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Abstract: There has been a surge of work on models for coupling surface-water
with groundwater flows which is at its core the Stokes-Darcy problem. The resulting
(Stokes-Darcy) fluid velocity is important because the flow transports contaminants.
The analysis of models including the transport of contaminants has, however, focused on a
quasi-static Stokes-Darcy model. Herein we consider the fully evolutionary system including
contaminant transport and analyze its quasi-static limits.
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1. Introduction

The Stokes-Darcy problem describes the (slow) flow of a fluid across an interface I separating a
saturated porous medium Ωp ⊂ Rd (d = 2 or 3) and a free flowing fluid region Ωf ⊂ Rd. Such flow
is important because it transports contaminants between surface and groundwater [1,2], nutrients and
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oxygen between capillaries and tissue [3,4], and material in industrial filtration systems [5,6]. It also
arises (at higher transport velocities) in modern fuel cells, porous combustors, advanced heat exchangers,
the flow of air in the lungs and in the atmospheric boundary layer over vegetation. Adding transport
involves solving one additional convection-diffusion problem with the Stokes-Darcy velocity passed
from a Stokes-Darcy model and thus it seems to be a simple elaboration of the model. However, adding
transport introduces new difficulties and apparently is little studied, Section 1.1.

We therefore consider the equation for the concentration c(x, t) of a contaminant being transported,
having a source s(x, t). While each application has its own specific features, a reasonable first description
of this process is the forced convection equation

βct +∇ · (−D∇c+ uc) = s(x, t) in Ω := Ωf ∪ Ωp ∪ I (1)

The free flowing fluid region’s velocity, uf , and pressure, p, and the porous media’s pressure head, φ,
and velocity, up, satisfy

uf,t − ν∆uf +∇p = ff (x, t) and ∇ · uf = 0 in Ωf (2)

S0φt −∇ · (K∇φ) = fp(x, t) and up = −β−1K∇φ in Ωp (3)

The quasi-static limit (as S0 → 0) of the predicted concentration of the full model is studied herein.
The transport velocity u in the concentration Equation (1) is

u =

{
uf in Ωf

up in Ωp

. (4)

For the fluid flow problem various combinations of boundary conditions on the exterior boundary
∂Ω are possible and generally complicate the notation without complicating the analysis. We impose
homogeneous Dirichlet boundary conditions (for clarity of exposition) and the usual initial condition

uf = 0 on ∂Ωf\I and φ = 0 on Ωp\I
uf (x, 0) = u0

f (x) in Ωf and φ(x, 0) = φ0(x) in Ωp

For the concentration we assume that

c = 0 on Γin ⊂ ∂Ω and −D∇c · n̂ = 0 on ∂Ω\Γin
and c(x, 0) = c0(x) in Ω.

There are a variety of possible interface conditions studied for I that describe different types of
interfaces, e.g., [7–9]. Let n̂ be the outward pointing unit normal vector on Ωf and {τ̂i}d−1

i=1 denote
an orthonormal basis of tangent vectors on I . For slow flows across I , conservation of mass, balance of
normal forces and the Beavers-Joseph-Saffman condition [10–12], are increasingly accepted:

uf · n̂− up · n̂ = 0

gφ = p− ν n̂ ·
(
∇uf +∇u>f

)
· n̂

−n̂ ·
(
∇uf +∇u>f

)
· τ̂i = α√

τ̂i·K·τ̂i
uf · τ̂i, i = 1, . . . , d− 1

 on I . (5)
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Interface conditions on the concentration are not needed as a single domain formulation of (1.1)
imposes continuity of concentration and fluxes as natural interface conditions

[c] = 0 and [(−D∇c+ uc) · n̂] = 0, on I (Jump Conditions)

The parameters in the above are as follows
S0 = specific storage ν = kinematic viscosity
K = hydraulic conductivity tensor (SPD) D = dispersion tensor
β = volumetric porosity g = gravitational acceleration
α = experimentally determined coefficient ff/p, s = body forces and sources

Given that S0 is often very small, most of the algorithmic advances have been for the case S0 = 0 and
the concentration the primary variable of interest. The question of convergence of the concentration of
the full model to that predicted by the quasi-static model as S0→ 0 is of significant interest and studied
herein. In Theorem 1 we show that c → cQS as S0 → 0. This extends the analysis in [13] from the
Stokes-Darcy problem to the concentration predicted by the Stokes-Darcy-Transport coupling.

The full model presents several computational and analytical difficulties (addressed herein) that are
explained next. The first is an active nonlinearity in the transport problem. Taking the L2 inner product
of the transport equation with c(x, t) and performing the standard estimates for c(x, t) gives

1

2

d

dt

∫
Ω

βc2 dx+

∫
Ω

D|∇c|2 dx +
1

2

∫
Ω

(∇ · u)c2 dx =

∫
Ω

s c dx

The key term involves∇·u which, in the quasi-static (S0 = 0) case, is a known function (β−1fp) and,
in the fully evolutionary case, is

∇ · u =

{
0 in Ωf ,

β−1
(
−S0

∂φ
∂t

+ fp
)

in Ωp

(6)

Thus, when S0 = 0 the (nonlinear) transport term acts in the a priori estimates, stability and
convergence analysis in a simpler manner than when S0 6= 0.

The second issue is the multitude of small parameters in the full problem. For example, when S0 = 0

the small parameter Kmin > 0 (the minimum eigenvalue of the hydraulic conductivity tensor, K) in
Equation (3) can be eliminated by re-scaling fp. When S0 6= 0 the small parameters in the porous
media equation are active. The transport Equation (1) is also complicated by small parameters in
many applications. In the simplest case where this issue occurs, it reduces to a singularly perturbed
convection diffusion equation with no control on∇ · u, a problem for which methods are comparatively
less well developed.

1.1. Related Work

Porous media transport and transport in a freely flowing fluid describe different physical processes
with different variables, time scales, flow rates and uncertainties. There has been an intense effort at
developing algorithms that use the subdomain/sub-physics codes to maximum effect to solve the coupled
problem, e.g., domain decomposition methods for the equilibrium problem [14–18] and partitioned
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methods for the evolutionary problem [3,8,19–21]. The analytical needs to support reliability of the
resulting predictions have also spurred analytical study of the coupled model. Presented in [21–24]
are analyses for the coupled Stokes-Darcy-Transport problem where the velocity u in Equation (1) is
modeled as either that from a fully steady Stokes-Darcy flow, or from a quasi-static coupled Stokes-Darcy
flow (i.e., Equations (2) and (3) with S0 = 0). In these the quasi-static Stokes-Darcy problem is typically
solved by a domain decomposition procedure and a single domain transport problem is solved. To our
knowledge, while there is for example a journal dedicated to “Transport in Porous Media”, there has
been little progress on the numerical analysis of methods for full uncoupling of ( up, uf , c) of the fully
evolutionary (S0 6= 0) problem.

2. Preliminaries

Let the L2 norms and inner products over Ωp/f and I be denoted respectively by ‖ · ‖p/f/I , (·, ·)p/f/I .
Recall that Ω = Ωp∪Ωf ∪I; the L2 norm and inner product over Ω will be denoted by ‖·‖, (·, ·) (without
subscripts). Let D ⊂ Ω be a regular bounded open set. With the norm ‖ · ‖Lr(0,T ;Lp(D)) defined by
‖f‖Lr(0,T ;Lp(D)) := ‖ ‖f(t)‖Lp(D) ‖Lr(0,T ), we have that Lr(0, T ;Lp(D)) := {f : ‖f‖Lr(0,T ;Lp(D)) <∞}.

We recall that by the Gagliardo-Nirenberg inequality [25] we have

‖ϕ‖L4(D) ≤ C

 ‖ϕ‖
1/2

L2(D)‖ϕ‖
1/2

H1(D) in 2d,

‖ϕ‖1/4

L2(D)‖ϕ‖
3/4

H1(D) in 3d,
∀ϕ ∈ H1(D) (7)

We also recall that by Remark 1.1 in [26] we have

‖ϕ‖L2(D) ≤ C(D)
(
γ(u) + ‖∇ϕ‖L2(D)

)
, ∀ϕ ∈ H1(D) (8)

where γ(u) is a seminorm, continuous on L2(D), which is a norm on constants. Let Γ be a portion
of ∂D with meas(Γ) > 0, and assume that ϕ has zero trace on Γ ⊂ ∂D . Then choosing
γ(u) = ‖u‖L2(Γ) we obtain from Equation (8) that the following Poincaré-Friedrichs type inequality
holds on ker(Γ) = {ψ ∈ H1(D);ψ|Γ = 0}:

‖ϕ‖L2(D) ≤ C(D)‖∇ϕ‖L2(D), ∀ϕ ∈ H1(D), ϕ
∣∣
Γ

= 0 (9)

From Equations (7) and (9) we derive

‖ϕ‖L4(D) ≤ C

 ‖ϕ‖
1/2

L2(D)‖∇ϕ‖
1/2

L2(D) in 2d,

‖ϕ‖1/4

L2(D)‖∇ϕ‖
3/4

L2(D) in 3d,
∀ϕ ∈ H1(D), ϕ

∣∣
Γ

= 0 (10)

If ϕ = 0 on ∂D , then Equation (10) are just the inequalities proved by Ladyzhenskaya [27, Chapter 1].
Denote the (assumed positive) minimum of D by

Dmin = inf
x∈Ω

D(x) > 0

Regularity of the concentration depends on regularity of the Stokes-Darcy variables. In [13] Moraiti
proved that for 0 < T <∞ and data satisfying

ff,t ∈ L2(0, T ;H−1(Ωf )), fp,t ∈ L2(0, T ;H−1(Ωp))
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uf,t(0) ∈ L2(Ωf ), φt(0) ∈ L2(Ωp)

where

uf,t(0) := uf,t(x, 0) = lim
t→0+

uf,t(x, t) = lim
t→0+

(ff (x, t) + ν∆uf (x, t)−∇p(x, t))

φt(0) := φt(x, 0) = lim
t→0+

φt(x, t) = S−1
0 lim

t→0+
(fp(x, t) +∇ · (K∇φ(x, t)))

the following hold uniformly in S0 and will be assumed herein:

uf,t ∈ L∞(0, T ;L2(Ωf )),
√
S0φt ∈ L∞(0, T ;L2(Ωp)) and ∇φt ∈ L2(0, T ;L2(Ωp)) (11)

Additionally we assume

c0 ∈ L2(Ω), ∇c0 ∈ L2(Ω), s ∈ L2(0, T ;L2(Ω)),∇φt(0) ∈ L2(Ωp), and (12)

ff ∈ L∞(0, T ;L2(Ωf )), fp ∈ L∞(0, T ;H1(Ωp)), fp,t ∈ L2(0, T ;L2(Ωp)) (13)

We note that from the Stokes Equation (2) we have

‖∆uf‖L∞(0,T ;L2(Ωf )) ≤ C
(
‖uf,t‖2

L∞(0,T ;L2(Ωf )) + ‖ff‖2
L∞(0,T ;L2(Ωf ))

)
hence under the regularity assumptions in Equations (11) and (13) we obtain that uf ∈ L∞(0, T ;H2(Ωf )).
Also, using energy estimate arguments similar to [13] for the Darcy equation, we have

S0‖K1/2∇φt(t)‖2
p +

∫ t

0

‖∇ · (K∇φt)‖2
pdr ≤ ‖ft,p‖2

L2(0,T ;L2(Ωp)) + S0‖K1/2∇φt(0)‖2
p

which under hypotheses Equations (12) and (13) gives
√
S0∇φt ∈ L∞(0, T ;L2(Ωp)). Moreover,

if K satisfies additional assumptions (e.g., piecewise constant or sufficiently smooth), this also implies
K∇φ ∈ L∞(0, T ;H2(Ωp)). To summarize, in the remainder we assume that uniformly in S0

uf ∈ W 1,∞([0, T ];L2(Ωf )) ∩ L∞(0, T ;H2(Ωf )),
√
S0φ ∈ W 1,∞([0, T ];H1(Ωp)), K∇φ ∈ L∞(0, T ;H2(Ωp))

(14)

and we shall prove in Propositions 1 and 2 that

c ∈ {g : g ∈ L∞(0, T ;H1(Ω)) ∩W 1,2([0, T ];L2(Ω)), g|Γin
= 0}

and give estimates of ‖c − cQS‖ as S0 → 0. Throughout we use C to denote a generic positive
constant, whose actual value may vary from line to line in the analysis. We begin with the following
a priori estimate.

Proposition 1. (The first estimate) Suppose 0 < T < ∞, the problem data for Equations (2) and (3) is
such that Equations (11)–(13) hold. Then

c ∈ L∞(0, T ;L2(Ω)) and ∇c ∈ L2(0, T ;L2(Ω)). (15)
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Proof. For the transport Equation (1), multiply by c(x, t) and integrate over Ω. This gives

1

2
β
d

dt
‖c‖2 + ‖

√
D∇c‖2+

1

2

∫
Ω

(∇ · u)c2dx = (s, c)

Since∇·u = 0 in the fluid region and∇·u = −β−1 (S0φt − fp) in the porous media region the third
term is

1

2

∫
Ω

(∇ · u)c2dx = − 1

2β

∫
Ωp

(S0φt − fp) c2dx

Thus we have

1

2
β
d

dt
‖c‖2 + ‖

√
D∇c‖2 = (s, c)− 1

2β

∫
Ωp

fpc
2dx+

S0

2β

∫
Ωp

φtc
2dx

≤ 1

2
‖s‖2 +

1

2
‖c‖2 − 1

2β

∫
Ωp

fpc
2dx+

S0

2β

∫
Ωp

φtc
2dx

The critical term is
∫
φtc

2dx and estimates for this term depend on estimates for φt. Thus, by
Hölder’s inequality ∣∣∣∣∣S0

2β

∫
Ωp

φtc
2dx

∣∣∣∣∣ ≤ S0

2β
‖φt‖p‖c‖2

L4(Ωp)

Inequalities Equation (10) for ‖c‖2
L4 imply∣∣∣∣∣S0

2β

∫
Ωp

φtc
2dx

∣∣∣∣∣ ≤ C

β
S0‖φt‖p

{
‖c‖p‖∇c‖p in 2d,
‖c‖1/2

p ‖∇c‖3/2
p in 3d

(16)

An analogous bound to Equation (16) holds for
∫

Ωp
fpc

2dx.
We consider the 2d and 3d cases separately.
The 2d case. Since ‖∇c‖p ≤ D

−1/2
min ‖

√
D∇c‖p, in 2d we have

1

2
β
d

dt
‖c‖2 + ‖

√
D∇c‖2

≤ 1

2
‖s‖2 +

1

2
‖c‖2 +

C

β
(‖fp‖p + S0‖φt‖p) ‖c‖p‖∇c‖p

≤ 1

2
‖s‖2 +

1

2
‖c‖2 +

1

2
‖
√
D∇c‖2

p +D−1
min

C

β2

(
‖fp‖2

p + S2
0‖φt‖2

p

)
‖c‖2

p

Thus we have

d

dt
‖c‖2 +

1

β
‖
√
D∇c‖2 ≤ 1

β
‖s‖2 +

1

β

(
1 +D−1

min

C

β2

(
‖fp‖2

p + S2
0‖φt‖2

p

))
‖c‖2 (17)

Proceeding as in the proof of Grönwall’s inequality, with µ(t) =
∫ t

0
1
β

[
1 + D−1

min
C
β2 (‖fp(ξ)‖2

p +

S2
0‖φt(ξ)‖2

p)
]
dξ, multiplying Equation (17) by exp(−µ(t)) and rearranging we have

d

dt

(
exp(−µ(t))‖c(t)‖2

)
+

1

β
exp(−µ(t))‖

√
D∇c‖2 ≤ 1

β
exp(−µ(t))‖s‖2 (18)

Integrating Equation (18) from 0 to t, and then multiplying through by exp(µ(t)) yields

‖c(t)‖2 +
1

β

∫ t

0

exp(µ(t)− µ(ξ))‖
√
D∇c(ξ)‖2dξ (19)
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≤ exp(µ(t))‖c0‖2 +
1

β

∫ t

0

exp(µ(t)− µ(ξ))‖s(ξ)‖2dξ

With the assumed regularity Equations (11) and (12), and the boundedness of exp(µ(T )),
Equation (15) now follows.

The 3d case. In 3d we have

1

2
β
d

dt
‖c‖2 + ‖

√
D∇c‖2

≤ 1

2
‖s‖2 +

1

2
‖c‖2 +

C

β
(‖fp‖p + S0‖φt‖p) ‖c‖1/2

p ‖∇c‖3/2
p

≤ 1

2
‖s‖2 +

1

2
‖c‖2 + ‖

√
D∇c‖3/2

p

(
D
−3/4
min

C

β
(‖fp‖p + S0‖φt‖p)‖c‖1/2

p

)
For the last term we use ab ≤ 3

4
a4/3 + 1

4
b4. This gives, after rearranging,

d

dt
‖c‖2 +

1

2β
‖
√
D∇c‖2 ≤ 1

β
‖s‖2 +

1

β

(
1 +D−3

min

C

β4

(
‖fp‖4

p + S4
0‖φt‖4

p

))
‖c‖2

Now, proceeding as in the 2d case we obtain Equation (15).

3. Validity of the Quasi-Static Model

Let cQS(x, t) be the solution of Equation (1) with S0 = 0, i.e., u = uQS , the solution of the quasi-static
Stokes-Darcy problem, where

∇ · uQS =

{
0, in Ωf ,
1
β
fp, in Ωp

(20)

Define
ec(x, t) := c(x, t)− cQS(x, t) and eu(x, t) := u(x, t)− uQS(x, t)

and note that ec(x, 0) = 0, and eu(x, 0) = 0. In Theorem 1 we show that c→ cQS as S0 → 0. To prove
convergence in 3d, we first obtain a second a priori bound for the concentration c, given next.

Proposition 2. (The second estimate) Assuming Equations (11) and (12), we have that uniformly in S0

∇c ∈ L∞(0, T ;L2(Ω)) and ct ∈ L2(0, T ;L2(Ω)) (21)

Proof. Take the inner product of Equation (1) with ct, integrate over Ω, and apply the divergence
theorem. This yields:

β (ct, ct)− (∇ · (D∇c) , ct) + (∇ · (uc) , ct) = (s, ct) and thus

β‖ct‖2 + 1
2
d
dt
‖
√
D∇c‖2 = (s, ct)− (∇ · (uc) , ct)
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Using Cauchy-Schwarz and Young inequalities and absorbing terms on the left-hand side, we have

β
2
‖ct‖2 + 1

2
d
dt
‖
√
D∇c‖2 ≤ β−1

(
‖s‖2 + ‖∇ · (uc) ‖2

)
= β−1

(
‖s‖2 + ‖c∇ · u+ u · ∇c‖2

)
≤ β−1

(
‖s‖2 + 2‖c∇ · u‖2 + 2‖u · ∇c‖2

)
We treat only the 3d case, because the 2d case follows in a similar way. Integrating over (0, t),

0 < t ≤ T , using the Young inequality and inequality Equation (10) we get

‖
√
D∇c(t)‖2 + β

∫ t

0

‖cr(r)‖2 dr

≤ ‖
√
D∇c(0)‖2 + 2β−1

∫ t

0

(
‖s(r)‖2 + 2‖c(r)∇ · u(r)‖2 + 2‖u(r) · ∇c(r)‖2

)
dr

≤ ‖
√
D∇c(0)‖2 + 2β−1

∫ t

0

(
‖s(r)‖2 + 2‖c(r)‖2

L4(Ω)‖∇ · u(r)‖2
L4(Ω) + 2‖u(r)‖2

L∞(Ω)‖∇c(r)‖2
)
dr

≤ ‖
√
D∇c(0)‖2 + 2β−1

∫ t

0

‖s(r)‖2 dr + 4β−1

∫ t

0

(
‖∇c(r)‖2 + C‖c(r)‖2‖∇ · u(r)‖8

L4(Ω)

)
dr

+ 4β−1

∫ t

0

‖u(r)‖2
L∞(Ω)‖∇c(r)‖2 dr

≤ ‖
√
D∇c(0)‖2 + 2β−1‖s‖2

L2(0,T ;L2(Ω)) + 4β−1‖∇c‖2
L2(0,T ;L2(Ω))

+ Cβ−1

∫ t

0

‖c(r)‖2‖∇ · u(r)‖8
L4(Ω) dr + 4β−1‖u‖2

L∞(0,T ;L∞(Ω))‖∇c‖2
L2(0,T ;L2(Ω)) (22)

The second to last term in Equation (22) is treated as follows. From Equation (6) and again using
Equation (10) we have∫ t

0

‖c(r)‖2‖∇ · u(r)‖8
L4(Ω) dr ≤ ‖c‖2

L∞(0,T ;L2(Ω))

∫ t

0

‖β−1(−S0φt(r) + fp(r))‖8
L4(Ωp)dr

≤ β−827 ‖c‖2
L∞(0,T ;L2(Ω))

∫ t

0

(
S8

0‖φt(r)‖8
L4(Ωp) + ‖fp(r)‖8

L4(Ωp)

)
dr

≤ C ‖c‖2
L∞(0,T ;L2(Ω))

∫ t

0

(
S8

0‖φt(r)‖2
p‖∇φt(r)‖6

p + ‖fp‖2
p‖∇fp‖6

p

)
dr

≤ C‖c‖2
L∞(0,T ;L2(Ω))

(
S8

0‖φt‖2
L∞(0,T ;L2(Ωp))

∫ t

0

‖∇φt(r)‖6
p dr + ‖fp‖2

L∞(0,T ;L2(Ωp))

∫ t

0

‖∇fp(r)‖6
pdr
)
.

For estimating the norm ‖u‖2
L∞(0,T ;L2(Ω)) in the last term in Equation (22) we use Equations (4) and (3),

Sobolev embeddings and Equation (14)

‖u‖2
L∞(0,T ;L∞(Ω)) = ‖uf‖2

L∞(0,T ;L∞(Ωf )) + ‖up‖2
L∞(0,T ;L∞(Ωp))

= ‖uf‖2
L∞(0,T ;L∞(Ωf )) + β−2‖K∇φ‖2

L∞(0,T ;L∞(Ωp))

≤ C
(
‖uf‖2

L∞(0,T ;H2(Ωf )) + β−2‖K∇φ‖2
L∞(0,T ;H2(Ωp))

)
.

Finally, using Equations (12)–(15), and taking the supremum over [0, T ], we obtain Equation (21).

We can now prove convergence of the concentration to the quasi-static approximation.



Axioms 2015, 4 526

Theorem 1. (Quasi-static limit) Assume Equations (11) and (12) hold. Then for T <∞

‖ec‖L∞(0,T ;L2(Ω)) ≤ C(T, data)S0

‖
√
D∇ec‖L2(0,T ;L2(Ω)) ≤ C(T, data)S0

Proof. Subtract the concentration equation and its quasi-static form. Next add and subtract uQSc in the
transport term (∇ ·

(
uc− uQScQS

)
):

βect −∇ · (D∇ec) +∇ ·
(
uc− uQScQS

)
= 0 and thus

βect −∇ · (D∇ec) +∇ · (euc) +∇ ·
(
uQSec

)
= 0

Take the inner product with ec, integrate over Ω, and apply integration by parts to obtain

β
2
d
dt
‖ec‖2 + ‖

√
D∇ec‖2 − (c, eu · ∇ec) +

(
∇ ·
(
uQSec

)
, ec
)

= 0

Expanding and using integration by parts, we write(
∇ ·
(
uQSec

)
, ec
)

= 1
2

(
∇ ·
(
uQSec

)
, ec
)

+ 1
2

(
∇ ·
(
uQSec

)
, ec
)

= 1
2
(∇ · uQS, (ec)2) +((((

((((1
2

(
uQS, ec∇ec

)
+ 1

2
〈uQS · n̂,��

�*0
(ec)2〉∂Ω −(((((

(((1
2

(
uQS, ec∇ec

)
= 1

2β

(
fp, (e

c)2
)

Hence,
β
2
d
dt
‖ec‖2 + ‖

√
D∇ec‖2 = (c, eu · ∇ec)− 1

2β

(
fp, (e

c)2
)

(23)

Applying Equation (10), Poincaré-Friedrichs and Young’s inequalities we bound

(c, eu · ∇ec) ≤ C

{
‖∇ec‖‖eu‖1/2‖∇eu‖1/2‖c‖1/2‖∇c‖1/2, in 2d
‖∇ec‖‖eu‖1/4‖∇eu‖3/4‖c‖1/4‖∇c‖3/4, in 3d

≤ C

{
D
−1/2
min ‖

√
D∇ec‖‖∇eu‖‖∇c‖, in 2d

D
−1/2
min ‖

√
D∇ec‖‖∇eu‖‖∇c‖, in 3d

≤ 1

4
‖
√
D∇ec‖2 + C‖∇eu‖2‖∇c‖2 (24)

Next,

1

2β

(
fp, (e

c)2
)
≤ C

2β
‖fp‖p

{
‖ec‖ ‖∇ec‖, in 2d
‖ec‖1/2 ‖∇ec‖3/2, in 3d

≤

{
1
4
‖
√
D∇ec‖2 + C

β2D
−1
min‖fp‖2

p‖ec‖2, in 2d
1
4
‖
√
D∇ec‖2 + C

4β4D
−3
min‖fp‖4

p‖ec‖2, in 3d
(25)

We focus on the 3d case. The 2d case follows similarly. Combining Equations (23)–(25),
and rearranging we have

d

dt
‖ec‖2 +

1

β
‖
√
D∇ec‖2 ≤ C

β5
D−3
min‖fp‖4

p‖ec‖2 + C‖∇eu‖2‖∇c‖2
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i.e., for µ(t) = CD−3
min/(β

5)
∫ t

0
‖fp(ξ)‖4

p dξ, and ‖ec(0)‖2 = 0,

‖ec(t)‖2 +
1

β

∫ t

0
exp(µ(t)− µ(ξ))‖

√
D∇ec(ξ)‖2 dξ ≤ C

∫ t

0
exp(µ(t)− µ(ξ))‖∇eu(ξ)‖2‖∇c(ξ)‖2 dξ (26)

In [13] it is proven that, under the stated assumptions, the following hold for euf := uf − uQSf ,
eup := up − uQSp :

‖euf‖L∞(0,T ;L2(Ωf )) = O(S0) , ‖eup‖L∞(0,T ;L2(Ωp)) = O(
√
S0)

‖∇euf‖L2(0,T ;L2(Ωf )) = O(S0) , ‖∇eup‖L2(0,T ;L2(Ωp)) = O(S0)

and the analysis revealed that the convergence is sensitive in Kmin, in that the constants in the
convergence analysis are proportional to 1/

√
Kmin. Thus,

‖∇eu‖L2(0,T ;L2(Ω)) = O(S0) (27)

With the a priori bound in Equation (15), our assumptions Equation (12), the boundedness of
exp(µ(T )), taking the supremum over [0, T ] in Equation (26), in view of Equation (27), we obtain
the first-order convergence of c to cQS as S0 → 0, completing the proof.

4. Conclusions

We conclude that the quasi-static transport model for the concentration of contaminants is justified
when the specific storage parameter, S0, is small when compared to the minimum eigenvalues Kmin and
Dmin of the hydraulic conductivity tensor, K, and dispersion tensor, D, respectively.
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