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Abstract: Pathway idea is a switching mechanism by which one can go from one functional
form to another, and to yet another. It is shown that through a parameter α, called the
pathway parameter, one can connect generalized type-1 beta family of densities, generalized
type-2 beta family of densities, and generalized gamma family of densities, in the scalar
as well as the matrix cases, also in the real and complex domains. It is shown that when
the model is applied to physical situations then the current hot topics of Tsallis statistics
and superstatistics in statistical mechanics become special cases of the pathway model, and
the model is capable of capturing many stable situations as well as the unstable or chaotic
neighborhoods of the stable situations and transitional stages. The pathway model is shown
to be connected to generalized information measures or entropies, power law, likelihood ratio
criterion or λ−criterion in multivariate statistical analysis, generalized Dirichlet densities,
fractional calculus, Mittag-Leffler stochastic process, Krätzel integral in applied analysis,
and many other topics in different disciplines. The pathway model enables one to extend
the current results on quadratic and bilinear forms, when the samples come from Gaussian
populations, to wider classes of populations.
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1. Introduction

The pathway idea was originally prepared by Mathai in the 1970’s in connection with population
models, and later rephrased and extended, Mathai [1], to cover scalar as well as matrix cases as made
suitable for modelling data from statistical and physical situations. For practical purposes of analyzing
data of physical experiments and in building up models in statistics, we frequently select a member from
a parametric family of distributions. But it is often found that the model requires a distribution with a
thicker or thinner tail than the ones available from the parametric family, or a situation of right tail cut-off.
The experimental data reveal that the underlying distribution is in between two parametric families of
distributions. In order to create a pathway from one functional form to another, a pathway parameter is
introduced and a pathway model is created in Mathai [1]. The main idea behind the derivation of this
model is the switching properties of going from one family of functions to another and yet another family
of functions. The model enables one to proceed from a generalized type-1 beta model to a generalized
type-2 beta model to a generalized gamma model when the variable is restricted to be positive. Thus the
pathway parameter α takes one to three different functional forms. This is the distributional pathway.
More families are available when the variable is allowed to vary over the real line. Mathai [1] deals
mainly with rectangular matrix-variate distributions and the scalar case is a particular case there. For the
real scalar case the pathway model is the following:

f1(x) = c1x
γ−1[1− a(1− α)xδ]

η
1−α (1)

a > 0, δ > 0, 1 − a(1 − α)xδ > 0, γ > 0, η > 0 where c1 =
δ(a(1−α))

γ
δ Γ( η

1−α+1+ γ
δ

)

Γ( γ
δ

)Γ( η
1−α+1)

for α < 1, is
the normalizing constant if a statistical density is needed and α is the pathway parameter. For α < 1

the model remains as a generalized type-1 beta model in the real case. Other cases available are the
regular type-1 beta density, Pareto density, power function, triangular and related models. Observe that
Equation (1) is a model with the right tail cut off. When α > 1 we may write 1− α = −(α− 1), α > 1

so that f(x) assumes the form,

f2(x) = c2x
γ−1[1 + a(α− 1)xδ]−

η
α−1 , x > 0 (2)

which is a generalized type-2 beta model for real x and c2 =
δ(a(α−1))

γ
δ Γ( η

α−1
)

Γ( γ
δ

)Γ( η
α−1
− γ
δ

)
for α > 1, is the

normalizing constant, if a statistical density is required. Beck and Cohen’s superstatistics belong to
this case Equation (2) (for more details see, [2,3]). Again, dozens of published papers are available on
the topic of superstatistics in statistical mechanics. For γ = 1, a = 1, δ = 1 we have Tsallis statistics for
α > 1 from Equation (2) (for more details [4,5]). Other standard distributions coming from this model
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are the regular type-2 beta, the F-distribution, Lévi models and related models. When α→ 1, the forms
in Equations (1) and (2) reduce to

f(x) = cxγ−1e−bxδ , x > 0, b = aη (3)

where c = δb
γ
δ

Γ( γ
δ

)
, is the normalizing constant. This includes generalized gamma, gamma, exponential,

chisquare, Weibull, Maxwell-Boltzmann, Rayleigh, and related models (for more details see, [6,7]). If
x is replaced by |x| in Equation (1) then more families of distributions are covered in Equation (1). The
behavior of the pathway model for various values of the pathway parameter α can be seen from the
following figures.

From the Figure 1(Left) we can see that, as α moves away from 1 the function f2(x) moves away
from the origin and it becomes thicker tailed and less peaked. From the path created by α we note that
we obtain densities with thicker or thinner tail compared to generalized gamma density. From Figure 1
(Right) we can see that when α moves from −∞ to 1, the curve becomes thicker tailed and less peaked,
see ([8,9]). Note that α is the most important parameter here for enabling one to more than one family of
functions. The other parameters are the usual parameters within each family of functions. The following
is a list of some particular cases and the transformations are listed to go from the extended versions to
the regular cases.

Figure 1. (Left) The graph of f1(x), for γ = η = a = 1, δ = 2 and for various values of α.
(Right) The graph of f2(x), for γ = η = a = 1, δ = 2 and for various values of α.

α = 1, γ = 1, a = 1, δ = 1 Gaussian or normal density for∞ < x <∞

α = 1, γ − 1 = 3
4
, a = 1, δ = 1 Maxwell-Boltzmann density

α = 1, γ − 1 = 1
2
, a = 1, δ = 1 Rayleigh density

α = 1, γ = n
2
, a = 1, δ = 1 Hermert density

α = 0, γ = 1, η = 1, δ = 1 U-shaped density

α = 2, γ = 1, η = ν+1
2

a = 1
ν
, δ = 1 Student-t for ν degrees of freedom, −∞ < x <∞

α = 2, η = 1, a = 1, δ = 1 Caushy density for −∞ < x <∞

α < 1, a(1− α) = 1, δ = 1 Standard type-1 beta density
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α > 1, a(1− α) = 1, δ = 1 Standard type-2 beta density

γ − 1 = 1
2
, η = 1, a = 1, δ = 1 Tsallis statistics in Astrophysics,

Power law, q-binomial density

α = 0, γ − 1 = 1
2
, η = 1, δ = 1 Triangular density

α = 2, γ − 1
2

= m
2
, a = m

n
η = m+1

2
, δ = 1 F-density

α = 1, γ − 1 = 1
2
, a = 1, η = mg

KT
, δ = 1 Helley’s density in physics

α = 1, a = 1, δ = 1 Gamma density

α = 1, a = 1, γ − 1
2

= ν
2
, η = 1

2
, δ = 1 Chisquare density for ν degrees of freedom

α = 1, a = 1 γ − 1 = 1
2
, δ = 1 Exponential density (Laplace density

with x = |z|, −∞ < z <∞)

α = 1, a = 1 Generalized gamma density

α = 1, a = 1, γ − 1 = 1
2

Weibull density

α = 2, a = 1, γ − 1 = 1
2
, η = 2, δ = 1, x = ey Logistic density for −∞ < y <∞

α = 2, a = 1, γ = 1, η = 1, δ = 1, x = eε+µy , ε 6= 0, µ > 0, Fermi-Dirac density, 0 ≤ y <∞

1.1. Pathway Model from Mathai’s Entropy Measure

In physical situations when an appropriate density is selected, one procedure is the maximization
of entropy. Mathai and Rathie [10] consider various generalizations of Shannon entropy measure and
describe various properties including additivity, characterization theorem etc. Mathai and Haubold ([11])
introduced a new generalized entropy measure which is a generalization of the Shannon entropy measure.
For a multinomial population P = (p1, . . . , pk), pi > 0, i = 1, . . . , k, p1+p2+· · ·+pk = 1, the Mathai’s
entropy measure is given by the relation

Mk,α(P ) =

k∑
i=1

p2−α
i − 1

α− 1
, α 6= 1, −∞ < α < 2. (discrete case)

Mα(f) =
1

α− 1

[∫ ∞
−∞

[f(x)]2−αdx− 1

]
, α 6= 1, α < 2 (continuous case)

By optimizing Mathai’s entropy measure, one can arrive at pathway model of Mathai [1], which
consists of many of the standard distributions in statistical literature as special cases. For fixed α,
consider the optimization of Mα(f), which implies optimization of

∫
x
[f(x)]2−αdx, subject to the

following conditions:

(i) f(x) ≥ 0, for all x

(i)
∫
x
f(x)dx <∞

(i)
∫
x
xρ(1−α)f(x)dx = fixed for all f
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(i)
∫
x
xρ(1−α)+δf(x)dx = fixed for all f,where ρ and δ are fixed parameters

By using calculus of variation, one can obtain the Euler equation as

∂

∂f
[f 2−α − λ1x

ρ(1−α)f + λ2x
ρ(1−α)+δf ] = 0

⇒ (2− α)f 1−α = λ1x
ρ(1−α)[1− λ2

λ1

xδ], α 6= 1, 2

⇒ f1 = c1x
ρ[1− a(1− α)xδ]

1
1−α (4)

for λ2
λ1

= a(1− α) for some a > 0. For more details see ([12,13]).
When α → 1, the Mathai’s entropy measure Mα(f) goes to the Shannon entropy measure and this

is a variant of Havrda-Charvát entropy, and the variant form therein is Tsallis entropy. Then when α
increases from 1, Mα(f) moves away from Shannon entropy. Thus α creates a pathway moving from
one function to another, through the generalized entropy also. This is the entropic pathway. One can
derive Tsallis statistics and superstatistics (for more details see, [2–5]) by using Mathai’s entropy.

The pathway parameter α offers the differential pathway also. Let us consider

g(x) =
f1(x)

c1

= xβ[1− a(1− α)xδ]
1

1−α , x > 0, β = γ − 1, η = 1

d

dx
g(x) =

β

x
g(x)− aδxδ−1+(1−α)γ[g(x)]α

= −a[g(x)]α for β = 0, δ = 1 (5)

This is the power law. When η = 1 then the differential equation satisfied by g3 = f
c

of Equation (3)
is given by

d

dx
g3(x) =

β

x
− aδxδ−1g3(x)

= −a[g3(x)] for β = γ − 1 = 0, δ = 1 (6)

Thus when α moves to 1 the differential pathway is from the power law in Equation (5) to the
maxwell-Boltzmann in Equation (6).

1.2. Laplacian Density and Stochastic Processes

The real scalar case of the pathway model in Equation (1), when x is replaced by |x| and α→ 1, takes
the form

f3(x) = c3|x|γ−1e−a|x|
δ

,−∞ < x <∞, a > 0 (7)

The density in Equation (7) for γ = 1, δ = 1 is the simple Laplace density. For γ = 1 we have the
symmetric Laplace density. A general Laplace density is associated with the concept of Laplacianness
of quadratic and bilinear forms. For the concept of Laplacianness of bilinear forms, corresponding to the
chisquaredness of quadratic forms, and for other details see [14,15]. Laplace density is also connected
to input-output type models. Such models can describe many of the phenomena in nature. When two
particles react with each other and energy is produced, part of it may be consumed or converted or lost
and what is usually measured is the residual effect. The water storage in a dam is the residual effect of
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the water flowing into the dam minus the amount taken out of the dam. Grain storage in a sylo is the
input minus the grain taken out. It is shown in Mathai ([16]) that when we have gamma type input and
gamma type output the residual part z = x− y, x = input variable, y = output variable, then the special
cases of the density of z is a Laplace density. In this case one can also obtain the asymmetric Laplace
and generalized Laplace densities, which are currently used very frequently in stochastic processes, as
special cases of the input-output model. Some aspects of the matrix version of the input-output model is
also described in [16].

1.3. Mittag-Leffler Density and Processes

Recently there is renewed interest in Mittag-Leffler function as a model in many applied areas due
to many reasons, one being that it gives a thicker tail compared to the exponential model. Fractional
differential equations often lead to Mittag-Leffler functions and their generalizations as solutions,
especially when dealing with fractional equations in reaction-diffusion problems. A large number of
such situations are illustrated in [13,17,18]. The Mittag-Leffler density, associated with a 3-parameter
Mittag-Leffler function is the following:

f(x) =
xαβ−1

δβ

∞∑
k=0

(β)k
k!

(−xα)k

δkΓ(αk + αβ)
, 0 ≤ x <∞, δ > 0, β > 0 (8)

It has the Laplace transform

Lf (t) = [1 + δtα]−β, 1 + δtα > 0 (9)

If δ is replaced by δ(q − 1) and β by β
(q−1)

, q > 1 and if we consider q approaching to 1 then we have

lim
q→1

Lf (t) = lim
q→1

[1 + δ(q − 1)tα]−
β
q−1 = e−δβt

α

(10)

But this is the Laplace transform of a constant multiple of a positive Lévy variable with parameter
α, 0 < α ≤ 1, with the multiplicative constant being (δβ)

1
α , and thus the limiting form of a Mittag-Leffler

distribution is a Lévy distribution. A connection of pathway model to Mittag-Leffler function is given in
[19,20]. There is vast literature on Mittag-Leffler stochastic processes, see for example [21,22].

1.4. Laplace Transform of the Pathway Model

Let Lf2(t) be the Laplace transform of the pathway model f2(x) of Euqation (2). That is

Lf2(t) = c2

∫ ∞
0

e−txxγ−1[1 + a(α− 1)xδ]−
η

α−1 dx, a > 0, b > 0, δ > 0,

η > 0, α > 1 (11)

Here the integrand can be taken as a product of positive integrable functions and then we can apply
Mellin transform and inverse Mellin transform technique to evaluate the above integral. The integral in
Equation (11) can be looked upon as the Mellin convolution of exponential density and superstatistics.
Let us transform x1 and x2 to u = x1

x2
and v = x2, then we can see that the marginal density of u obtained
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is actually the Laplace transform that we want to evaluate. Since the density is unique, in whatever
way we evaluate the density we should get the same function or the functions will be identical. We can
evaluate the density of u by the method of inverse Mellin transform, see [9]. Comparing the density
obtained in these two different methods, we will get the Laplace transform of the pathway model given
in Equation (2) as an H-function

Lf2(t) =
1

Γ(γ
δ
)Γ( η

α−1
− γ

δ
)
H2,1

1,2

[
t

a
1
δ (α− 1)

1
δ

∣∣∣∣(1− γδ 1
δ

)

(0,1),( η
α−1
− γ
δ
− 1
δ
, 1
δ

)

]
, (12)

for <(γ) > 0, <( η
α−1
− γ

δ
) > 0, α > 1, where H− function is defined as

Hm,n
p,q

[
z
∣∣(a1,α1),...,(ap,αp)

(b1,β1),,...,(bq ,βq)

]
=

1

2πi

∫
L

φ(s) z−sds (13)

where

φ(s) =

{∏m
j=1 Γ(bj + βjs)

} {∏n
j=1 Γ(1− aj − αjs)

}{∏q
j=m+1 Γ(1− bj − βjs)

} {∏p
j=n+1 Γ(aj + αjs)

}
where αj, j = 1, 2, ..., p and βj, j = 1, 2, ..., q are real positive numbers, aj, j = 1, 2, ..., p and
bj, j = 1, 2, ..., q are complex numbers, L is a contour separating the poles of Γ(bj+βjs), j = 1, 2, ...,m

from those of Γ(1 − aj − αjs), j = 1, 2, ..., n. When α1 = 1 = · · · = αp = β1 = 1 = · · · = βq, then
the H−function reduces to Meijer’s G− function, for more details see [18]. In a similar way we can
evaluate the Laplace transform of the pathway model for α < 1 and is given by

Lf1(t) = c1

∫ [ 1
a(1−α)

] 1
δ

0

e−txxγ1 [1− a(1− α)xδ]
η

1−αdx

=
Γ(1 + η

1−α + γ
δ
)

Γ(γ
δ
)

H1,1
1,2

[
t

a
1
δ (1− α)

1
δ

∣∣∣∣(1− γδ , 1δ )

(0,1),(− η
1−α−

γ
δ
, 1
δ

)

]
, <(γ) > 0 (14)

THEOREM 1. For <(γ) > 0, <( η
α−1
− γ

δ
) > 0, δ > 0, η > 0, x > 0, α > 1, the Laplace transform

(or the corresponding moment generating function) of the pathway model of the form f2(x), given in
Euqation (12) goes to the Laplace transform (moment generating function) of the generalized gamma
density given in Euqation (15) when α→ 1+.

THEOREM 2. For <(γ) > 0, δ > 0, η > 0, x > 0, α < 1, the Laplace transform (or the
corresponding moment generating function) of the pathway model of the form f2(x), given in
Euqation (14) goes to the Laplace transform (moment generating function) of the generalized gamma
density given in Euqation (15) when α→ 1−.

The limiting case is given by

Lf (t) = c

∫ ∞
0

e−txxγe−bx
δ

dx

=
1

Γ(γ
δ
)
H1,1

1,1

[
t

b
1
δ

∣∣∣∣(1− γδ , 1δ )

(0,1)

]
(15)
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The Laplace transform of this density also provides the moment generating function of the extended
gamma density thereby the moment generating functions of extended form of Weibull, chisquare,
Reyleigh, Maxwell-Boltzmann, exponential and other densities in this general class. Usually we do
not find the moment generating function or Laplace transform and the characteristic function of the
generalized gamma density in the literature when δ 6= 1. Here we obtained the Laplace transform of the
generalized gamma density, besides giving an extension to this density.

1.5. Multivariate Generalizations

One generalization of the model in Euqation (1) for one scalar case is given by

f1(x1, x2, · · · , xn) = Kxγ1−1
1 xγ2−1

2 · · ·xγn−1
n

×[1− (1− α)(a1x
δ1
1 + a2x

δ2
2 + · · ·+ anx

δn
n )]

η
1−α (16)

α < 1, η > 0, ai > 0, δj > 0, i = 1, 2, · · · , n, 1 − (1 − α)
∑n

i=1 aix
δi
i > 0. We can see that

Equation (16) is the Dirichlet family of densities. For α < 1, Equation (16) stays in the type-1 Dirichlet
form and for α > 1 it stays as a type-2 Dirichlet form. This multivariate analogue can also produce
multivariate extensions to Tsallis statistics and superstatistics. Here the variables are not independently
distributed, but when α→ 1 we have a surprising result that x1, x2, · · · , xn will become independently
distributed generalized gamma variables. Various generalizations of the pathway model are considered
by Mathai and associates. The normalizing constants can be obtained by integrating out the variables
one at a time, starting from xn an going to x1 (see [23]).

2. Connections to Astrophysics and Statistical Mechanics

2.1. Superstatistics Consideration and Pathway Model

Beck and Cohen [3] developed the concept of superstatistics in statistical mechanics. From a statistical
point of view, the procedure is equivalent to starting with a conditional density for a random variable x at
a given value of a parameter θ. Then assume the parameter θ has a prior density. Consider the conditional
density of the form

fx|θ(x|θ) = k1x
γe−θx

δ

, γ + 1 > 0, θ > 0, δ > 0, x > 0 (17)

where k1 = δθ
γ+1
δ

Γ( γ+1
δ

)
. Suppose that θ has an exponential density given by fθ(θ) = λe−λθ,

λ > 0, θ > 0. Then the unconditional density of x is given by

fx(x) =

∫
θ

fx|θ(x|θ)fθ(θ)dθ

=
δΓ(γ+1

δ
+ 1)xγ[1 + xδ

λ
]−( γ+1

δ
+1)

λ
γ+1
δ Γ(γ+1

δ
)

(18)

(see [2,3,11,18,24,25]). Equation (18) is the superstatistics of Beck and Cohen [3], in the sense
of superimposing another distribution or the distribution of x with superimposed distribution of the
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parameter θ. In a physical problem the parameter θ may be something like temperature having its own
distribution. Several physical interpretations of superstatistics are available from the papers of Beck and
others. The factor [1 + xδ

λ
]−( γ+1

δ
+1) written as [1 + (α − 1)xδ]−

1
α−1 , α > 1 is the foundation for the

current hot topic of Tsallis statistics in non-extensive statistical mechanics. Observe that only a form of
the type [1 + xδ

λ
]−( γ+1

δ
+1) where 1 + xδ

λ
> 0, λ > 0, xδ > 0, γ+1

δ
+ 1 > 0, that is, only a type-2 beta

form can come from such a consideration. In other words a type-1 beta form cannot come because for
the convergence of the integral in Euqation (18), a + xδ must be positive with λ > 0 and xδ > 0. It
is to be pointed out here that the superstatistics of Beck and Cohen [2] and Beck [3] are available from
the procedure given above. It goes without saying that only type-2 beta form as given in Euqation (2) is
available from superstatistics considerations, see [26]. The conditional density of the random variable θ,
given x is the posterior probability density of θ and is given by

fθ|x(θ|x) =
fθ(θ)fx|θ(x|θ)

fx(x)

=
λ
γ+1
δ

+1[1 + xδ

λ
]
γ+1
δ

+1

Γ(γ+1
δ

+ 1)
e−θ(λ+xδ)θ

γ+1
δ , θ > 0 (19)

With the help of Euqation (19) we can obtain the Bayes’ estimate of the parameter θ. To this extent, let

Φ(x) = Eθ|x(θ|x) =

∫ ∞
0

θfθ|x(θ|x)dθ

=
γ+1
δ

+ 1

λ+ xδ
(20)

Superstatistics and Tsallis statistics in statistical mechanics are given interpretations in terms of
Bayesian statistical analysis. Subsequently superstatistics is extended by replacing each component
of the conditional and marginal densities by Mathai’s pathway model and further both components are
replaced by Mathai’s pathway model. This produces a wide class of mathematically and statistically
interesting functions for prospective applications in statistical physics, see [19]. The same procedure can
be used to look at the extended forms. Let the conditional density of x, given θ, be of the form

fαx|θ(x|θ) = k2x
γ[1 + θ(α− 1)xδ]−

1
α−1 , x > 0, θ > 0, α > 1, δ > 0 (21)

where k2 =
δ(θ(α−1))

γ+1
δ Γ( 1

α−1
)

Γ( γ+1
δ

)Γ( 1
α−1
− γ+1

δ
)

and assume that the parameter θ has a prior density fθ(θ) = λe−λθ, λ >

0, θ > 0. Then the unconditional density of x is given by

fαx(x) =
λδx−(δ+1)

(α− 1)Γ(γ+1
δ

)Γ( 1
α−1
− γ+1

δ
)
G2,1

1,2

[
λ

xδ(α− 1)

∣∣∣∣− γ+1
δ

0, 1
α−1
− γ+1

δ
−1

]
, x > 0 (22)

where G2,1
1,2(·) is a G−function. For the theory and application of the functions see Mathai [7]. The

posterior probability density is given by

fαθ|x(θ|x) = c−1
4 (α− 1)

γ+1
δ

+1xγ+δ+1Γ(
1

α− 1
)θ

γ+1
δ e−λθ[1 + θ(α− 1)xδ]−

1
α−1 (23)
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where c4 = G2,1
1,2

[
λ

xδ(α−1)

∣∣∣∣− γ+1
δ

0, 1
α−1
− γ+1

δ
−1

]
. Then the Bayes’ estimate of θ, at given x, defined by Φα(x), is

given by the following:

Φα(x) = Eαθ|x(θ|x) =
c−1

4

(α− 1)xδ
G2,1

1,2

[
λ

xδ(α− 1)

∣∣∣∣−1− γ+1
δ

0, 1
α−1
− γ+1

δ
−2

]
(24)

LEMMA 1. Let the conditional density of x given θ be fx|θ(x|θ) as in Equation (17) and assume that the
parameter θ has a prior density fθ(θ) = λe−λθ, λ > 0, θ > 0. Then the Bayes’ estimate of θ is given by
Φ(x) in Equation (20).

THEOREM 3. Let the conditional density of x given θ be fαx|θ(x|θ) as in Equation (21) and
assume that the parameter θ has a prior density fθ(θ) = λe−λθ, λ > 0, θ > 0. Then the Bayes’ estimate
of θ is given by Φα(x) in Equation (24).

Thus, the popular superstatistics in statistical mechanics can be considered as a special case of the
pathway model in Equation (18) for η = 1 and δ = 1.

2.2. α-gamma Models Associated with Bessel Function

Sebastian [27] deals with a new family of statistical distributions associated with Bessel function
which gives an extension of the gamma density, which will connect the fractional calculus and statistical
distribution theory through the special function. The idea is motivated by the fact that a non-central
chi-square density is associated with a Bessel function. In order to make thicker or thinner tails in a
gamma density we consider a density function of the following type:

fx|a(x|a) =
ρ a

γ
ρ e−

δ
a

Γ(γ
ρ
)
xγ−1e−ax

ρ

0F1( ;
γ

ρ
; δxρ); 0 < x <∞ (25)

where 0F1( ; b;x) =
∑∞

k=0
(x)k

(b)k k!
, (b)k is the Pochhammer symbol, (b)m = b(b + 1) · · · (b + m −

1), b 6= 0, (b)0 = 1. When δ = 0 the Equation (25) reduces to generalized gamma density. Note that
this is the generalization of some standard statistical densities such as gamma, Weibull, exponential,
Maxwell-Boltzmann, Rayleigh and many more. When δ = 0, ρ = 2, Equation (25) reduces to folded
standard normal density. We can extend the generalized gamma model associated with Bessel function
in Equation (25) by using the pathway model of Mathai [1], when α < 1 we get the extended function as

gα(x) = k1x
γ−1[1− a(1− α)xρ]

1
1−α 0F1( ;

γ

ρ
; δxρ); α < 1,

a > 0, ρ > 0, 1− a(1− α)xρ > 0, x > 0 (26)

where k1 is the normalizing constant. Note that gα(x) is a generalized type-1 beta model associated with
Bessel function. Observe that for α > 1, writing 1− α = −(α− 1) in Equation (25) produces extended
type-2 beta form which is given by

fα(x) = k2x
γ−1[1 + a(α− 1)xρ]−

1
α−1 0F1( ;

γ

ρ
; δxρ); α > 1, a > 0, ρ > 0 (27)
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where k2 is the normalizing constant. Note that in both the cases, when α → 1, we have Equation (25)
and hence it can be considered to be an extended form of Equation (25). This model has wide potential
applications in the discipline physical science especially in statistical mechanics, see [27,28]. For fixed
values of γ = 2, ρ = 1.2 and a = 1, we can look at the graphs for δ = −0.5, q < 1, δ = 0.5, q < 1 as well
as for δ = −0.5, q > 1, δ = 0.5, q > 1. From the Figures 2, we can see that when q moves from −∞ to
1, the curve becomes less peaked. Similarly from Figure 3, we can see that when q moves from 1 to∞,
the curve becomes less peaked. It is also observed that when δ > 0 the right tail of the density becomes
thicker and thicker. Similarly when δ < 0 the right tail gets thinner and thinner. Densities exhibiting
thicker or thinner tail occur frequently in many different areas of science. For practical purposes of
analyzing data from physical experiments and in building up models in statistics, we frequently select a
member from a parametric family of distributions.

Figure 2. (Left) α gamma bessel model for δ = 0.5, α < 1; (Right) α gamma bessel model
for δ = −0.5, α < 1.

Figure 3. (Left) α gamma bessel model for δ = 0.5, α > 1; (Right) α gamma bessel model
for δ = −0.5, α > 1.

2.3. Tsallis Statistics

Model Equation (1) for γ = 1, δ = 1, a = 1, η = 1 is Tsallis statistics, which is the foundation for
the newly created hot topic of non-extensive statistical mechanics. It is stated that over three thousand
papers are written on Tsallis statistics so far. With α replaced in −α in Model Equation (1), with
γ = 0, a = 1, η = 1, δ = 1, one has an extension of the exponential function, known as q-exponential
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function [The parameter q is used instead of α and hence q-exponential]. The basis for the current hot
topic of q-calculus is this q-exponential function. When γ = 1, a = 1, η = 1, δ = 1 one has the following
property if the resulting function of f(x) is divided by the resulting normalizing factor c and obtain the
function g(x), that is, g(x) = f(x)

c
. Then

dg(x)

dx
= −[g(x)]α.

This is the power law in physics literature. Thus, power function law is a special case of the pathway
model of Equations (1) and (2) for γ = 1, δ = 1, a = 1, η = 1 and exactly the normalizing constants
c1 and c2. Also Tsallis statistics can be looked upon as a special case of Equations (1) and (2) for
γ = 1, δ = 1, a = 1, η = 1.

2.4. Extension of Thermonuclear Functions through Pathway Model

Nuclear reactions govern major aspects of the chemical evolution of the universe. A proper
understanding of the nuclear reactions that are going on in hot cosmic plasmas, and those in the
laboratories as well, requires a sound theory of nuclear-reaction dynamics. The reaction probability
integral is the probability per unit time that two particles, confined to a unit volume, will react with each
other. Practically all applications of fusion plasmas are controlled in some way or other by the theory of
thermonuclear reaction rates under specific circumstances. After several decades of effort, a systematic
and complete theory of thermonuclear reaction rates has been developed [29–32].

The standard thermonuclear function in the Maxwell-Boltzmann case in the theory of nuclear
reactions, is given by the following ([31,33]):
Nonresonant Case with Depleted Tail:

I1 =

∫ ∞
0

xγ−1e−ax
δ−bx−ρdx, a > 0, b > 0, δ > 0, ρ > 0 (28)

Nonresonant case with depleted tail and high energy cut-off:

I2 =

∫ d

0

xγ−1e−ax
δ−bx−ρdx, a > 0, b > 0, δ > 0, ρ > 0, d <∞ (29)

Note that if δ = 1 is taken as the standard Maxwell-Boltzmannian behavior, then for δ > 1 the right
tail will deplete faster and if δ < 1 then the depletion will be slower in Equation (29). We can extend the
thermonuclear functions given in Equations (28) and (29) to more general classes by replacing e−bx

−ρ by
a binomial factor [1− b(1− α)x−ρ]

1
1−α ([13,34,35]). Thus we consider the general class of reaction rate

integrals

I1α =

∫ ∞
0

xγ−1e−ax
δ

[1 + b(α− 1)x−ρ]−
1

α−1 dx, a > 0, b > 0, δ > 0, ρ > 0, α > 1 (30)

I2α =

∫ d

0

xγ−1e−ax
δ

[1− b(1− α)x−ρ]
1

1−αdx, a > 0, b > 0, δ > 0, ρ > 0, α < 1 (31)

We can evaluate these extended integrals by using Mellin convolution property. Equation (30) can be
looked upon as the Mellin convolution of two real positive scalar independently distributed random
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variables x1 and x2, where x1 has a generalized gamma density and x2 has an extended form of stretched
exponential function. Make the transformation u = x1x2 and v = x1, and then proceed as in the case of
the evaluation of the Laplace transform of the pathway model, we can arrive at the value of the extended
reaction rate integral as

I1α =

∫ ∞
0

e−ax
δ

xγ−1[1 + b(α− 1)x−ρ]−
1

α−1 dx

=
1

ρµa
γ
δ Γ( 1

α−1
)
H2,1

1,2

[
a

1
δ (b(α− 1))

1
ρ

∣∣∣∣(1− 1
α−1

, 1
ρ

)

(0, 1
ρ

),( γ
δ
, 1
δ

)

]
, b = uρ (32)

Similarly we can evaluate Equation (31) by considering it as the Mellin convolution of exponential
density and pathway model for α < 1. When we take the limit as α → 1, in Equation (32), we will get
the value of the reaction rate integral given in Equations (28) and (29), as an H- function.

2.4.1. Inverse Gaussian as a Particular Case of the Pathway Model

Note that one form of the inverse Gaussian probability density function is given by

g(x) = kx−
3
2 e
−λ

2
( x
µ2

+ 1
x

)
, µ 6= 0, x > 0, λ > 0

where k is the normalizing constant (see [7]). Put γ = −5
2
, δ = 1, ρ = 1, a = λ

2µ2
, b = λ

2
in Equation

(28), we can see that the inverse Gaussian density is the integrand in I1. Hence I1 in Equation (28) can be
used to evaluate the moments of inverse Gaussian density. Hence the integrand in the extended integral
I1α can be considered as the extended form of the inverse Gaussian density.

2.4.2. An Interpretation of the Pathway Parameter α

Let us start with the pathway density in Equation (1) with η = 1. For this to remain a density we need
the condition 1− a(1− α)xδ > 0 or when x is positive then 0 < x < 1

[a(1−α)]
1
δ
, α < 1, or if we have the

model in Equation (31) then

− 1

[a(1− α)]
1
δ

< x <
1

[a(1− α)]
1
δ

, α < 1

Outside this range, the density is zero. Thus for x > 0 the right tail of the density is cut-off at 1

[a(1−α)]
1
δ

.

If d is this cut-off on the right then

d =
1

[a(1− α)]
1
δ

⇒ α = 1− 1

adδ
, for α < 1 (33)

As α moves closer to 1 then the cut-off point d moves farther out and eventually when α → 1 then
d → ∞. In this case α is computed easily from the cut-off. Also the pathway parameter α can be
estimated in terms of arbitrary moments, see for example [12].
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3. Pathway Model and Fractional Calculus

When solving certain problems in reaction-diffusion, relaxation-oscillations, it is observed that the
solution is obtained in terms of exponential function, see [33,36]. But if a fractional integration is under
consideration then the residual reaction equation is given by

N(t) = N0 − cν0Dt
−νN(t), ν > 0 (34)

where 0Dt
−ν is the standard Riemann-Louville fractional integral operator, where N(t) is the number

density of the reacting particles and Equation (34) has the solution in terms of generalized Mittag-Leffler
function. While fitting such a model, Mittag-leffler function will provide a better fit as compared to
exponential function. If we consider the residual rate of change c, in Equation (34) is a random variable
having a gamma type density

g(c) =
wµ

Γ(µ)
cµ−1e−wc, w > 0, 0 < c <∞ (35)

where µ > 0, w, µ are known and µ
w

is the mean value of c. The residual rate of change may have small
probabilities of it being too large or too small and the maximum probability may be for a medium range
of values for the residual rate of change c. Equation (34) is the situation where the residual rate of change
is such that the production rate dominates so that we have the form −cν , ν > 0, c > 0. If the destruction
rate dominates then the constant will be of the form cν , ν > 0, c > 0. By solving Equation (34), we
have the unconditional number density of the following form:

N(t) =
N0

Γ(µ)
tµ−1(1 +

tν

wν
)−(γ+1), 0 < t <∞, w > 0 (36)

If we make the substitution γ + 1 = 1
α−1

, α > 1 ⇒ γ = α−2
α−1

and w−ν = b(α − 1), b > 0. Then
we have

N(t) =
N0

Γ(µ)
tµ−1[1 + b(α− 1)tν ]−

1
α−1 (37)

for α > 1, t > 0, b > 0, µ > 0. For general values of µ and α > 1 such that 1
α−1
− µ

ν
> 0, Euqation

(37) corresponds to the pathway model of Mathai as well as the superstatistics of Beck and Cohen [3].
As an application of pathway model in fractional calculus, a general pathway fractional integral operator
is introduced in [37], which generalizes the classical Riemann-Liouville fractional integration operator,
see Section 4.5.

3.1. P-Transform

Consider the generalized Krätzel function Dν,α
ρ,β (x), dealt with in [38], given by

Dν,α
ρ,β (x) =

∫ ∞
0

yν−1[1 + a(α− 1)yρ]−
1

α−1 e−xy
−β

dy, x > 0 (38)

with γ ∈ C, β > 0, α > 1. The generalized Krätzel function is obtained by using the pathway
model introduced by Mathai [1]. The P-transform or pathway transform introduced in [39] by using
the pathway idea is defined as

(Pρ,β,αν f)(x) =

∫ ∞
0

Dν,α
ρ,β (xt)f(t)dt, x > 0 (39)
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where Dν,α
ρ,β (x) denotes the function given in Equation (38). The P-transform is defined in the space Lν,r

consisting of the lebesgue measurable complex valued functions f for which

‖f‖ν,r =

{∫ ∞
0

|tνf(t)|rdt

t

} 1
r

<∞, (40)

for 1 ≤ r <∞, ν ∈ R. When β = 1, a = 1 and α→ 1 the P-transform reduces to the Krätzel tranform,
introduced by Krätzel [40], which is given by

K(ρ)
ν f(x) =

∫ ∞
0

Zν
ρ (xt)f(t)dt, x > 0 (41)

where
Zν
ρ (x) =

∫ ∞
0

yν−1e−y
ρ−xy−1

dy (42)

The P-transform reduces to the Meijer transform when ρ = 1 and α → 1. When a = 1, β = 1

and α → 1, then the generalized Krätzel function defined in Equation (38) reduces to the modified
Bessel function of the third kind or McDonald function ([38,41,42]) have considered Equation (38)
for β = 1 and established its composition with fractional operators and represented it in terms of
various generalized special functions. The Krätzel function defined in Equation (42) for any real ρ,
was studied by [43] and established its representations in terms of H-function and extended the function
from positive x > 0 to complex z. Here we establishe connection between generalized Krätzel function
and P-transform with generalized special functions.

The particular case of the kernel of the P-transform given in Equation (38) is the extended
non-resonant thermonuclear function used in Astrophysics which is already discussed. As α → 1 we
get the standard reaction rate probability integral in the Maxwell-Boltzmann case. The behavior of
the generalized Krätzel function Equation (38) can be studied from the following graphs. We take
a = 1, β = 1, ν = 2, ρ = 3 and a = 1, β = 1, ν = 2, ρ = 5 for example and investigate the behavior of
D2,α

3,1 (x) and D2,α
5,1 (x) for various values of α > 1 and α→ 1. The graphs of these functions D2,α

3,1 (x) and
D2,α

5,1 (x) at α = 1, α = 1.25, α = 1.5, α = 1.8 are given in Figure 4a,b, respectively. From these graphs
we observe that if the value of the parameter α increases then the curves move away from the limiting
situation for α→ 1.

Figure 4. (Left) Behaviour of D2,α
3,1 (x) for various values of α > 1 and α → 1; (Right) Behaviour

of D2,α
5,1 (x) for various values of α > 1 and α→ 1.
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4. A Matrix Variate Pathway Model

Let X = (xij), i = 1, . . . , p, j = 1, . . . , q, q ≥ p, of rank p and of real scalar variables x′ijs for all i
and j, subject to the condition that the rank of X is p, having the density f(X), where f(X) is a scalar
function of X is given by

f(X) = C|A
1
2 (X −M)B(X −M)′A

1
2 |γ|I − a(1− α)A

1
2 (X −M)B(X −M)′A

1
2 |

η
1−α (43)

where C is the normalizing constant, A = A′ > 0, B = B′ > 0, A is p × p,B is q × q, A and B are
constant positive definite matrices, and M is a p × q constant matrix. A

1
2 denotes the positive definite

square root of A, a > 0 and α is the pathway parameter. For keeping non-negativity of the determinant
in Equation (43) we need the condition

I − a(1− α)A
1
2 (X −M)B(X −M)′A

1
2 > 0

where, for example, the notation A < Y < B ⇒ A = A′ > 0, B = B′ > 0, Y = Y ′ > 0, Y − A >

0, B − Y > 0. In Equation (43) the constant matrix M can act as a relocation matrix or as the mean
value matrix so that E(X) = M where E denotes the expected value.

4.1. The Normalizing Constants

This requires certain transformations and the knowledge of the corresponding Jacobians. Here we
will use a few multi-linear and some nonlinear transformations and the corresponding Jacobians. The
details of the derivations of these Jacobians are available from [44]. Put

Y = A
1
2 (X −M)B

1
2 ⇒ dY = |A|

q
2 |B|

p
2 dX

where |(·)| denotes the determinant of (·), dX is defined as the following wedge product of differentials:

dX = dx11 ∧ dx12 ∧ · · · ∧ dx1q ∧ dx22 ∧ · · · ∧ dx2q ∧ · · · ∧ dxpq

see [44] for the Jacobian. Since f(X) is assumed to be a density,

1 =

∫
X

f(X)dX = C|A|−
q
2 |B|−

p
2

∫
Y

|Y Y ′|γ|I − a(1− α)Y Y ′|
η

1−αdY

Now, make suitable transformations and integrating out over the Stiefel manifold (for details, see [1])
we have

1 =

∫
X

f(X)dX

= C|A|−
q
2 |B|−

p
2
π
pq
2

Γp(
q
2
)

∫
Z

|Z|γ+ q
2
− p+1

2 |I − a(1− α)Z|
η

1−αdZ (44)

where, for example,

Γp(β) = π
p(p−1

4 Γ(β)Γ(β − 1

2
)...Γ(β − p− 1

2
),<(β) >

p− 1

2
(45)
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is the real matrix-variate gamma and <(·) denotes the real part of (·).

Further evaluation of the integral in Equation (44) depends on the value of α. If α < 1 then
Equation (44) belongs to the real matrix-variate type-1 beta. Then integrating out with the help of a
matrix variate type-1 beta integral we get, for q ≥ p, α < 1,

C = |A|
q
2 |B|

p
2 [a(1− α)]p(γ+ q

2
)
Γp(

q
2
)Γp(γ + q

2
+ η

1−α + p+1
2

)

π
pq
2 Γp(γ + q

2
)Γp(

η
1−α + p+1

2
)

(46)

for α < 1, η > 0, a > 0,<(γ + q
2
) > p−1

2
, q ≥ p, p, q = 1, 2, ..., A = A′ > 0, B = B′ > 0. For α > 1,

write 1 − α = −(α − 1), α > 1 then the integral in Equation (44) goes into a type-2 beta form. Then
integrating out with the help of a real matrix-variate type-2 beta integral we have for α > 1,

C =
|A| q2 |B| p2 [a(α− 1)]p(γ+ q

2
)Γp(

q
2
)Γp(

η
α−1

)

π
pq
2 Γp(γ + q

2
)Γp(

η
α−1
− γ − q

2
)

(47)

for α > 1,<(γ + q
2
) > p−1

2
,<( η

α−1
− γ − q

2
) > p−1

2
, a > 0, η > 0, A = A′ > 0, B = B′ > 0. When

α→ 1 we have
lim
α→1
|I − a(1− α)Z|

η
1−α = e−aη tr(Z)

and hence, evaluating with the help of a real matrix-variate gamma integral, we will get C for α→ 1,

C =
|A| q2 |B| p2 (aη)p(γ+ q

2
)Γp(

q
2
)

π
pq
2 Γp(γ + q

2
)

(48)

for <(γ + q
2
) > p−1

2
, a > 0, η > 0.

A model corresponding to Equation (43) in the complex domain, along with its properties and
connections to various other fields, is studied in [23].

4.2. Density of the Volume Content

The squared volume of the p-parallelotope in the q-space,

v2 = |A
1
2 (X −M)B(X −M)′A

1
2 | (49)

The density of u = v2 in Equation (49) can be evaluated by looking at the h-th moment of v2 for an
arbitrary h. That is, the expected value of (v2)h, is given by

E(v2)h =

∫
X

(v2)hf5(X)dX

This is available from the normalizing constants in Equations (46)–(48) by observing that the only
change is that the parameter γ is changed to γ + h. Hence from Equation (46) for α < 1,

E(v2)h = [a(1− α)]−ph
Γp(γ + q

2
+ h)

Γp(γ + q
2
)

Γp(γ + q
2

+ η
1−α + p+1

2
)

Γp(γ + q
2

+ η
1−α + p+1

2
+ h)

(50)
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for α < 1,<(γ + q
2
) > p−1

2
,<(γ + q

2
+ h) > p−1

2
, η > 0, a > 0. Let u1 = [a(1− α)]pv2. Then

E(uh1) =

p∏
j=1

Γ(γ + q
2
− j−1

2
+ h)

Γ(γ + q
2
− j−1

2
)

Γ(γ + q
2

+ η
1−α + p+1

2
− j−1

2
)

Γ(γ + q
2

+ η
1−α + p+1

2
− j−1

2
+ h)

(51)

= E(vh1 )E(vh2 )...E(vhp )

where vj is a real scalar type-1 beta random variable with the parameters (γ + q
2
− j−1

2
, η

1−α + p+1
2

), j =

1, ..., p, and further, v1, ..., vp are statistically independently distributed. Hence structurally

u1 = v1v2...vp (52)

and the density of u1 is that of v1...vp. This is available by treating Equation (51) as coming from
the Mellin transform of the density g1(u1) of u1. Even though the density g1(u1) is unknown, its Mellin
transform is available from Equation (51) for h = s−1. Hence from the unique inverse Mellin transform

g1(u1) = u−1
1

1

2πi

∫
L

[E(uh1)]u−h1 dh

where i =
√
−1, L is a suitable contour and E(uh1) is given in Equation (51). But the structure in

Equation (51) is that of a Mellin transform of a G-function of the type Gp,0
p,p(·). Hence

g1(u1) = u−1
1

[
p∏
j=1

Γ(γ + q
2

+ η
1−α + p+1

2
− j−1

2

Γ(γ + q
2
− j−1

2
)

]

×Gp,0
p,p

[∣∣ η
1−α+ p+1

2
,j=1,...,p

γ+ q
2
− j−1

2
,j=1,...,p

]
, 0 < u1 < 1 (53)

For α > 1, from Equation (47), u2 = [a(α − 1)]pv2 is a product of p statistically independently
distributed real scalar type-2 beta random variables and hence the density of u2 can be written in terms
of a G-function of the type Gp,p

p,p(·).
Similarly for α→ 1, u3 = (aη)pv2 is structurally a product of p statistically independently distributed

real gamma random variables and the density of u3 can be written in terms of a G-function of the type
Gp,0

0,p(·).
A form such as the one in Equation (52) is connected to the λ−criterion in the likelihood ratio

principle of testing statistical hypothesis on the parameters of one or more multivariate Gaussian
populations. The pathway model for α < 1 can be structurally identified with a constant multiple of
the one-to-one function of the λ−criterion in many situations in multivariate statistical analogues.

4.3. Connection to Likelihood Ratio Criteria Consider the case α < 1.

From Equations (51) and (52) one can see a structural representation in the form of a product of p
statistically independently distributed type-1 beta random variables. Such a structure can also arise from
a determinant of the type

λ =
|G1|

|G1 +G2|
(54)

where G1 and G2 are independently distributed real matrix-variate gamma variables with the same scale
parameter matrix. Such matrix representations are recently examined in [45]. A particular case of a
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real matrix-variate gamma matrix is a Wishart matrix. When G1 and G2 are independently distributed
Wishart matrices λ in Equation (54) corresponds to the likelihood ratio test criterion or a one-to-one
function of it in multivariate statistical analysis. A large number of test criteria based on the principle
of maximum likelihood have the structure in Equation (54), with a representation as in Equation (52) in
the null case or when the statistical hypothesis is true. Distribution of the test statistic, when the null
hypothesis is true, is known as the null distribution. Thus, a large number of null distributions, associated
with the tests of hypotheses on the parameters of one or more multivariate normal populations, have the
structure in Equation (54) and thus a large number of cases are covered by our discussion above. Hence
a direct link can be established between the volume of a random p-parallelotope and the λ-criterion in
Equation (54).

Various types of generalizations of the Dirichlet distribution are recently studied by [46–48]. In these
papers there are several theorems characterizing or uniquely determining these generalized Dirichlet
models through a product of independently distributed real scalar type-1 beta random variables. In
all these cases one can establish a direct link from Equation (52) to Equation (54) providing explicit
representations of the densities in terms of generalized Dirichlet integrals. As byproducts, these can
also produce several results connecting G-functions and Dirichlet integrals. One such characterization
theorem is recently explored by [49].

4.4. Quadratic Forms

For p = 1 and q > 1, Equation (49) gives

Q = (X −M)B(X −M)′ (55)

the quadratic form.
Current theory of quadratic form in random variables is based on the assumption of a multivariate

Gaussian population. But from Equation (43) we have a generalized quadratic form in X , where X
has the density in Equation (43), and the density of Q is available from the step in Equation (44) to
Equation (53). The theory of quadratic form in random variables can be extended to the samples from
the density in Equation (43), rather than confining the study to Gaussian population. For the study of
quadratic and bilinear forms see [15,23]. When p = 1 the quadratic form in Equation (55) can be given
many interpretations. Let B = V −1 where V is the covariance matrix in X , that is, V = cov(X) =

E[(X − µ)′(X − µ)] where X − µ is 1 × q, q > 1. Since Y = V −
1
2 (X − µ)′ is the standardized X ,

Y Y ′ = y2
1 + ... + y2

q = (X − µ)V −1(X − µ)′ is the square of the generalized distance between X and
µ. Also (X − µ)V −1(X − µ)′ = c > 0 is the ellipsoid of concentration in X or a scalar measure of the
extent of dispersion in X − µ. The components in X can be given physical interpretations. Consider a
growing and moving rain droplet in a tropical cloud. Then x1 could be the surface area, x2 could be the
energy content, x3 the velocity in a certain direction and so on. The components in this case have joint
variations. When p = 1 one can derive the pathway density in Equation (43) through an optimization of
a certain measure of entropy also.

4.5. Pathway Fractional Integral
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Recently, an extension of classical fractional integral operators of scalar functions of scalar variables
to the matrix-variate cases has been given by [50]. Real-valued scalar functions of matrix argument,
where the argument matrix is real and positive definite, are used in the extensions. In this regard, a
matrix-variate pathway fractional integral operator is introduced, see [51] which may be regarded as
a generalization of matrix-variate Riemann-Liouville fractional integral operator. Moreover, from this
operator one can figure out all the matrix-variate fractional integrals and almost all the extended densities
for the pathway parameter α < 1 and α → 1. Through this new fractional integral operator, one can
go to matrix-variate gamma to matrix-variate Gaussian or normal density with appropriate parametric
values. In the present paper we bring out the idea of matrix-variate pathway to the corresponding
fractional integral transform. Consequently a scalar version of pathway fractional integral operator can
also be deduced, which generalizes the classical Reimann-Liouville fractional integration operator. The
pathway fractional integral operator has found applications in reaction-diffusion problems, non-extensive
statistical mechanics, non-linear waves, fractional differential equations, non-stable neighborhoods of
physical system etc.

The following definition and notation is given for the matrix-variate pathway fractional integral:

(P
(η,α)
O+ f)(X) = |X|η−

p+1
2

∫
T

|I − a(1− α)X−
1
2TX−

1
2 |

η
(1−α)−

p+1
2 f(T )dT (56)

where O stands for a null matrix, and T = T ′ > 0 and O are p × p matrices and f(T ) is a real-valued
integrable scalar function of T and dT is the wedge product of differentials. Also a, α scalars, η ∈ C
a > 0, I−a(1−α)X−

1
2TX−

1
2 > 0 (positive definite) and α is the pathway parameter, α < 1. It is hoped

that the matrix-variate extensions of the operator will enable researchers working in physical, chemical
and engineering sciences to extend their theories to the corresponding matrix-variate situations.

When α → 1−, |I − a(1 − α)X−
1
2TX−

1
2 |

η
(1−α)−

P+1
2 → e−aη tr[X−

1
2 TX−

1
2 ]. This follows from the

following facts: Since X−
1
2TX−

1
2 is real symmetric there exists an orthogonal matrix Q such that

Q′X−
1
2TX−

1
2Q will be a diagonal matrix with eigenvalues being the diagonal elements. Then when

the limit is applied, each factor goes to the exponent and sum up to equate to the trace. Thus the operator
will become

(P
(η,1)
O+ f)(X) = |X|η−

P+1
2

∫
T=T ′>0

e−tr[aηX−1T ] f(T ) dT = |X|η−
P+1
2 Lf (aηX

−1)

When α = 0, a = 1 in Equation (56), the integral will become,

(P
(η,0)
O+ f)(X) = |X|η−

P+1
2

∫
O<T<X

|I −X−
1
2TX−

1
2 |η−

P+1
2 f(T )dT, <(η) >

p− 1

2

=

∫
O<T<X

|X − T |η−
P+1
2 f(T )dT = Γp(η) OD

−η
X f (57)

where OD
−η
X is the matrix-variate extension of the standard left-sided Reimann-Liouville fractional

integral and is defined as

OD
−η
X f =

1

Γp(η)

∫
O<T<X

|X − T |η−
P+1
2 f(T )dT, <(η) >

p− 1

2
(58)

When p = 1 in Equation (56), one can obtain the scalar version of the pathway fractional integral
operator, see [37] and is defined by the following:
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Let f(x) ∈ L(a, b), η ∈ C, <(η) > 0, a > 0 and α < 1, then

(P
(η,α)
0+ f)(x) = xη−1

∫ [ x
a(1−α) ]

0

[1− a(1− α)t

x
]

η
(1−α)−1f(t)dt (59)

where α is the pathway parameter and f(t) is an arbitrary function. In [37], it is shown that as α→ 1−,
Equation (59) takes the form of Laplace transform of the arbitrary function f(t). Again when α = 0, a =

1, Equation (59) reduces to the left-sided Reimann-Liouville fractional integral operator. By the way an
idea of thicker or thinner tail model associated with Mittag-Leffler function is obtained. As a result,
generalized gamma Mittag-Leffler density can be obtained as a limiting case of pathway operator. It is
also shown that under the conditions α = 0, a = 1 and as f(t) changes to 2F1(η+β, −γ; η; 1− t

x
)f(t),

Equation (59) yields the Saigo fractional integral operator. Thus we can obtain all the generalizations,
like [41,52,53], of left-sided fractional integrals by suitable substitutions, so that we call it the pathway
fractional operator, a path through α, leading to the above known fractional operators.

The importance of the operator is that a connection is established to wide classes of statistical
distributions, to several types of situations in physics, chemistry, to the input-output situations in social
sciences, in reaction-diffusion problems etc. The pathway parameter α establishes a path of going from
one family of distributions to another family and to different classes of distributions. Thus, the pathway
fractional operator, will enable us to derive a number of results covering wide range of distributions. The
“fractional integration” nature of the operator will then extend the corresponding results to wider ranges,
where when the pathway parameter α goes to 1 the corresponding results on generalized gamma type
functions are obtained.

5. Open Problem

The main idea to introduce the pathway model is the switching property of the binomial function to
the corresponding exponential function. That is

lim
α→1

1F0

(
1

1− α
; ;−a(1− α)xδ

)
= lim

α→1

(
1 + a(1− α)xδ

)− 1
1−α = e−ax

δ

, a > 0 (60)

Similar to Equation (60) we can develop a pathway connecting Bessel to exponential, as given below,

lim
α→1

0F1

(
;

1

1− α
;− axδ

(1− α)

)
= 0F0

(
; ;−axδ

)
= e−ax

δ

, a > 0

Thus α can provide a pathway between Bessel functions and exponential functions. Thus, in all
types of applications where Bessel functions are used, one can extend the scope of applications into
an exponential form. In a physical system, if the exponential form gives the stable situation, then the
parameter α will provide a pathway between stable and chaotic situations. So far, this area which offers
a wide scope of possibilities, has yet to be explored.
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