf algebra Zp[x0, x1, · · · ], we mean the free
commutative algebra over the indeterminates together with the unique coproduct that makes the Witt
polynomials primitive.

We can also consider just the algebra Zp[x0, x1, · · · , xk]. In this case, the coproduct defined from
Theorem 3.2 restricts to a co-product in this finitely-generated algebra, and we will call CW (k) the
Hopf algebra Zp[x0, x1, · · · , xk] together with the restricted coproduct.

If we want to work in the graded case, start by giving each xi degree pim for some fixed m ∈ N,
and then, define CWm(k) to be the graded Hopf algebra corresponding to CW (k). We will also write
CW (∞) for the Hopf algebra Zp[x0, x1, · · · ].

Proposition 3.3. [8] Let [p] : Zp[x0, x1, · · · ]→ Zp[x0, x1, · · · ] be p-times the identity map in the abelian
group of Hopf algebra maps Zp[x0, x1, · · · ]→ Zp[x0, x1, · · · ]. Then, [p](xi) ∼= xpi−1 (mod p).

Next, we want to consider Hopf algebras over a perfect field Fp with characteristic p. Define
Hopf algebras H(k) = Fp ⊗ CW (k) = Fp[x0, x1, · · · , xk]. In the graded case, write
H(n) = Fp[x0, x1, · · · , xk], where n = pkm for (p,m) = 1 and each xi has degree pim. Write H(∞)

for Fp[x0, x1, · · · ].
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Definition 3.4. For a Hopf algebra H over Fp, the Frobenius is the homomorphism F : H → H taking
an element x to the element xp. The Verschiebung V : H → H is the dual to the Frobenius in the
dual algebra.

The Verschiebung can be described as follows: if an element x ∈ H has p-fold co-product
Ψp(x) =

∑
x′ ⊗ x′ ⊗ · · · ⊗ x′ +

∑
not all y equal y

′ ⊗ y′′ ⊗ · · · ⊗ yp+1, then the Verschiebung on x is
V (x) =

∑
x′.

Since we are dealing with Hopf algebras over a perfect field Fp, both the Verschiebung and the
Frobenius are homomorphisms of Hopf algebras.

All of our Hopf algebras will be bicommutative. We call such a (graded) Hopf algebra connected if
H0
∼= Fp.

Define HA∗ (or just HA, for short) as the category of graded, connected, bicommutative Hopf
algebras over Fp.

The Hopf algebras H(n) = Fp[x0, x1, · · · , xk] described above form a set of projective generators for
HA∗ [9].

We have a morphism v : H(n) = Fp[x0, x1, · · · , xk] → Fp[x0, x1, · · · , xk+1] = H(pn) given by
inclusion. Furthermore, by Proposition 3.3, there exists a unique map of Hopf algebras f : H(pn) →
H(n) making the following diagram commute.

H(pn)
f //

[p] $$

H(n)

v

��
H(pn)

This map satisfies vf = [p] and also fv = [p].
We now define Dieudonné modules for Hopf algebras inHA∗.

Definition 3.5. The Dieudonné module for a Hopf algebra H ∈ HA∗ is the graded abelian group:

{DnH}n≥1 = {HomHA∗(H(n), H)}n≥1

together with homomorphisms:
F : DnH → DpnH

and
V : DpnH → DnH

constructed from the previous maps f and v by composition on the left.

These homomorphisms reflect, thus, in Dieudonné modules, the Verschiebung and the Frobenius
defined on Hopf algebras.

We have V F = FV = p (here, p stands for p-times the identity map).
Furthermore, if n = psk with (p, k) = 1, then the order of the identity map in HomHA∗(H(n), H(n))

is ps+1, and so, ps+1DnH = 0.
We have defined thus a functor D : HA∗ → DM∗. This functor provides the following equivalence

of categories.
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Theorem 3.6. ([5,6]) The above functor D has a right adjoint U : DM∗ → HA∗, and the pair (D,U)

forms an equivalence of categories.

The proof confirms the fact that an abelian category with a set of small projective generators is
equivalent to a category of modules over some ring [10,11].

Let H be a connected Hopf algebra. Given a Hopf algebra map A : H ⊗ H → H ⊗ H , there is a
natural way to induce a map A : DH ⊗DH → DH ⊗DH on the corresponding Dieudonné modules.

Suppose n < m. Then, H(n) ⊂ H(m). We have a map inc : H(n) → H(m), given by inclusion,
and another proj : H(m)→ H(n), which is the identity on H(n) and is zero outside it.

Define ∆1 : H(n)→ H(n)⊗H(m) by ∆1 = i⊗ inc, where i is the identity on H(n). Furthermore,
define ∆2 : H(m)→ H(n)⊗H(m) by ∆2 = proj ⊗ i, where in this case i is the identity on H(m).

The following compositions show the construction of two maps, one in DnH and the other in DmH ,
from the maps above, and from f ∈ DnH and g ∈ DmH .

H(n)
∆1 // H(n)⊗H(m) A // H(n)⊗H(m)

p1 // H(n)
f // H

H(m)
∆2 // H(n)⊗H(m) A // H(n)⊗H(m)

p2 // H(m)
g // H

Here, p1 and p2 are the projections into the first and the second factors, respectively.

A : H ⊗H → H ⊗H thus gives rise to A : DH ⊗DH → DH ⊗DH by
f ⊗ g 7−→ (f ◦ p1 ◦ A ◦∆1)⊗ (g ◦ p2 ◦ A ◦∆2)

whenever f ∈ DnH and g ∈ DmH .
If one writes f̃ for f ◦ p1 ◦A ◦∆1 and g̃ for g ◦ p2 ◦A ◦∆2, the induction above is f ⊗ g 7−→ f̃ ⊗ g̃.
This notation is not entirely indicative, since f̃ depends not only on f , but also on g (and the same

goes for g̃). We will write down this dependency explicitly, by using f̃g and g̃
f

instead of f̃ and g̃.
One can check what relations such an inducedAmust verify in order to be a generalized Yang–Baxter

operator on the corresponding Dieudonné module forH and obtain in the process corresponding relations
for the original A at the Hopf algebra level. Because of the dependency referred to in the previous
paragraph, these relations can be difficult to read.

We take a f ⊗ g ⊗ h in DnH ⊗DmH ⊗DkH . Then,

A12 A23 A12 (f ⊗ g ⊗ h) = A12 A23 (f̃g ⊗ g̃f ⊗ h)

= A12 (f̃g ⊗
(̃
g̃
f

)
h
⊗ h̃g̃

f
)

=
(̃
f̃g

)(̃
g̃
f

)
h

⊗
˜((̃
g̃
f

)
h

)
f̃g

⊗ h̃g̃
f

and
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A23 A12 A23 (f ⊗ g ⊗ h) = A23 A12 (f ⊗ g̃
h
⊗ h̃g)

= A23 (f̃g̃
h
⊗
(̃
g̃
h

)
f
⊗ h̃g)

= f̃g̃
h
⊗

˜((̃
g̃
h

)
f

)
h̃g

⊗
(̃
h̃g

)(̃
g̃
h

)
f

The relations are then, for any f , g and h under the above assumptions,(̃
f̃g

)(̃
g̃
f

)
h

= f̃g̃
h

˜((̃
g̃
f

)
h

)
f̃g

=

˜((̃
g̃
h

)
f

)
h̃g

h̃g̃
f

=
(̃
h̃g

)(̃
g̃
h

)
f

4. Yang–Baxter Operators on Dieudonné Modules, Hopf Ring and Hopf Coring Structures

One defines a bilinear map for R-modules M , N and L as a map g : M ⊗N → L that satisfies:

(1) V g(m⊗ n) = g(V m⊗ V n)

(2) Fg(V m⊗ n) = g(m⊗ Fn)

(3) Fg(m⊗ V n) = g(Fm⊗ n)

for every m ∈M and n ∈ N .
We reprint here a result from [4], which works for categories of Hopf algebras over a perfect field

of either zero or p characteristic. For our purposes here, the second part is what will be used in the
deduction of the Yang–Baxter operators’ influence on the original Hopf algebras. In the present work,
these will always be connected.

Lemma 4.1. Any bilinear pairing ◦ij : DHi ⊗ DHj → DHi+j induces a bilinear pairing ◦′ij :

Hi ⊗Hj → Hi+j .

Proof. Suppose first that the characteristic of the base field is zero.
To define uniquely the map ◦′ : Hi ⊗ Hj → Hi+j , it is enough to fix its value on the primitives of

Hi ⊗ Hj (since this is a connected Hopf algebra), Suppose x ⊗ 1, with x a primitive of Hi, is such an
element (the other only possibility, a 1 ⊗ y with y a primitive of Hj , can be dealt with similarly). If the
degree of x is n = pkm, define the homomorphism x̂ ∈ DnHi by x̂(1) = 1, x̂(ωk) = x and x̂(ωi) = 0

for i 6= k. Define also 1̂ ∈ D0Hj by 1̂(1) = 1. Then, x̂ ◦ 1̂ is in DnHi+j , and we define x ◦′ 1 as
[x̂ ◦ 1̂](ωk). (If the degree of x is not of the form n = pkm, define x ◦′ 1 = 0.)
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If the characteristic of the base field is a prime, we can run into additional problems. In this case, we
have to work from the condition of connectedness. If x in Hi has zero Verschiebung, then we can still
define x ◦′ 1 as in the reference above. If V (x) is non-zero, by connectedness, there exists an r > 0,
such that the repeated Verschiebung V r(x) is zero, but V r−1(x) = b is non-zero. If the degree of b is
n = pkm, define x̂ ∈ DnHi by x̂(1) = 1, x̂(ωk) = b and x̂(ωi) = 0 for i 6= k. Then, x ◦′ 1 is defined as
[x̂ ◦ 1̂](ωr

k). (If the degree of b is not of the form n = pkm, define x ◦′ 1 = 0.) We can similarly define
1 ◦′ y for y ∈ Hj . If either x or y are primitives, this will coincide with what was done before. Finally,
just define x ◦′ y = (x ◦′ 1)(1 ◦′ y).

This definition works for the general case of p ≥ 2.

The category of Dieudonné modules that we have defined has universal bilinear products [8]. This
is the basis of the equivalence between categories of Hopf rings and of Dieudonné rings (which are
Dieudonné modules with additional products) from [4,8].

Suppose you have a Yang–Baxter operator A : DH ⊗ DH → DH ⊗ DH , and suppose
A1 = p1◦A andA2 = p2◦A are bilinear maps of Dieudonné modules. Then, the induced maps onH⊗H ,
A′1 : H ⊗ H → H and A′2 : H ⊗ H → H , are maps of coalgebras that give H two structures of the
Hopf ring [4]. The Yang–Baxter condition on the Dieudonné modules gives a relation between the
two Hopf ring structures. Before we use this in our previous examples, we obtain a description of the
equivalent Hopf algebra for each of the Dieudonné modules that were presented in Section 2, following
the conclusions of Theorem 3.6.

Example 4.2. R, viewed as a Dieudonné module (as in Example 2.2), is equivalent to DH(∞), since
clearly R ' HomHA∗(H(n), H(∞)).

Example 4.3. For Example 2.3, we have HomHA∗(H(n), CW (∞)) ' Zp[F, V ], and so,
DCW (∞) ' Zp[F, V ].

Example 4.4. The Dieudonné module from Example 2.4 was suggested by the one for the Hopf algebra
K(n)∗(K1), where K1 is the first Eilenberg–MacLane space K(Z/(p), 1). This and the Hopf ring for
further Eilenberg–MacLane spaces are completely described in [1]. By analogy, in our example, we
get that the Hopf algebra corresponding to M is a truncated polynomial algebra generated by the ak(i),
where the p-th algebra power of each of these generators is zero (for K(n)∗(K1), the algebra relations
depend on elements vn that we are not considering in this example). The coalgebra structure is given by
ψ(ak(i)) =

∑i
j=0 a

k
(j) ⊗ ak(i−j).

Example 4.5. For the Hopf algebra corresponding to the Dieudonné module in Example 2.6, we again
adapt the periodically-graded situation from [1]. Each map I : N0 → {0, 1} in the conditions of Example
2.6 (namely, non-zero, except eventually on the n consecutive integers i, · · · , i+ n− 1) will correspond
to an element of the form a

I(i)
(i) ◦ · · · ◦ a

I(i+n−1)
(i+n−1) , where the ◦ notation is inspired by the subjacent Hopf

ring structure (which is not dealt with here). The algebra in question will be free on these elements (over
Fp), with the algebra product of an aI(i)

(i) ◦ · · · ◦a
I(i+n−1)
(i+n−1) and an aI(j)

(j) ◦ · · · ◦a
I(j+n−1)
(j+n−1) given by an element

a
I(k)
(k) ◦ · · · ◦ a

I(k+n−1)
(k+n−1) obtained by rearranging the a(i) and a(j) in increasing order of indexes, summing

(mod two) the superscripts I(i) and I(j) for the same indexes and multiplying the result by the index
of the permutation obtained from (i, . . . , i + n − 1) and (j, . . . , j + n − 1) by concatenation and by



Axioms 2015, 4 188

eliminating any repetitions of indexes that may appear in both of these sub-permutations. We determine
also that this product should be zero if the resulting element is not of the form of those I in the definition
of the original Dieudonné module (this has to do with I being nonzero only for q elements in a range of
n consecutive natural numbers.)

As for the coalgebra structure, take a aI(i)
(i) ◦ · · · ◦ a

I(i+n−1)
(i+n−1) , and define formally its coproduct as:

(a
I(i)
(i) ⊗ a

I(i)
(i) ) ◦ (a

I(i)
(i) ⊗ a

I(i+1)
(i+1) + a

I(i+1)
(i+1) ⊗ a

I(i)
(i) ) ◦ · · ·

◦ (
∑k

r=0 a
I(i+r)
(i+r) ⊗ a

I(n+i−r)
(n+i−r) ) ◦ · · · ◦ (

∑n−1
r=0 a

I(i+r)
(i+r) ⊗ a

I(n−1+i−r)
(n−1+i−r) )

where we distribute (formally) in order to obtain a sum of elements given by ◦ “products” of
the a(i).

We now turn to the Yang–Baxter operators for the Dieudonné modules from Section 2 and deduce the
induced A′1 and A′2 on the corresponding Hopf algebras.

Example 4.6. Consider first the switch operator from Example 2.9.
Clearly, the induced A1 and A2 are projections onto the opposite factors: A1 = p2 and A2 = p1. If

we consider a Dieudonné module DH for a Hopf algebra H in HA, the induced products on H can be
deduced as follows.

Suppose x ∈ H is such that V r(x) = 0, but V r−1(x) 6= 0. Then,

A′1(x, 1) = A1(x̂, 1̂)(ωr
k) = 1̂(ωr

k) = 0 and:
A′1(1, x) = A1(1̂, x̂)(ωr

k) = x̂(ωr
k) = [x̂(ωk)]r = [V r−1(x)]r

This is a non-commutative ring structure that exists thus for any H in HA. The other one (also
non-commutative) comes from:

A′2(x, 1) = A2(x̂, 1̂)(ωr
k) = x̂(ωr

k) = [x̂(ωk)]r = [V r−1(x)]r and:
A′2(1, x) = A2(1̂, x̂)(ωr

k) = 1̂(ωr
k) = 0

Note that, as defined in the proof of Lemma 4.1, A′1(x, y) = A′1(x, 1)A′1(1, y) (and the same happens
for A′2). This means that A′1 is right-sided, that is it can only be nonzero whenever x is one, and A′2 is
left-sided (can only be nonzero whenever y is one).

Example 4.7. Continuing Example 2.10, identify V k with ω̂k, in the notation of Lemma 4.1, and F k

with 1 ◦ fk, where f is the map mentioned just before Definition 3.5.
We have, for x ∈ H(∞), such that V r(x) = 0, but V r−1 6= 0, A′1(x, 1) = A1(x̂, 1̂)(ωr

k) = α(x̂)(ωr
k).

This last value is equal to [x̂(ωk)]r = (V r−1(x))r, except if x̂ = F k = 1 ◦ fk and p - k, where it equals
[1 ◦ fpk(ωk)]r = [fpk(ωk)]r = 0. Furthermore, A′1(1, x) = A1(1̂, x̂)(ωr

k) = α(1̂)(ωr
k) = (1̂)(ωr

k) = 0 by
definition of 1̂.

This gives the first of our two new ring operations on H(∞). It is clearly non-commutative, and
moreover, A′1(x, y) = 0 whenever y 6= 1 (since, by definition, A′1(x, y) = A′1(x, 1)A′1(1, y)).

For A′2, we get:

A′2(x, 1) = A2(x̂, 1̂)(ωr
k) = β(1̂)(ωr

k) = (1̂)(ωr
k) = 0, and

A′2(1, x) = A2(1̂, x̂)(ωr
k) = β(x̂)(ωr

k)
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This equals [x̂(ωk)]r = (V r−1(x))r, except if k = pm for some m and p - m (so that x̂ = V pm =

ω̂pm), where it equals zero, since ω̂pm ◦ v = 1̂.
This second ring operation is also non-commutative. In this example, the relation between the induced

products A′1 and A′2 comes from the original Yang–Baxter operator: α and β were both idempotent and
satisfied the braid condition αβα = βαβ. This reflects on the elements x in H(∞) for which A′1 or A′2
is nonzero.

The previous example worked from the generators of the corresponding polynomial algebra, and thus,
the same deductions can be easily adapted to the situation of Example 4.3.

Example 4.8. In Example 2.12, we again had a Yang–Baxter operator of the form A = α⊗β. The Hopf
algebra in Example 4.4 will then have two induced coalgebra structures, coming from A1(x, y) = α(x)

and A2(x, y) = β(y) (where x and y are in the Dieudonné module).
The polynomial generators of the Hopf algebra are interpreted as elements in the Dieudonné module

(as powers of the Vk). This means that the induced A′1 and A′2 have the same behavior: A′1(x, y) = x for
x and y in the Hopf algebra, except whenever x = V

r(n−1)
k with p - r, and r ≤ k, where it is V pr(n−1)

k ;
A′2(x, y) = y for x and y in the Hopf algebra, except whenever y = V pr

k with p - r and pr ≤ k, where it
is V r

k

Example 4.9. For the same Hopf algebra and the Yang–Baxter operator from Example 2.13, we get
structures similar to those in the previous example, the difference being in the range of indexes where
the generators of the algebra exist.

Example 4.10. For Example 2.14 and the Hopf algebra in Example 4.5, we have also A1(I, J) = α(I)

and A2(I, J) = β(J), and so, the two new ring structures will be projections on the first and second
factors, except if I(n− 1− r(n− 1)) = 1 and I(j) = 0 for j < n− 1− r(n− 1) (with p - r and r < k),
for which A1(I, J) = s−1(I), and if J(n− 1− pr) = 1 and J(j) = 0 for j < n− 1− pr (with p - r and
pr ≤ n), for which A2(I, J) = s(J).

The notion of bilinear map on Dieudonné modules has a dual, that of the cobilinear map, which is
explored in [12].

A cobilinear map for R-modules M , N and L is a map g : M → N ⊗ L satisfying:

(1) g(Fm) = (F ⊗ F )(gm)

(2) (F ⊗ 1)(g(V m)) = (1⊗ V )(gm)

(3) (1⊗ F )(g(V m)) = (V ⊗ 1)(gm)

for every m ∈M .
There exists a universal cobilinear map on the category of Dieudonné modules. In the connected case,

this allows for the equivalence between the category of Dieudonné corings and a corresponding category
of Hopf corings [12].

The following result is symmetric to Lemma 4.1.

Lemma 4.11. [12] Any cobilinear map g : DH → DH1 ⊗DH2, where H , H1 and H2 are connected
Hopf algebras inHA, induces a cobilinear map g′ : H → H1 ⊗H2.
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Proof. Since H is connected, it is enough to define g′ on primitives and induced primitives [12].
Given a primitive q ∈ H , pick a positive m and consider q̃ ∈ HomHA(H(m), H) given by q̃(1) = 1,

q̃(ωm) = q and q̃(ωi) = 0 for i 6= m (here, ωi are the Witt polynomials).
Then, g(q̃) is in DH1 ⊗DH2, and so, the projections on DH1 and DH2 are such that:

g1(q̃) = α for some r and some α ∈ HomHA(H(r), H1)

and

g2(q̃) = β for some s and some β ∈ HomHA(H(s), H2)

Define then g′(q) as α(ωr)⊗ β(ωs).
If q(n) is an induced primitive (relative to the primitive q), we can still define q̃ and obtain α and β

as before.
Put then g′(q(n)) = α((ωr)

(n))⊗ β((ωs)
(n)).

Given H ∈ HA, fix an element in DH , for example 1̂. We can define two inclusions i1 : DH →
DH ⊗DH and i2 : DH → DH ⊗DH by i1(x) = x⊗ 1̂ and i2(x) = 1̂⊗ x.

For a Yang–Baxter operatorA : DH⊗DH → DH⊗DH , supposeA1 = A◦i1 andA2 = A◦i2A are
cobilinear maps of Dieudonné modules. Then, the induced mapsA′1 : H → H⊗H andA′2 : H → H⊗H
are algebra maps that give H two structures of Hopf coring [12]. We write down what these induced
structures mean for the previous examples.

Example 4.12. For the switch operator A from Example 2.9 on any DH , we get A1(x) = A ◦ i1(x) =

A(x⊗ 1̂) = 1̂⊗ x and A2(x) = A ◦ i2(x) = A(1̂⊗ x) = x⊗ 1̂ for any x ∈ DH .
Thus, A1 = i2 and A2 = i1 in this case.
For a primitive q ∈ H , we get A1(q̃) = 1̂⊗ q̃, and so, A′1(q) = 1⊗ q. For an induced primitive q(n),

we get A′1(q(n)) = 1⊗ q̃(q(n)) = 0. This defines the first coring operation on H .
For A2, we get, similarly, A2(q̃) = q̃ ⊗ 1̂ for a primitive q ∈ H , and so, A′2(q) = q ⊗ 1 and

A′2(q(n)) = q̃(q(n))⊗ 1 = 0 for an induced primitive. This gives the second coring operation.

Example 4.13. Continuing Example 2.10, we get A1(x) = A ◦ i1(x) = A(x ⊗ 1̂) = α(1̂) ⊗ β(x) =

1̂⊗ β(x).
For the induced operation on the Hopf algebra H(∞), consider first a Witt polynomial ωi in H(∞)

(those form its primitive elements). We get:
A1(ω̃i) = α(ω̃i) ⊗ 1̂, and so, A′1(ωi) = α(ω̃i)(ωi) ⊗ 1. This works for the general case of

Example 2.11. For 2.10, we get further that A′1(x) is the inclusion x ⊗ 1, except on those ωi for which
ω̃i = ω̂i is of the form 1 ◦ fk with p - k, where it equals fk(ωi)⊗ 1 = 0.

For induced primitives x, we get also the inclusion x ⊗ 1, except on the elements of the same form,
where it is zero.

The second possible operation comes fromA2(ω̃i) = 1̂⊗β(ω̃i). This givesA′2(ωi) = β(ω̃i)(ωi)⊗1.
This will be the identity, except on those ωpk with p - k, where one gets β(ω̃pk)) = ω̃k, and so,
A′2(ωpk) = ω̃k(ωpk) ⊗ 1 = 0. The same behavior reflects on induced primitives. Thus, the operations
A′1 and A′2 are symmetric.
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Example 4.14. The Yang–Baxter operator from Example 2.12 is also of the form A = α ⊗ β. This
means that the deductions in the previous example are also at hand.

The polynomial generators ak(i) of the Hopf algebra are not primitive, since the coalgebra structure
has, as a coproduct, ψ(ak(i)) =

∑i
j=0 a

k
(j) ⊗ ak(i−j). These generators correspond to elements of the same

nature in the Dieudonné module (we used the identification V m
k = ak(n−1−m) for m = 0, · · · , n− 1). It is

enough thus to define the induced operations, which are maps of algebras, on these generators. We get:
A1(ak(i)) = α(ak(i))⊗ 1 = α(V n−1−i

k )⊗ 1. This becomes V n−1−i
k ⊗ 1 = ak(i) ⊗ 1 except if p - (n− 1− i)

and n− i− 1 ≤ k, where one gets V p
k (n− 1− i)⊗ 1 = ak(n−1−p(n−1−i)) ⊗ 1 = ak((n−1)(1−p)+pi) ⊗ 1.

The second algebra structure comes from A2(ak(i)) = 1 ⊗ β(ak(i)) = 1 ⊗ β(V n−1−i
k ). This becomes

1⊗ V n−1−i
k = 1⊗ ak(i), except if n− 1− i = pr for some r, such that p - r and pr ≤ n, where one gets

1⊗ V r
k = 1⊗ ak(n−1−r).

Example 4.15. Example 2.13 gives the same definitions for the induced products as the previous
example. Nonetheless, in this case, the elements ak(i) for different values of k are not independent,
which means that the restrictions on the range of values that r and k may assume make for structures that
differ from those in that example.

Example 4.16. Continuing Example 2.14, for the Hopf algebra in Example 4.5, we again have A =

α ⊗ β, and so, A1(x) = 1̂ ⊗ β(x) and A2(x) = α(x) ⊗ 1̂. Reading the definitions of α and β, on the
generators I , we get then, as structures:
A1(I) = 1 ⊗ s(I) if I(n − 1 − pr) = 1, p - r, pr ≤ n and I(j) = 0 for j < n − 1 − pr, and

1⊗ I elsewhere.
andA2(I) = s−1(I)⊗1 if I(n−1−r(n−1)) = 1, p - r, r < k and I(j) = 0 for j < n−1−r(n−1),

and I ⊗ 1 elsewhere.

There is a different way of obtaining induced coring structures from Yang–Baxter operators. Consider
again an operatorA : DH⊗DH → DH⊗DH and compose it with the diagonal map ∆ : DH → DH⊗
DH . This gives a map A3 : DH → DH⊗DH , which again induces an algebra map A′3 : H → H⊗H .
We look at this map for the different examples we had before.

Example 4.17. The switch operator from Example 2.9 induces the same A3 as the identity operator,
which is simply the diagonal: A3(x) = sw ◦∆(x) = sw(x⊗ x) = x⊗ x for x ∈ DH .

For a primitive q ∈ H , A′3(q) = q ⊗ q. On induced primitives, A′3(q(n)) = q̃(q(n)) ⊗ q̃(q(n)) = 0,
and so, the switch operator on Dieudonné modules induces in this way the diagonal operator on the
corresponding Hopf algebras (but nonzero only on primitives.)

Example 4.18. For Example 2.10 and the Hopf algebra H(∞), A3(x) = α(x)⊗ β(x).
On Witt vectors, the induced A′3 becomes A′3(ωi) = α(ωi) ⊗ β(ωi). From the considerations in

Example 4.13, we see that A′3 is zero, except if p - i, and ω̃i is not of the form 1 ◦ fk with p - k, where it
becomes the diagonal.

Example 4.19. For Example 2.12, we again have A3(x) = α(x)⊗β(x) for x in the Dieudonné module.
The considerations in Example 4.14 imply that the inducedA′3 on the generators ak(i) will be the diagonal,
except if either p - (n − 1 − i) (and n − 1 − i ≤ k) or n − 1 − i = pr for some r, such that p - r (and
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pr ≤ n). Both conditions cannot be satisfied simultaneously. This means that, because of the behavior of
these particular α and β, one of the components in the image by A′3 of any element in the Hopf algebra
will always be the identity.

Example 4.20. The previous example works also for the Yang–Baxter operator in Example 2.13 if we
take into account the restrictions discussed in Example 4.15.

Example 4.21. From Example 2.14, we get that A3 of a generator I can be the identity, 1 ⊗ I , I ⊗ 1,
1⊗ s(I), s−1(I)⊗ 1 or s−1(I)⊗ s(I). These values will depend, as before, on the range of the indexes
at play. In particular, the last value, which corresponds to a α(I) ⊗ β(I) where neither α nor β are the
identity, occurs whenever n− 1− pr = n− 1− r(n− 1), that is if n− 1 is the prime p. Since we must
also have that pr ≤ n, this implies that r = 1.
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