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Abstract: We study densely defined unbounded operators acting between different Hilbert spaces.
For these, we introduce a notion of symmetric (closable) pairs of operators. The purpose of our paper
is to give applications to selected themes at the cross road of operator commutation relations and
stochastic calculus. We study a family of representations of the canonical commutation relations
(CCR)-algebra (an infinite number of degrees of freedom), which we call admissible. The family
of admissible representations includes the Fock-vacuum representation. We show that, to every
admissible representation, there is an associated Gaussian stochastic calculus, and we point out
that the case of the Fock-vacuum CCR-representation in a natural way yields the operators of
Malliavin calculus. We thus get the operators of Malliavin’s calculus of variation from a more
algebraic approach than is common. We further obtain explicit and natural formulas, and rules,
for the operators of stochastic calculus. Our approach makes use of a notion of symmetric (closable)
pairs of operators. The Fock-vacuum representation yields a maximal symmetric pair. This duality
viewpoint has the further advantage that issues with unbounded operators and dense domains
can be resolved much easier than what is possible with alternative tools. With the use of CCR
representation theory, we also obtain, as a byproduct, a number of new results in multi-variable
operator theory which we feel are of independent interest.
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1. Introduction

The purpose of our paper is to identify a unifying framework in infinite-dimensional analysis
which involves a core duality notion. There are two elements to our point of view: (i) presentation of
the general setting of duality and representation theory, and (ii) detailed applications for two areas,
often considered disparate. The first is stochastic analysis, and the second is from the theory of von
Neumann algebras (Tomita-Takesaki theory), see, e.g., [1,2]. We feel that this viewpoint is useful as
it adds unity to the study of infinite-dimensional analysis; and further, because researchers in one of
these two areas usually do not explore the other, or are even unfamiliar with the connections.

We study densely defined unbounded operators acting between different Hilbert spaces, and for
these, we introduce a notion of symmetric (closable) pairs of operators. The purpose of our paper

Axioms 2016, 5, 12; doi:10.3390/axioms5020012 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
http://www.mdpi.com/journal/axioms


Axioms 2016, 5, 12 2 of 26

is to give applications to themes at the cross road of commutation relations (operator theory) and
stochastic calculus. While both subjects have been studied extensively, our aim is to show that the
notion of closable pairs from the theory of unbounded operators serves to unify the two areas. Both
areas are important in mathematical physics, but researchers familiar with operator theory typically
do not appreciate the implications of results on unbounded operators and their commutators for
stochastic analysis; and vice versa.

Both the study of quantum fields, and of quantum statistical mechanics, entails families of
representations of the canonical commutation relations (CCRs). In the case of an infinite number
of degrees of freedom, it is known that we have existence of many inequivalent representations of the
CCRs. Among the representations, some describe such things as a nonrelativistic infinite free Bose gas
of uniform density. However, the representations of the CCRs play an equally important role in the
kind of infinite-dimensional analysis currently used in a calculus of variation approach to Gaussian
fields, Itō integrals, including the Malliavin calculus. In the literature, the infinite-dimensional
stochastic operators of derivatives and stochastic integrals are usually taken as the starting point,
and the representations of the CCRs are an afterthought. Here we turn the tables. As a consequence
of this, we are able to obtain a number of explicit results in an associated multi-variable spectral
theory. Some of the issues involved are subtle because the operators in the representations under
consideration are unbounded (by necessity), and, as a result, one must deal with delicate issues of
domains of families of operators and their extensions.

The representations we study result from the Gelfand-Naimark-Segal construction (GNS)
applied to certain states on the CCR-algebra. Our conclusions and main results regarding this family
of CCR representations (details below, especially Sections 4 and 5) hold in the general setting of
Gaussian fields. However, for the benefit of readers, we have also included an illustration dealing
with the simplest case, that of the standard Brownian/Wiener process. Many arguments in the special
case carry over to general Gaussian fields mutatis mutandis. In the Brownian case, our initial Hilbert
space will be L = L2 (0, ∞).

From the initial Hilbert space L , we build the ∗-algebra CCR (L ) as in Section 2.2. We will show
that the Fock state on CCR (L ) corresponds to the Wiener measure P. Moreover the corresponding
representation π of CCR (L ) will be acting on the Hilbert space L2 (Ω,P) in such a way that for
every k in L , the operator π(a(k)) is the Malliavin derivative in the direction of k. We caution that
the representations of the ∗-algebra CCR (L ) are by unbounded operators, but the operators in the
range of the representations will be defined on a single common dense domain.

Example: There are two ways to think of systems of generators for the CCR-algebra over a fixed
infinite-dimensional Hilbert space (“CCR” is short for canonical commutation relations):

(i) an infinite-dimensional Lie algebra, or
(ii) an associative ∗-algebra.

With this in mind, (ii) will simply be the universal enveloping algebra of (i); see [3]. While there
is also an infinite-dimensional “Lie” group corresponding to (i), so far, we have not found it as useful
as the Lie algebra itself.

All this, and related ideas, supply us with tools for an infinite-dimensional stochastic calculus.
It fits in with what is called Malliavin calculus, but our present approach is different, and more natural
from our point of view; and as corollaries, we obtain new and explicit results in multi-variable spectral
theory which we feel are of independent interest.

There is one particular representation of the CCR version of (i) and (ii) which is especially
useful for stochastic calculus. In the present paper, we call this representation the Fock vacuum-state
representation. One way of realizing the representations is abstract: Begin with the Fock vacuum
state (or any other state), and then pass to the corresponding GNS representation. The other way is
to realize the representation with the use of a choice of a Wiener L2-space. We prove that these two
realizations are unitarily equivalent.
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By stochastic calculus we mean stochastic derivatives (e.g., Malliavin derivatives), and integrals
(e.g., Itō-integrals). The paper begins with the task of realizing a certain stochastic derivative operator
as a closable operator acting between two Hilbert spaces.

There is an extensive literature on quantum stochastic calculus based on the Fock, and other
representations, of the CCR including its relation to Malliavin calculus. The list of authors includes
R. Hudson, K. R. Parthasarathy and collaborators. We refer the reader to the papers [4–8], and also
see [9,10]. Of more recent papers dealing with results which have motivated our present paper
are [11–26].

2. Unbounded Operators and the CCR-algebra

2.1. Unbounded Operators between Different Hilbert Spaces: Closable Pairs

While the theory of unbounded operators has been focused on spectral theory where it is then
natural to consider the setting of linear endomorphisms with dense domain in a fixed Hilbert space;
many applications entail operators between distinct Hilbert spaces, say H1 and H2. Typically the
facts given about the two differ greatly from one Hilbert space to the next.

Let Hi, i = 1, 2, be two complex Hilbert spaces. The respective inner products will be written
〈·, ·〉i, with the subscript to identify the Hilbert space in question.

Definition 2.1. A linear operator T from H1 to H2 is a pair D ⊂ H1, T, where D is a linear subspace
in H1, and Tϕ ∈H2 is well-defined for all ϕ ∈ D .

We say that D = dom (T) is the domain of T, and

G (T) =

{(
ϕ

Tϕ

)
; ϕ ∈ D

}
⊂
(

H1
⊕

H2

)
(1)

is the graph.
If the closure G (T) is the graph of a linear operator, we say that T is closable. By closure, we shall

refer to closure in the norm of H1 ⊕H2, i.e.,∥∥∥∥∥
(

h1

h2

)∥∥∥∥∥
2

= ‖h1‖2
1 + ‖h2‖2

2 , hi ∈Hi (2)

If dom (T) is dense in H1, we say that T is densely defined.

Definition 2.2 (The adjoint operator). Let H1
T−→ H2 be a densely defined operator, consider the

subspace dom (T∗) ⊂H2 defined as follows:

dom (T∗) =
{

h2 ∈H2 ; ∃C = Ch2 < ∞ s.t.

|〈Tϕ, h2〉2| ≤ C ‖ϕ‖1 , ∀ϕ ∈ dom (T)
}

(3)

Then, by Riesz’ theorem, there is a unique h1 ∈H1 s.t.

〈Tϕ, h2〉2 = 〈ϕ, h1〉1 , and (4)

we set T∗h2 = h1. T∗ is called the adjoint of T.

Lemma 2.3. Given a densely defined operator H1
T−→ H2, then T is closable if and only if dom (T∗) is dense

in H2.

Proof. See [27].
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Remark 2.4 (Notation and Facts).

1. The abbreviated notation H1

T **
H2

T∗
jj will be used when the domains of T and T∗ are understood from

the context.
2. Let T be an operator H1

T−→ H2 and Hi, i = 1, 2, two given Hilbert spaces. Assume
D := dom (T) is dense in H1, and that T is closable. Then there is a unique closed operator, denoted T
such that

G
(
T
)
= G (T) (5)

where “—” on the RHS in Equation (5) refers to norm closure in H1 ⊕H2, see Equation (2).
3. It may happen that dom (T∗) = 0. See Example 2.6 below.

Definition 2.5 (closable pairs). Let H1 and H2 be two Hilbert spaces with respective inner products
〈·, ·〉i, i = 1, 2; let Di ⊂Hi, i = 1, 2, be two dense linear subspaces; and let

S0 : D1 →H2, and T0 : D2 →H1

be linear operators such that

〈S0u, v〉2 = 〈u, T0v〉1 , ∀u ∈ D1, ∀v ∈ D2 (6)

Then both operators S0 and T0 are closable. The closures S = S0, and T = T0 satisfy

S∗ ⊆ T and T ⊆ S∗ (7)

We say the system (S0, T0) is a closable pair. (Also see Definition 3.5.)

Example 2.6. An operator T : H1 −→ H2 with dense domain s.t. dom (T∗) = 0, i.e.,
“extremely” non-closable.

Set Hi = L2 (µi), i = 1, 2, where µ1 and µ2 are two mutually singular measures on a fixed
locally compact measurable space, say X. The space D := Cc (X) is dense in both H1 and in H2 with
respect to the two L2-norms. Then, the identity mapping Tϕ = ϕ, ∀ϕ ∈ D , becomes a Hilbert space

operator H1
T−→H2.

Using Definition 2.2, we see that h2 ∈ L2 (µ2) is in dom (T∗) iff ∃h1 ∈ L2 (µ1) such that
ˆ

ϕ h1 dµ1 =

ˆ
ϕ h2 dµ2, ∀ϕ ∈ D (8)

Since D is dense in both L2-spaces, we get
ˆ

E
h1 dµ1 =

ˆ
E

h2 dµ2 (9)

where E = supp (µ2).
Now suppose h2 6= 0 in L2 (µ2), then there is a subset A ⊂ E s.t. h2 > 0 on A, µ2 (A) > 0, and´

A h2 dµ2 > 0. But
´

A h1 dµ1 =
´

A h2 dµ2, and
´

A h1 dµ1 = 0 since µ1 (A) = 0. This contradiction
proves that dom (T∗) = 0; and in particular T is unbounded and non-closable.

Theorem 2.7. Let H1
T−→ H2 be a densely defined operator, and assume that dom (T∗) is dense in H2, i.e.,

T is closable, then both of the operators T∗T and TT∗ are densely defined, and both are selfadjoint.
Moreover, there is a partial isometry U : H1 −→ H2 with initial space in H1 and final space in H2

such that
T = U

(
T∗T

) 1
2 =

(
TT∗

) 1
2 U (10)
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(Equation (10) is called the polar decomposition of T.)

Proof. See, e.g., [27].

2.2. The CCR-algebra, and the Fock Representations

There are two ∗-algebras built functorially from a fixed (single) Hilbert space L ; often called
the one-particle Hilbert space (in physics). The dimension dim L is called the number of degrees of
freedom. The case of interest here is when dim L = ℵ0 (countably infinite). The two ∗-algebras
are called the CAR, and the CCR-algebras, and they are extensively studied; see, e.g., [2]. Of the
two, only CAR(L ) is a C∗-algebra. The operators arising from representations of CCR(L ) will be
unbounded, but still having a common dense domain in the respective representation Hilbert spaces.
In both cases, we have a Fock representation. For CCR(L ), it is realized in the symmetric Fock space
Γsym (L ). There are many other representations, inequivalent to the respective Fock representations.

Let L be as above. The CCR(L ) is generated axiomatically by a system, a (h), a∗ (h), h ∈ L ,
subject to

[a (h) , a (k)] = 0, ∀h, k ∈ L , and

[a (h) , a∗ (k)] = 〈h, k〉L 1

(11)

Notation. In Equation (11), [·, ·] denotes the commutator. More specifically, if A, B are elements in a
∗-algebra, set [A, B] := AB− BA.

The Fock States ωFock on the CCR-algebra are specified as follows:

ωFock (a (h) a∗ (k)) = 〈h, k〉L (12)

with the vacuum property
ωFock (a∗ (h) a (h)) = 0, ∀h ∈ L (13)

For the corresponding Fock representations π we have:

[π (h) , π∗ (k)] = 〈h, k〉L IΓsym(L ) (14)

where IΓsym(L ) on the RHS of Equation (14) refers to the identity operator.
Some relevant papers regarding the CCR-algebra and its representations are [28–35].

2.3. An Infinite-dimensional Lie Algebra

Let L be a separable Hilbert space, i.e., dim L = ℵ0, and let CCR (L ) be the corresponding
CCR-algebra. As above, its generators are denoted a (k) and a∗ (l), for k, l ∈ L . We shall need
the following:

Proposition 2.8.

1. The “quadratic” elements in CCR (L ) of the form a (k) a∗ (l), k, l ∈ L , span a Lie algebra g (L ) under
the commutator bracket.

2. We have

[a (h) a∗ (k) , a (l) a∗ (m)]

= 〈h, m〉L a (l) a∗ (k)− 〈k, l〉L a (h) a∗ (m)

for all h, k, l, m ∈ L .
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3. If {εi}i∈N is an ONB in L , then the non-zero commutators are as follows: Set γi,j := a (εi) a∗
(
ε j
)
,

then, for i 6= j, we have [
γi,i, γj,i

]
= γj,i; (15)[

γi,i, γi,j
]

= −γi,j; and (16)[
γj,i, γi,j

]
= γi,i − γj,j (17)

All other commutators vanish; in particular, {γi,i | i ∈ N} spans an abelian sub-Lie algebra in g (L ).

Note further that, when i 6= j, then the three elements

γi,i − γj,j, γi,j, and γj,i (18)

span (over R) an isomorphic copy of the Lie algebra sl2 (R).
4. The Lie algebra generated by the first-order elements a (h) and a∗ (k) for h, k ∈ L , is called the

Heisenberg Lie algebra h (L ). It is normalized by g (L ); indeed we have:

[a (l) a∗ (m) , a (h)] = − 〈m, h〉L a (l) , and

[a (l) a∗ (m) , a∗ (k)] = 〈l, k〉L a∗ (m) , ∀l, m, h, k ∈ L

Proof. The verification of each of the four assertions (1)–(4) uses only the fixed axioms for the CCR,
i.e., 

[a (k) , a (l)] = 0

[a∗ (k) , a∗ (l)] = 0, and

[a (k) , a∗ (l)] = 〈k, l〉L 1, k, l ∈ L

(19)

where 1 denotes the unit-element in CCR (L ).

Corollary 2.9. Let CCR (L ) be the CCR-algebra, generators a (k), a∗ (l), k, l ∈ L , and let [·, ·] denote
the commutator Lie bracket; then, for all k, h1, · · · , hn ∈ L , and all p ∈ R [x1, · · · , xn] (= the n-variable
polynomials over R), we have

[a (k) , p (a∗ (h1) , · · · , a∗ (hn))]

=
n

∑
i=1

∂p
∂xi

(a∗ (h1) , · · · , a∗ (hn)) 〈k, hi〉L (20)

Proof. The verification of Equation (20) uses only the axioms for the CCR, i.e., the commutation
relations (19) above, plus a little combinatorics.

We shall now return to a stochastic variation of formula (20), the so called Malliavin derivative
in the direction k. In this, the system (a∗ (h1) , · · · , a∗ (hn)) in Equation (20) instead takes the form of
a multivariate Gaussian random variable.

2.4. Gaussian Hilbert Space

The literature on Gaussian Hilbert space, white noise analysis, and its relevance to Malliavin
calculus is vast; we limit ourselves here to citing [17,36–41], and the papers cited there.

Setting and Notation:

L : a fixed real Hilbert space
(Ω,F ,P): a fixed probability space
L2 (Ω,P): the Hilbert space L2 (Ω,F ,P), also denoted by L2 (P)
E: the mean or expectation functional, where E (· · · ) =

´
Ω (· · · ) dP
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Definition 2.10. Fix a real Hilbert space L and a given probability space (Ω,F ,P). We say the pair
(L , (Ω,F ,P)) is a Gaussian Hilbert space.

A Gaussian field is a linear mapping Φ : L −→ L2 (Ω,P), such that

{Φ (h) | h ∈ L }

is a Gaussian process indexed by L satisfying:

1. E (Φ (h)) = 0, ∀h ∈ L ;
2. ∀n ∈ N, ∀l1, · · · , ln ⊂ L , the random variable (Φ (l1) , · · · , Φ (ln)) is jointly Gaussian, with

E
(
Φ (li)Φ

(
lj
))

=
〈
li, lj

〉
(21)

i.e.,
(〈

li, lj
〉)n

i=1 = the covariance matrix. (For the existence of Gaussian fields, see the discussion
below.)

Remark 2.11. For all finite systems {li} ⊂ L , set Gn =
(〈

li, lj
〉)n

i,j=1, called the Gramian. Assume Gn

non-singular for convenience, so that det Gn 6= 0. Then there is an associated Gaussian density g(Gn) on Rn,

g(Gn) (x) = (2π)−n/2 (det Gn)
−1/2 exp

(
−1

2

〈
x, G−1

n x
〉
Rn

)
(22)

The condition in Equation (21) assumes that for all continuous functions f : Rn −→ R (e.g., polynomials),
we have

E( f (Φ (l1) , · · · , Φ (ln))︸ ︷︷ ︸)
real valued

=

ˆ
Rn

f (x) g(Gn) (x) dx (23)

where x = (x1, · · · , xn) ∈ Rn, and dx = dx1 · · · dxn = Lebesgue measure on Rn. See Figure 1 for
an illustration.

Figure 1. The multivariate Gaussian (Φ (h1) , · · ·Φ (hn)) and its distribution. The Gaussian with
Gramian matrix (Gram matrix) Gn, n = 2.

In particular, for n = 2, 〈l1, l2〉 = 〈k, l〉, and f (x1, x2) = x1x2, we then get E (Φ (k)Φ (l)) = 〈k, l〉,
i.e., the inner product in L .

For our applications, we need the following facts about Gaussian fields.
Fix a Hilbert space L over R with inner product 〈·, ·〉L . Then (see [17,42,43]) there is a probability

space (Ω,F ,P), depending on L , and a real linear mapping Φ : L −→ L2 (Ω,F ,P), i.e., a Gaussian
field as specified in Definition 2.10, satisfying

E
(
eiΦ(k)) = e−

1
2 ‖k‖

2
, ∀k ∈ L (24)
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It follows from the literature (see also [44]) that Φ (k) may be thought of as a generalized
Itō-integral. One approach to this is to select a nuclear Fréchet space S with dual S ′ such that

S ↪→ L ↪→ S ′ (25)

forms a Gelfand triple. In this case we may take Ω = S ′, and Φ (k), k ∈ L , to be the extension of
the mapping

S ′ 3 ω −→ ω (ϕ) = 〈ϕ, ω〉 (26)

defined initially only for ϕ ∈ S , but, with the use of (26), now extended, via (24), from S to L . See
also Example 2.13 below.

Example 2.12. Fix a measure space (X,B, µ). Let Φ : L2 (µ) −→ L2 (Ω,P) be a Gaussian field
such that

E (ΦAΦB) = µ (A ∩ B) , ∀A, B ∈ B

where ΦE := Φ (χE), ∀E ∈ B; and χE denotes the characteristic function. In this case, L = L2 (X, µ).
Then we have Φ (k) =

´
X k (x) dΦ, i.e., the Itō-integral, and the following holds:

E (Φ (k)Φ (l)) = 〈k, l〉 =
ˆ

X
k (x) l (x) dµ (x) (27)

for all k, l ∈ L = L2 (X, µ). Eq. (27) is known as the Itō-isometry.

Example 2.13 (The special case of Brownian motion). There are many ways of realizing a Gaussian
probability space (Ω,F ,P). Two candidates for the sample space:

Case 1. Standard Brownian motion process: Ω = C (R), F = σ-algebra generated by cylinder sets,
P = Wiener measure. Set Bt (ω) = ω (t), ∀ω ∈ Ω; and Φ (k) =

´
R k (t) dBt, ∀k ∈ L2 (Ω,P).

Case 2. The Gelfand triples: S ↪→ L2 (R) ↪→ S ′, where

S = the Schwartz space of test functions;
S ′ = the space of tempered distributions.

Set Ω = S ′, F = σ-algebra generated by cylinder sets of S ′, and define

Φ (k) := k̂ (ω) = 〈k, ω〉 , k ∈ L2 (R) , ω ∈ S ′

Note Φ is defined by extending the duality S ←→ S ′ to L2 (R). The probability measure P
is defined from

E
(
ei〈k,·〉) = ˆ

S ′
eik̂(ω)dP (ω) = e

− 1
2 ‖k‖

2
L2(R)

by Minlos’ theorem [17,42].

Definition 2.14. Let D ⊂ L2 (Ω,F ,P) be the dense subspace spanned by functions F, where F ∈ D

iff ∃n ∈ N, ∃h1, · · · , hn ∈ L , and p ∈ R [x1, · · · , xn] = the polynomial ring, such that

F = p (Φ (h1) , · · · , Φ (hn)) : Ω −→ R.

(See the diagram below.) The case of n = 0 corresponds to the constant function 1 on Ω. Note that
Φ (hi) ∈ L2 (Ω,P).

Rn

p

&&Ω

(Φ(h1),··· ,Φ(hn))
77

F
// R
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Lemma 2.15. The polynomial fields D in Definition 2.14 form a dense subspace in L2 (Ω,P).

Proof. The easiest argument below takes advantage of the isometric isomorphism of L2 (Ω,P) with
the symmetric Fock space

Γsym (L ) = H0︸︷︷︸
1 dim

⊕
∞

∑
n=1

(L ⊗ · · · ⊗L )︸ ︷︷ ︸
n-fold symmetric

For ki ∈ L , i = 1, 2, there is a unique vector eki ∈ Γsym (L ) such that

〈
ek1 , ek2

〉
Γsym(L )

=
∞

∑
n=0

〈k1, k2〉n

n!
= e〈k1,k2〉L

Moreover,

Γsym (L ) 3 ek W0−−→ eΦ(k)− 1
2 ‖k‖

2
L ∈ L2 (Ω,P)

extends by linearity and closure to a unitary isomorphism Γsym (L )
W−−→ L2 (Ω,P), mapping onto

L2 (Ω,P) (also see Equation (73) in Theorem 3.30.) Hence D is dense in L2 (Ω,P), as span
{

ek | k ∈ L
}

is dense in Γsym (L ).

Lemma 2.16. Let L be a real Hilbert space, and let (Ω,F ,P, Φ) be an associated Gaussian field. For n ∈ N,
let {h1, · · · , hn} be a system of linearly independent vectors in L . Then, for polynomials p ∈ R [x1, · · · , xn],
the following two conditions are equivalent:

p (Φ (h1) , · · · , Φ (hn)) = 0 a.e. on Ω w.r.t P; and (28)

p (x1, · · · , xn) ≡ 0, ∀ (x1, · · · , xn) ∈ Rn (29)

Proof. Let Gn =
(〈

hi, hj
〉)n

i,j=1 be the Gramian matrix. We have det Gn 6= 0. Let g(Gn) (x1, · · · , xn)

be the corresponding Gaussian density; see Equation (22), and Figure 1. Then the following
are equivalent:

1. Equation (28) holds;
2. p (Φ (h1) , · · · , Φ (hn)) = 0 in L2 (Ω,F ,P);
3. E

(
|p (Φ (h1) , · · · , Φ (hn))|2

)
=
´
Rn |p (x)|2 g(Gn) (x) dx = 0;

4. p (x) = 0 a.e. x w.r.t. the Lebesgue measure in Rn ;
5. p (x) = 0, ∀x ∈ Rn; i.e., Equation (29) holds.

3. The Malliavin Derivatives

Below we give an application of the closability criterion for linear operators T between different
Hilbert spaces H1 and H2, but having dense domain in the first Hilbert space. In this application,
we shall take for T to be the so called Malliavin derivative. The setting for it is that of the Wiener
process. For the Hilbert space H1 we shall take the L2-space, L2 (Ω,P) where P is generalized Wiener
measure. Below we shall outline the basics of the Malliavin derivative, and we shall specify the
two Hilbert spaces corresponding to the setting of Theorem 2.7. We also stress that the literature on
Malliavin calculus and its applications is vast, see, e.g., [17,36,45–47].

Settings. It will be convenient for us to work with the real Hilbert spaces.
Let (Ω,F ,P, Φ) be as specified in Definition 2.10, i.e., we consider the Gaussian field Φ. Fix a real

Hilbert space L with dim L = ℵ0. Set H1 = L2 (Ω,P), and H2 = L2 (Ω→ L ,P) = L2 (Ω,P)⊗L ,
i.e., vector valued random variables.

For H1, the inner product 〈·, ·〉H1
is
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〈F, G〉H1
=

ˆ
Ω

FG dP = E (FG) (30)

where E (· · · ) =
´

Ω (· · · ) dP is the mean or expectation functional.
On H2, we have the tensor product inner product: If Fi ∈H1, ki ∈ L , i = 1, 2, then

〈F1 ⊗ k1, F2 ⊗ k2〉H2
= 〈F1, F2〉H1

〈k1, k2〉L
= E (F1F2) 〈k1, k2〉L (31)

Equivalently, if ψi : Ω −→ L , i = 1, 2, are measurable functions on Ω, we set

〈ψ1, ψ2〉H2
=

ˆ
Ω
〈ψ1 (ω) , ψ2 (ω)〉L dP (ω) (32)

where it is assumed that ˆ
Ω
‖ψi (ω)‖2

L dP (ω) < ∞, i = 1, 2 (33)

Remark 3.1. In the special case of standard Brownian motion, we have L = L2 (0, ∞), and set Φ (h) =´ ∞
0 h (t) dΦt (= the Itō-integral), for all h ∈ L . Recall we then have

E
(
|Φ (h)|2

)
=

ˆ ∞

0
|h (t)|2 dt (34)

or equivalently (the Itō-isometry),

‖Φ (h)‖L2(Ω,P) = ‖h‖L , ∀h ∈ L (35)

The consideration above also works in the context of general Gaussian fields; see Section 2.4.

Definition 3.2. Let D be the dense subspace in H1 = L2 (Ω,P) as in Definition 2.14. The operator
T : H1 −→H2 (= Malliavin derivative) with dom (T) = D is specified as follows:

For F ∈ D , i.e., ∃n ∈ N, p (x1, · · · , xn) a polynomial in n real variables, and h1, h2, · · · , hn ∈ L ,
where

F = p (Φ (h1) , · · · , Φ (hn)) ∈ L2 (Ω,P) (36)

Set

T (F) =
n

∑
j=1

(
∂

∂xj
p

)
(Φ (h1) , · · · , Φ (hn))⊗ hj ∈H2 (37)

In the following two remarks we outline the argument for why the expression for T(F) in
Equation (37) is independent of the chosen representation (36) for the particular F. Recall that F is in
the domain D of T. Without some careful justification, it is not even clear that T, as given, defines a
linear operator on its dense domain D . The key steps in the argument to follow will be the result (41)
in Theorem 3.8 below, and the discussion to follow.

There is an alternative argument, based instead on Corollary 2.9; see also Section 5 below.

Remark 3.3. It is non-trivial that the formula in Equation (37) defines a linear operator. Reason: On
the LHS in Equation (37), the representation of F from (36) is not unique. So we must show that
p (Φ (h1) , · · · , Φ (hn)) = 0 =⇒ RHS(37) = 0 as well. (The dual pair analysis below (see Definition 3.6)
is good for this purpose.)

Suppose F ∈ D has two representations corresponding to systems of vectors h1, · · · , hn ∈ L , and
k1, · · · , km ∈ L , with polynomials p ∈ R [x1, · · · , xn], and q ∈ R [x1, · · · , xm], where

F = p (Φ (h1) , · · · , Φ (hn)) = q (Φ (k1) , · · · , Φ (km)) (38)
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We must then verify the identity:

n

∑
i=1

∂p
∂xi

(Φ (h1) , · · · , Φ (hn))⊗ hi =
m

∑
i=1

∂q
∂xi

(Φ (k1) , · · · , Φ (km))⊗ ki (39)

The significance of the next result is the implication (38) =⇒ (39), valid for all choices of representations
of the same F ∈ D . The conclusion from (41) in Theorem 3.8 is that the following holds for all l ∈ L :

E
(〈

LHS(39), l
〉)

= E
(〈

RHS(39), l
〉)

= E (FΦ (l))

Moreover, with a refinement of the argument, we arrive at the identity〈
LHS(39) − RHS(39), G⊗ l

〉
H2

= 0,

valid for all G ∈ D , and all l ∈ L .
However, span {G⊗ l | G ∈ D , l ∈ L } is dense in H2

(
= L2 (P)⊗L

)
w.r.t. the tensor-Hilbert norm

in H2 (see (31)); and we get the desired identity (39) for any two representations of F.

Remark 3.4. An easy case where (38) =⇒ (39) can be verified “by hand”:
Let F = Φ (h)2 with h ∈ L \ {0} fixed. We can then pick the two systems {h} and {h, h} with p (x) =

x2, and q (x1, x2) = x1x2. A direct calculus argument shows that LHS(39) = RHS(39) = 2Φ (h)⊗ h ∈H2.

We now resume the argument for the general case.

Definition 3.5 (symmetric pair). For i = 1, 2, let Hi be two Hilbert spaces, and suppose Di ⊂ Hi are
given dense subspaces.

We say that a pair of operators (S, T) forms a symmetric pair if dom (T) = D1, and dom (S) = D2;
and moreover,

〈Tu, v〉H2
= 〈u, Sv〉H1

(40)

holds for ∀u ∈ D1, ∀v ∈ D2. (Also see Definition 2.5.)
It is immediate that (40) may be rewritten in the form of containment of graphs:

T ⊂ S∗, S ⊂ T∗

In that case, both S and T are closable. We say that a symmetric pair is maximal if T = S∗ and S = T∗.

H1

T
&&
H2

S

ff

We will establish the following two assertions:

1. Indeed T from Definition 3.2 is a well-defined linear operator from H1 to H2 .
2. Moreover, (S, T) is a maximal symmetric pair (see Definitions 3.5 and 3.6).

Definition 3.6. Let H1
T−→ H2 be the Malliavin derivative with D1 = dom (T), see Definition 3.2. Set

D2 = D1 ⊗L = algebraic tensor product, and on dom (S) = D2, set

S (F⊗ k) = − 〈T (F) , k〉+ MΦ(k)F, ∀F⊗ k ∈ D2

where MΦ(k) = the operator of multiplication by Φ (k).

Note that both operators S and T are linear and well defined on their respective dense domains,
Di ⊂Hi, i = 1, 2. For density, see Lemma 2.15.
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It is a “modern version” of ideas in the literature on analysis of Gaussian processes; but we
are adding to it, giving it a twist in the direction of multi-variable operator theory, representation
theory, and especially to representations of infinite-dimensional algebras on generators and relations.
Moreover our results apply to more general Gaussian processes than covered so far.

Lemma 3.7. Let (S, T) be the pair of operators specified above in Definition 3.6. Then it is a symmetric
pair, i.e.,

〈Tu, v〉H2
= 〈u, Sv〉H1

, ∀u ∈ D1, ∀v ∈ D2

Equivalently,
〈T (F) , G⊗ k〉H2

= 〈F, S (G⊗ k)〉H1
, ∀F, G ∈ D , ∀k ∈ L

In particular, we have S ⊂ T∗, and T ⊂ S∗(containment of graphs.) Moreover, the two operators S∗S
and T∗T are selfadjoint. (For the last conclusion in the lemma, see Theorem 2.7.)

Theorem 3.8. Let T : H1 −→ H2 be the Malliavin derivative, i.e., T is an unbounded closable operator with
dense domain D consisting of the span of all the functions F from (36). Then, for all F ∈ dom (T), and k ∈ L ,
we have

E (〈T (F) , k〉L ) = E (FΦ (k)) (41)

Proof. We shall prove (41) in several steps. Once (41) is established, then there is a recursive argument
which yields a dense subspace in H2, contained in dom (T∗); and so T is closable.

Moreover, formula (41) yields directly the evaluation of T∗ : H2 −→H1 as follows: If k ∈ L , set
1⊗ k ∈H2 where 1 denotes the constant function “one” on Ω. We get

T∗ (1⊗ k) = Φ (k) =
ˆ ∞

0
k (t) dΦt (= the Itō-integral) (42)

The same argument works for any Gaussian field; see Definition 2.10. We refer to the literature [17,36]
for details.

The proof of (41) works for any Gaussian process L 3 k −→ Φ (k) indexed by an arbitrary
Hilbert space L with the inner product 〈k, l〉L as the covariance kernel.

Formula (41) will be established as follows: Let F and T (F) be as in Equations (36) and (37).
Step 1. For every n ∈ N, the polynomial ring R [x1, x2, · · · , xn] is invariant under matrix

substitution y = Mx, where M is an n× n matrix over R.
Step 2. Hence, in considering (41) for {hi}n

i=1 ⊂ L , h1 = k, we may diagonalize the n × n
Gram matrix

(〈
hi, hj

〉)n
i,j=1; thus without loss of generality, we may assume that the system {hi}n

i=1 is
orthogonal and normalized, i.e., that〈

hi, hj
〉
= δij, ∀i, j ∈ {1, · · · , n} (43)

and we may take k = h1 in L .
Step 3. With this simplification, we now compute the LHS in (41). We note that the joint

distribution of {Φ (hi)}n
i=1 is thus the standard Gaussian kernel in Rn, i.e.,

gn (x) = (2π)−n/2 e−
1
2 ∑n

i=1 x2
i (44)

with x = (x1, · · · , xn) ∈ Rn. We have

x1gn (x) = − ∂

∂x1
gn (x) (45)

by calculus.
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Step 4. A direct computation yields

LHS(41) = E (〈T (F) , h1〉L )

=
by (43)

E
(

∂p
∂x1

(Φ (h1) , · · ·Φ (hn))

)
=

by (44)

ˆ
Rn

∂p
∂x1

(x1, · · · , xn) gn (x1, · · · , xn) dx1 · · · dxn

=
int. by parts

−
ˆ
Rn

p (x1, · · · , xn)
∂gn

∂x1
(x1, · · · , xn) dx1 · · · dxn

=
by (45)

ˆ
Rn

x1 p (x1, · · · , xn) gn (x1, · · · , xn) dx1 · · · dxn

=
by (43)

E (Φ (h1) p (Φ (h1) , · · · , Φ (hn)))

= E (Φ (h1) F) = RHS(41)

which is the desired conclusion (41).

Corollary 3.9. Let H1, H2, and H1
T−→ H2 be as in Theorem 3.8, i.e., T is the Malliavin derivative. Then,

for all h, k ∈ L = L2 (0, ∞), we have for the closure T of T the following:

T(eΦ(h)) = eΦ(h) ⊗ h, and (46)

E
(
〈T(eΦ(h)), k〉L

)
= e

1
2 ‖h‖

2
L 〈h, k〉L (47)

Here T denotes the graph-closure of T.
Moreover,

T∗T(eΦ(k)) =
(

Φ (k)− ‖k‖2
L

)
eΦ(k) (48)

Proof. Equations (46) and (47) follow immediately from (41) and a polynomial approximation to

ex = lim
n→∞

n

∑
0

xj

j!
, x ∈ R

see (36). In particular, eΦ(h) ∈ dom
(
T
)
, and T

(
eΦ(h)

)
is well defined.

For Equation (48), we use the facts for the Gaussians:

E(eΦ(k)) = e
1
2 ‖k‖

2
, and

E(Φ (k) eΦ(k)) = ‖k‖2 e
1
2 ‖k‖

2

Example 3.10. Let F = Φ (k)n, ‖k‖ = 1. We have

TΦ (k)n = nΦ (k)n−1 ⊗ k

T∗TΦ (k)n = −n (n− 1)Φ (k)n−2 + nΦ (k)n

and similarly,

TeΦ(k) = eΦ(k) ⊗ k

T∗TeΦ(k) = eΦ(k) (Φ (k)− 1)
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Let (S, T) be the symmetric pair, we then have the inclusion T ⊂ S∗, i.e., containment of the
operator graphs, G

(
T
)
⊂ G (S∗). In fact, we have

Corollary 3.11. T = S∗.

Proof. We will show that G (S∗)	 G
(
T
)
= 0, where 	 stands for the orthogonal complement in the

direct sum-inner product of H1 ⊕H2. Recall that H1 = L2 (Ω,P), and H2 = H1 ⊗L .
Using (46), we will prove that if F ∈ dom (S∗), and〈(

eΦ(k)

eΦ(k) ⊗ k

)
,

(
F

S∗F

)〉
= 0, ∀k ∈ L =⇒ F = 0

which is equivalent to
E
(

eΦ(k) (F + 〈S∗F, k〉)
)
= 0, ∀k ∈ L (49)

But it is know that for the Gaussian filed, span
{

eΦ(k) | k ∈ L
}

is dense in H1, and so (49) implies
that F = 0, which is the desired conclusion.

We can finish the proof of the corollary with an application of Girsanov’s theorem, see e.g., [36]
and [48]. By this result, we have a measurable action τ of L on (Ω,F ,P), i.e.,

L
τ−→ Aut (Ω,F )

τk ◦ τl = τk+l a.e. on Ω, ∀k, l ∈ L
(50)

(see also sect 5 below) s.t. τk (F ) = F for all k ∈ L , and

P ◦ τ−1
k � P

with
dP ◦ τ−1

k
dP = e−

1
2 ‖k‖

2
L eΦ(k), a.e. on Ω. (51)

Returning to (49). An application of (51) to (49) yields:

F (·+ k) + 〈S∗ (F) (·+ k) , k〉L = 0 a.e. on Ω (52)

where we have used “· + k” for the action in (50). Since τ in (50) is an action by
measure-automorphisms, (52) implies

F (·) + 〈S∗ (F) (·) , k〉L = 0 (53)

again with k ∈ L arbitrary. If F 6= 0 in L2 (Ω,F ,P), then the second term in (53) would be
independent of k which is impossible with S∗ (F) (·) 6= 0. But if S∗ (F) = 0, then F (·) = 0 (in
L2 (Ω,F ,P)) by (53); and so the proof is completed.

Remark 3.12. We recall the definition of the domain of the closure T. The following is a necessary and sufficient
condition for an F ∈ L2 (Ω,F ,P) to be in the domain of T:

F ∈ dom
(
T
)
⇐⇒ ∃ a sequence {Fn} ⊂ D s.t.

lim
n,m→∞

E
(
|Fn − Fm|2 + ‖T (Fn)− T (Fm)‖2

L

)
= 0 (54)

When (54) holds, we have:
T (F) = lim

n→∞
T (Fn) (55)

where the limit on the RHS in (55) is in the Hilbert norm of L2 (Ω,F ,P)⊗L .
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Corollary 3.13. Let (L , Ω,F ,P, Φ) be as above, and let T and S be the two operators from Corollary 3.11.
Then, for the domain of T, we have the following:

For random variables F in L2 (Ω,F ,P), the following two conditions are equivalent:

1. F ∈ dom
(
T
)
;

2. ∃C = CF < ∞ s.t.
|E (F S (ψ))|2 ≤ CE

(
‖ψ (·)‖2

L

)
holds for ∀ψ ∈ span {G⊗ k | G ∈ D , k ∈ L }.

Recall
S (· ⊗ k) = MΦ(k) · − 〈T (·) , k〉L

equivalently,
S (G⊗ k) = Φ (k) G− 〈T (G) , k〉L

for all G ∈ D , and all k ∈ L .

Proof. Immediate from the previous corollary.

3.1. A Derivation on the Algebra D

The study of unbounded derivations has many applications in mathematical physics; in
particular in making precise the time dependence of quantum observables, i.e., the dynamics in
the Schrödinger picture; —in more detail, in the problem of constructing dynamics in statistical
mechanics. An early application of unbounded derivations (in the commutative case) can be found in
the work of Silov [49]; and the later study of unbounded derivations in non-commutative C∗-algebras
is outlined in [2]. There is a rich variety in unbounded derivations, because of the role they play in
applications to dynamical systems in quantum physics.

However, previously the theory of unbounded derivations has not yet been applied
systematically to stochastic analysis in the sense of Malliavin. In the present section, we turn to
this. We begin with the following:

Lemma 3.14 (Leibniz-Malliavin). Let H1
T−→ H2 be the Malliavin derivative from Equations (36)

and (37). Then,

1. dom (T) =: D , given by (36), is an algebra of functions on Ω under pointwise product, i.e., FG ∈ D ,
∀F, G ∈ D .

2. H2 is a module over D where H2 = L2 (Ω,P)⊗L (= vector valued L2-random variables.)
3. Moreover,

T (FG) = T (F) G + F T (G) , ∀F, G ∈ D (56)

i.e., T is a module-derivation.

Notation. The Equation (56) is called the Leibniz-rule. By the Leibniz, we refer to the traditional rule of
Leibniz for the derivative of a product. And the Malliavin derivative is thus an infinite-dimensional
extension of Leibniz calculus.

Proof. To show that D ⊂H1 = L2 (Ω,P) is an algebra under pointwise multiplication, the following
trick is useful. It follows from finite-dimensional Hilbert space geometry.

Let F, G be as in Definition 2.14. Then ∃p, q ∈ R [x1, · · · , xn], {li}n
i=1 ⊂ L , such that

F = p (Φ (l1) , · · · , Φ (ln)) , and G = q (Φ (l1) , · · · , Φ (ln))

That is, the same system l1, · · · , ln may be chosen for the two functions F and G.
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For the pointwise product, we have

FG = (pq) (Φ (l1) , · · · , Φ (ln))

i.e., the product in R [x1, · · · , xn] with substitution of the random variable

(Φ (l1) , · · · , Φ (ln)) : Ω −→ Rn

Equation (56)⇐⇒ ∂(pq)
∂xi

= ∂p
∂xi

q + p ∂q
∂xi

, which is the usual Leibniz rule applied to polynomials.
Note that

T (FG) =
n

∑
i=1

∂

∂xi
(pq) (Φ (l1) , · · · , Φ (ln))⊗ li

Remark 3.15. There is an extensive literature on the theory of densely defined unbounded derivations in
C∗-algebras. This includes both the cases of abelian and non-abelian ∗-algebras. Moreover, this study includes
both derivations in these algebras, as well as the parallel study of module derivations. Therefore, the case of the
Malliavin derivative is in fact a special case of this study. Readers interested in details are referred to [1,2,50,51].

Definition 3.16. Let (L , Ω,F ,P, Φ) be a Gaussian field, and T be the Malliavin derivative with
dom (T) = D . For all k ∈ L , set

Tk (F) := 〈T (F) , k〉 , F ∈ D (57)

In particular, let F = p (Φ (l1) , · · · , Φ (l1)) be as in (36), then

Tk (F) =
n

∑
i=1

∂p
∂xi

(Φ (l1) , · · · , Φ (l1)) 〈li, k〉

Corollary 3.17. Tk is a derivative on D , i.e.,

Tk (FG) = (TkF) G + F (TkG) , ∀F, G ∈ D , ∀k ∈ L (58)

Proof. Follows from (56).

Corollary 3.18. Let (L , Ω,F ,P, Φ) be a Gaussian field. Fix k ∈ L , and let Tk be the Malliavin derivative
in the k direction. Then on D we have

Tk + T∗k = MΦ(k), and (59)

[Tk, T∗l ] = 〈k, l〉L IL2(Ω,P) (60)

Proof. For all F, G ∈ D , we have

E (Tk (F) G) +E (F Tk (G)) =
by (58)

E (Tk (FG))

=
by (41)

E (Φ (k) FG)

which yields the assertion in (59). Equation (60) now follows from (59) and the fact that
[Tk, Tl ] = 0.

Definition 3.19. Let (L , Ω,F ,P, Φ) be a Gaussian field. For all k ∈ L , let Tk be Malliavin derivative
in the k-direction (57). Assume L is separable, i.e., dim L = ℵ0. For every ONB {ei}∞

i=1 in L , let

N := ∑
i

T∗ei
Tei . (61)
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N is the CCR number operator. See Section 4 below.

Example 3.20. N1 = 0, since Tei1 = 0, ∀i. Similarly,

NΦ (k) = Φ (k) (62)

NΦ (k)2 = −2 ‖k‖2
1+ 2Φ (k)2 , ∀k ∈ L (63)

To see this, note that

∑
i

T∗ei
Tei Φ (k) = ∑

i
T∗ei
〈ei, k〉1

= ∑
i

Φ (ei) 〈ei, k〉

= Φ

(
∑

i
〈ei, k〉 ei

)
= Φ (k)

which is (62). The verification of (63) is similar.

Theorem 3.21. Let {ei} be an ONB in L , then

T∗T = ∑
i

T∗ei
Tei = N (64)

Proof. Note the span of
{

eΦ(k) | k ∈ L
}

is dense in L2 (Ω,P), and both sides of (64) agree on eΦ(k),
k ∈ L . Indeed, by (61),

T∗TeΦ(k) = NeΦ(k) =
(

Φ (k)− ‖k‖2
)

eΦ(k)

Corollary 3.22. Let D := T∗T. Specialize to the case of n = 1, and consider F = f (Φ (k)), k ∈ L ,
f ∈ C∞ (R); then

D (F) = −‖k‖2
L f ′′ (Φ (k)) + Φ (k) f ′ (Φ (k)) (65)

Proof. A direct application of the formulas of T and T∗

Remark 3.23. If ‖k‖L = 1 in (65), then the RHS in (65) is obtained by a substitution of the real valued
random variable Φ (k) into the deterministic function

δ ( f ) := −
(

d
dx

)2
f + x

(
d

dx

)
f (66)

Then Equation (65) may be rewritten as

D ( f (Φ (k))) = δ ( f ) ◦Φ (k) , f ∈ C∞ (R) (67)

Corollary 3.24. If {Hn}n∈N0
, N0 = {0, 1, 2, · · · }, denotes the Hermite polynomials on R, then we get for

∀k ∈ L , ‖k‖L = 1, the following eigenvalues

D (Hn (Φ (k))) = n Hn (Φ (k)) (68)

Proof. It is well-known that the Hermite polynomials Hn satisfies

δ (Hn) = n Hn, ∀n ∈ N0 (69)

and so (68) follows from a substitution of (69) into (67).
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Theorem 3.25. The spectrum of T∗T, as an operator in L2 (Ω,F ,P), is as follows:

specL2(P)
(
T∗T

)
= N0 = {0, 1, 2, · · · } .

Proof. We saw that the L2 (P)-representation is unitarily equivalent to the Fock vacuum
representation, and π (Fock-number operator) = T∗T.

3.2. Infinite-dimensional ∆ and ∇Φ

Corollary 3.26. Let (L , Ω,F ,P, Φ) be a Gaussian field, and let T be the Malliavin derivative, L2 (Ω,P) T−→
L2 (Ω,P)⊗L . Then, for all F = p (Φ (h1) , · · · , Φ (hn)) ∈ D (see Definition 3.2), we have

T∗T (F) = −
n

∑
i=1

∂2 p
∂xi

(Φ (h1) , · · · , Φ (hn))︸ ︷︷ ︸
∆F

+
n

∑
i=1

Φ (hi)
∂p
∂xi

(Φ (h1) , · · · , Φ (hn))︸ ︷︷ ︸
∇Φ F

which is abbreviated
T∗T = −∆ +∇Φ. (70)

For the general theory of infinite-dimensional Laplacians, see, e.g., [52].

Proof. (Sketch) We may assume the system {hi}n
i=1 ⊂ L is orthonormal, i.e.,

〈
hi, hj

〉
= δij. Hence,

for F F = p (Φ (h1) , · · · , Φ (hn)) ∈ D , we have

TF =
n

∑
i=1

∂p
∂xi

(Φ (h1) , · · · , Φ (hn))⊗ hi, and

T∗T (F) = −
n

∑
i=1

∂2 p
∂x2

i
(Φ (h1) , · · · , Φ (hn))

+
n

∑
i=1

Φ (hi)
∂p
∂xi

(Φ (h1) , · · · , Φ (hn))

which is the assertion. For details, see the proof of Theorem 3.8.

Definition 3.27. Let (L , Ω,F ,P, Φ) be a Gaussian field. On the dense domain D ⊂ L2 (Ω,P), we
define the Φ-gradient by

∇ΦF =
n

∑
i=1

Φ (hi)
∂p
∂xi

(Φ (h1) , · · · , Φ (hn)) (71)

for all F = p (Φ (h1) , · · · , Φ (hn)) ∈ D . (Note that ∇Φ is an unbounded operator in L2 (Ω,P), and
dom (∇Φ) = D .)

Lemma 3.28. Let∇Φ be the Φ-gradient from Definition 3.27. The adjoint operator∇∗Φ, i.e., the Φ-divergence,
is given as follows:

∇∗Φ (G) =

(
n

∑
i=1

Φ (hi)
2 − n

)
G−∇Φ (G) , ∀G ∈ D (72)

Proof. Fix F, G ∈ D as in Definition 3.2. Then ∃n ∈ N, p, q ∈ R [x1, · · · , xn], and {hi}n
i=1 ⊂ L ,

such that
F = p (Φ (h1) , · · · , Φ (hn))

G = q (Φ (h1) , · · · , Φ (hn))

Further assume that
〈

hi, hj
〉
= δij.
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In the calculation below, we use the following notation: x = (x1, · · · , xn) ∈ Rn, dx = dx1 · · · dxn

= Lebesgue measure, and gn = gGn = standard Gaussian distribution in Rn, see (44).
Then, we have

E ((∇ΦF) G)

=
n

∑
i=1

E
(

Φ (hi)
∂p
∂xi

(Φ (h1) , · · · , Φ (hn)) q (Φ (h1) , · · · , Φ (hn))

)
=

n

∑
i=1

ˆ
Rn

xi
∂p
∂xi

(x) q (x) gn (x) dx

= −
n

∑
i=1

ˆ
Rn

p (x)
∂

∂xi
(xiq (x) gn (x)) dx

= −
n

∑
i=1

ˆ
Rn

p (x)
(

q (x) + xi
∂q
∂xi

(x)− q (x) x2
i

)
gn (x) dx

(
∂gn

∂xi
= −xign

)
=

n

∑
i=1

E
(

FGΦ (hi)
2
)
− nE (FG)−E (F∇ΦG)

= E
(

FG
(
∑n

i=1 Φ (hi)
2 − n

))
−E (F∇ΦG)

which is the desired conclusion in (72).

Remark 3.29. Note T∗k is not a derivation. In fact, we have

T∗k (FG) = T∗k (F) G + F T∗k (G)−Φ (k) FG

for all F, G ∈ D , and all k ∈ L .
However, the divergence operator ∇Φ does satisfy the Leibniz rule, i.e.,

∇Φ (FG) = (∇ΦF) G + F (∇ΦG) , ∀F, G ∈ D

3.3. Realization of the operators

Theorem 3.30. Let ωFock be the Fock state on CCR (L ), see Equations (12) and (13), and let πF denote
the corresponding (Fock space) representation, acting on Γsym (L ), see Lemma 2.15. Let W : Γsym (L ) −→
L2 (Ω,P) be the isomorphism given by

W
(

ek
)

:= eΦ(k)− 1
2 ‖k‖

2
L , k ∈ L (73)

Here L2 (Ω,P) denotes the Gaussian Hilbert space corresponding to L ; see Definition 2.10. For vectors k ∈ L ,
let Tk denote the Malliavin derivative in the direction k; see Definition 3.2.

We then have the following realizations:

Tk = WπF (a (k))W∗, and (74)

MΦ(k) − Tk = WπF (a∗ (k))W∗ (75)

valid for all k ∈ L , where the two identities Equations (74) and (75) hold on the dense domain D

from Lemma 2.15.

Remark 3.31. The two formulas (74) and 75) take the following form, see Figures 2 and 3.
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Γsym (L )
W //

πF(a(k))
��

L2 (Ω,P)

Tk
��

Γsym (L )
W

// L2 (Ω,P)

Figure 2. The first operator.

Γsym (L )
W //

πF(a∗(k))
��

L2 (Ω,P)

MΦ(k)−Tk
��

Γsym (L )
W

// L2 (Ω,P)

Figure 3. The second operator.

In the proof of the theorem, we make use of the following:

Lemma 3.32. Let L , CCR (L ), and ωF (= the Fock vacuum state) be as above. Then, for all n, m ∈ N, and
all h1, · · · , hn, k1, · · · , km ∈ L , we have the following identity:

ωF (a (h1) · · · , a (hn) a∗ (km) · · · a (k1))

= δn,m ∑
s∈Sn

〈
h1, ks(1)

〉
L

〈
h2, ks(2)

〉
L
· · ·
〈

hn, ks(n)

〉
L

(76)

where the summation on the RHS in (76) is over the symmetric group Sn of all permutations of {1, 2, · · · , n}.
(In the case of the CARs, the analogous expression on the RHS will instead be a determinant.)

Proof. We leave the proof of the lemma to the reader; it is also contained in [2].

Remark 3.33. In physics-lingo, we say that the vacuum-state ωF is determined by its two-point functions

ωF (a (h) a∗ (k)) = 〈h, k〉L , and

ωF (a∗ (k) a (h)) = 0, ∀h, k ∈ L

Proof of Theorem 3.30. We shall only give the details for formula (74). The modifications needed for
(75) will be left to the reader.

Since W in (73) is an isomorphic isomorphism, i.e., a unitary operator from Γsym (L ) onto
L2 (Ω,P), we may show instead that

TkW = WπF (a (k)) (77)

holds on the dense subspace of all finite symmetric tensor polynomials in Γsym (L ); or equivalently
on the dense subspace in Γsym (L ) spanned by

Γ (l) := el :=
∞

∑
n=0

l⊗n
√

n!
∈ Γsym (L ) , l ∈ L (78)

see also Lemma 2.15. We now compute (77) on the vectors el in (78):

TkW
(

el
)
= Tk

(
eΦ(k)− 1

2 ‖k‖
2
L

)
(by Lemma 2.15)

= e−
1
2 ‖k‖

2
L Tk

(
eΦ(k))
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= e−
1
2 ‖k‖

2
L 〈k, l〉L eΦ(l) (by Remark 3.3)

= WπF (a (k))
(

el
)

valid for all k, l ∈ L .

3.4. The Unitary Group

For a given Gaussian field (L , Ω,F ,P, Φ), we studied the CCR (L )-algebra, and the operators
associated with its Fock-vacuum representation.

From the determination of Φ by

E
(
eiΦ(k)) = e−

1
2 ‖k‖

2
L , k ∈ L (79)

we deduce that (Ω,F ,P, Φ) satisfies the following covariance with respect to the group Uni (L ) :=
G (L ) of all unitary operators U : L −→ L .

We shall need the following:

Definition 3.34. We say that α ∈ Aut (Ω,F ,P) iff the following three conditions hold:

1. α : Ω −→ Ω is defined P a.e. on Ω, and P (α (Ω)) = 1.
2. F = α (F ); more precisely, F =

{
α−1 (B) | B ∈ F

}
where

α−1 (B) = {ω ∈ Ω | α (ω) ∈ B} (80)

3. P = P ◦ α−1, i.e., α is a measure preserving automorphism.

Note that when Equations (1)–(3) hold for α, then we have the unitary operators Uα in
L2 (Ω,F ,P),

UαF = F ◦ α (81)

or more precisely,
(UαF) (ω) = F (α (ω)) , a.e. ω ∈ Ω

valid for all F ∈ L2 (Ω,F ,P).

Theorem 3.35.

1. For every U ∈ G (L ) (= the unitary group of L ), there is a unique α ∈ Aut (Ω,F ,P) s.t.

Φ (Uk) = Φ (k) ◦ α (82)

or equivalently (see (81))
Φ (Uk) = Uα (Φ (k)) , ∀k ∈ L (83)

2. If T : L2 (Ω,P) −→ L2 (Ω,P)⊗L is the Malliavin derivative from Definition 3.2, then we have:

TUα = (Uα ⊗U) T (84)

Proof. The first conclusion in the theorem is immediate from the above discussion, and we now turn
to the covariance formula (84).

Note that (84) involves unbounded operators, and it holds on the dense subspace D in L2 (Ω,P)
from Lemma 2.15. Hence it is enough to verify (84) on vectors in L2 (Ω,P) of the form eΦ(k)− 1

2 ‖k‖
2
L ,

k ∈ L . Using Lemma 2.15, we then get:

LHS(84)
(
eΦ(k)− 1

2 ‖k‖
2
L
)
= e−

1
2 ‖k‖

2
L T

(
eΦ(Uk)) (by (82))
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= e−
1
2 ‖Uk‖2

L eΦ(Uk) ⊗ (Uk) (by Remark 3.3)

= (Uα ⊗U)
(
eΦ(k)− 1

2 ‖k‖
2
L
)

= RHS(84)

which is the desired conclusion.

4. The Fock-State, and Representation of CCR, Realized as Malliavin Calculus

We now resume our analysis of the representation of the canonical commutation relations
(CCR)-algebra induced by the canonical Fock state (see (11)). In our analysis below, we shall make
use of the following details: Brownian motion, Itō-integrals, and the Malliavin derivative.

The general setting. Let L be a fixed Hilbert space, and let CCR (L ) be the ∗-algebra on the
generators a (k), a∗ (l), k, l ∈ L , and subject to the relations for the CCR-algebra, see Section 2.2:

[a (k) , a (l)] = 0, and (85)

[a (k) , a∗ (l)] = 〈k, l〉L 1 (86)

where [·, ·] is the commutator bracket.
A representation π of CCR (L ) consists of a fixed Hilbert space H = Hπ (the representation

space), a dense subspace Dπ ⊂Hπ , and a ∗-homomorphism π : CCR (L ) −→ End (Dπ) such that

Dπ ⊂ dom (π (A)) , ∀A ∈ CCR. (87)

The representation axiom entails the commutator properties resulting from Equations (85) and (86);
in particular π satisfies

[π (a (k)) , π (a (l))] F = 0, and (88)[
π (a (k)) , π (a (l))∗

]
F = 〈k, l〉L F (89)

∀k, l ∈ L , ∀F ∈ Dπ ; where π (a∗ (l)) = π (a (l))∗ .
In the application below, we take L = L2 (0, ∞), and Hπ = L2 (Ω,FΩ,P) where (Ω,FΩ,P) is

the standard Wiener probability space, and

Φt (ω) = ω (t) , ∀ω ∈ Ω, t ∈ [0, ∞) (90)

For k ∈ L , we set

Φ (k) =
ˆ ∞

0
k (t) dΦt (=the Itō-integral)

The dense subspace Dπ ⊂Hπ is generated by the polynomial fields:
For n ∈ N, h1, · · · , hn ∈ L = L2

R (0, ∞), p ∈ Rn −→ R a polynomial in n real variables, set

F = p (Φ (h1) , · · · , Φ (hn)) , and (91)

π (a (k)) F =
n

∑
j=1

(
∂

∂xj
p

)
(Φ (h1) , · · · , Φ (hn))

〈
hj, k

〉
(92)

It follows from Lemma 3.14 that Dπ is an algebra under pointwise product and that

π (a (k)) (FG) = (π (a (k)) F) G + F (π (a (k)) G) (93)

∀k ∈ L , ∀F, G ∈ Dπ . Equivalently, Tk := π (a (k)) is a derivation in the algebra Dπ (relative to
pointwise product.)
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Theorem 4.1. With the operators π (a (k)), k ∈ L , we get a ∗-representation π : CCR (L ) −→ End (Dπ),
i.e., π (a (k)) = the Malliavin derivative in the direction k,

π (a (k)) F = 〈T (F) , k〉L , ∀F ∈ Dπ , ∀k ∈ L (94)

Proof. The proof begins with the following lemma.

Lemma 4.2. Let π, CCR (L ), and Hπ = L2 (Ω,FΩ,P) be as above. For k ∈ L , we shall identify Φ (k)
with the unbounded multiplication operator in Hπ :

Dπ 3 F 7−→ Φ (k) F ∈Hπ (95)

For F ∈ Dπ , we have π (a (k))∗ F = −π (a (k)) F + Φ (k) F; or in abbreviated form:

π (a (k))∗ = −π (a (k)) + Φ (k) (96)

valid on the dense domain Dπ ⊂Hπ .

Proof. This follows from the following computation for F, G ∈ Dπ , k ∈ L .
Setting Tk := π (a (k)), we have

E (Tk (F) G) +E (F Tk (G)) = E (Tk (FG)) = E (Φ (k) FG)

Hence Dπ ⊂ dom
(
T∗k
)
, and T∗k (F) = −Tk (F) + Φ (k) F, which is the desired conclusion (96).

Proof of Theorem 4.1 continued. It is clear that the operators Tk = π (a (k)) form a commuting
family. Hence on Dπ , we have for k, l ∈ L , F ∈ Dπ :

[Tk, T∗l ] (F) = [Tk, Φ (l)] (F) by (96)

= Tk (Φ (l) F)−Φ (l) (Tk (F))

= Tk (Φ (l)) F by (93)

= 〈k, l〉L F by (92)

which is the desired commutation relation (86).
The remaining check on the statements in the theorem are now immediate.

Corollary 4.3. The state on CCR (L ) which is induced by π and the constant function 1 in L2 (Ω,P) is the
Fock-vacuum-state, ωFock.

Proof. The assertion will follow once we verify the following two conditions:
ˆ

Ω
T∗k Tk (1) dP = 0 (97)

and ˆ
Ω

TkT∗l (1) dP = 〈k, l〉L (98)

for all k, l ∈ L .
This in turn is a consequence of our discussion of Equations (12) and (13) above: The Fock state

ωFock is determined by these two conditions. The assertions (97) and (98) follow from Tk (1) = 0, and(
TkT∗l

)
(1) = 〈k, l〉L 1. See (42).

Corollary 4.4. For k ∈ L2
R (0, ∞) we get a family of selfadjoint multiplication operators Tk + T∗k = MΦ(k) on

Dπ where Tk = π (a (k)). Moreover, the von Neumann algebra generated by these operators is L∞ (Ω,P), i.e.,
the maximal abelian L∞-algebra of all multiplication operators in Hπ = L2 (Ω,P).
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Remark 4.5. In our considerations of representations π of CCR (L ) in a Hilbert space Hπ , we require the
following five axioms satisfied:

1. a dense subspace Dπ ⊂Hπ ;
2. π : CCR (L ) −→ End (Dπ), i.e., Dπ ⊂ ∩A∈CCR(L )dom (π (A));
3. [π (a (k)) , π (a (l))] = 0, ∀k, l ∈ L ;
4.

[
π (a (k)) , π (a (l))∗

]
= 〈k, l〉L IHπ

, ∀k, l ∈ L ; and
5. π (a∗ (k)) ⊂ π (a (k))∗, ∀k ∈ L .

Note that in our assignment for the operators π (a (k)), and π (a∗ (k)) in Lemma 4.2, we have all the
conditions (1)–(5) satisfied. We say that π is a selfadjoint representation.

If alternatively, we define
ρ : CCR (L ) −→ End (Dπ) (99)

with the following modification: {
ρ (a (k)) = Tk, k ∈ L , and

ρ (a∗ (k)) = Φ (k)
(100)

then this ρ will satisfy (1)–(3), and

[ρ (a (k)) , ρ (a∗ (l))] = 〈k, l〉L IHπ

but then ρ (a (k)) & ρ (a (k))∗; i.e., non-containment of the respective graphs.
One generally says that the representation π is (formally) selfadjoint, while the second representation ρ

is not.

5. Conclusions: The General Case

Definition 5.1. A representation π of CCR (L ) is said to be admissible iff (Definition) ∃ (Ω,F ,P) as
above such that Hπ = L2 (Ω,F ,P), and there exists a linear mapping Φ : L −→ L2 (Ω,F ,P) subject
to the condition:

For every n ∈ N, and every k, h1, · · · , hn ∈ L , the following holds on its natural dense domain
in Hπ : For every p ∈ R [x1, · · · , xn], we have

π ([a (k) , p (a∗ (h1) , · · · , a∗ (hn))]) =
n

∑
i=1
〈k, hi〉L M ∂p

∂xi
(Φ(h1),··· ,Φ(hn))

(101)

with the M on the RHS denoting “multiplication.”

Corollary 5.2.

1. Every admissible representation π of CCR (L ) yields an associated Malliavin derivative as in (101).
2. The Fock-vacuum representation πF is admissible.

Proof. Item (1) of Corollary 5.2 follows from the definition combined with Corollary 2.9. Item (2) of
Corollary 5.2 is a direct consequence of Lemma 3.7 and Theorem 3.8; see also Corollary 4.3.

Acknowledgments: The co-authors thank the following colleagues for helpful and enlightening discussions:
Professors Sergii Bezuglyi, Ilwoo Cho, Paul Muhly, Myung-Sin Song, Wayne Polyzou, and members in the Math
Physics seminar at The University of Iowa.

Author Contributions: The coauthors, Palle Jorgensen and Feng Tian, wrote the paper jointly and contributed
equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.



Axioms 2016, 5, 12 25 of 26

References

1. Bratteli, O.; Robinson, D.W. Operator Algebras and Quantum Statistical Mechanics; Springer-Verlag:
New York, NY, USA, 1979; Volume 1, p. 500.

2. Bratteli, O.; Robinson, D.W. Operator Algebras and Quantum-Statistical Mechanics; Springer-Verlag:
New York, NY, USA, 1981; Volume II, p. 505.

3. Dixmier, J. Enveloping Algebras; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1977;
Volume 14, p. 375.

4. Hudson, R.L.; Parthasarathy, K.R. Quantum Ito’s formula and stochastic evolutions. Comm. Math. Phys.
1984, 93, 301–323.

5. Applebaum, D.B.; Hudson, R.L. Fermion Itô’s formula and stochastic evolutions. Comm. Math. Phys. 1984,
96, 473–496.

6. Hudson, R.L.; Parthasarathy, K.R.; Pulmannová, S. Method of formal power series in quantum stochastic
calculus. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2000, 3, 387–401.

7. Chen, S.; Hudson, R. Some properties of quantum Lévy area in Fock and non-Fock quantum stochastic
calculus. Probab. Math. Statist. 2013, 33, 425–434.

8. Hudson, R.L. Forward and backward adapted quantum stochastic calculus and double product integrals.
Russ. J. Math. Phys. 2014, 21, 348–361.

9. Bogachev, V.I. Gaussian Measures; American Mathematical Society: Providence, RI, USA, 1998;
Volume 62, p. 433.

10. Hida, T.; Kuo, H.; Potthoff, J.; Streit, W. White Noise: An Infinite Dimensional Calculus; Springer Netherlands:
Dordrecht, The Netherlands, 2013.

11. Chen, L. Generalized multiplicity-free representations of nongraded divergence-free Lie algebras.
J. Lie Theory 2013, 23, 507–549.

12. Penkov, I.; Styrkas, K. Tensor representations of classical locally finite Lie algebras. In Developments and
Trends in Infinite-dimensional Lie Theory; Birkhäuser Boston, Inc.: Boston, MA, USA, 2011; Volume 288,
pp. 127–150.

13. Li, J.; Su, Y. Representations of the Schrödinger-Virasoro algebras. J. Math. Phys. 2008, 49, 053512.
14. Freyn, W. Tame Fréchet structures for affine Kac-Moody groups. Asian J. Math. 2014, 18, 885–928.
15. Liu, G.; Guo, X. Harish-Chandra modules over generalized Heisenberg-Virasoro algebras. Israel J. Math.

2014, 204, 447–468.
16. Andersson, A.; Kruse, R.; Larsson, S. Duality in refined Sobolev–Malliavin spaces and weak approximation

of SPDE. Stoch. Partial Differ. Equ. Anal. Comput. 2016, 4, 113–149.
17. Agram, N.; Øksendal, B. Malliavin calculus and optimal control of stochastic Volterra equations. J. Optim.

Theory Appl. 2015, 167, 1070–1094.
18. Zheng, M.; Rozovsky, B.; Karniadakis, G.E. Adaptive Wick-Malliavin approximation to nonlinear SPDEs

with discrete random variables. SIAM J. Sci. Comput. 2015, 37, A1872–A1890.
19. Bilionis, I.; Zabaras, N. Multi-output local Gaussian process regression: applications to uncertainty

quantification. J. Comput. Phys. 2012, 231, 5718–5746.
20. Alpay, D.; Jorgensen, P.; Lewkowicz, I.; Martziano, I. Infinite product representations for kernels and

iterations of functions. In Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes;
Springer International Publishing AG Swizerland: Cham, Swizerland, 2015; Volume 244, pp. 67–87.

21. Hida, T.; Si, S. Innovations for random fields. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1998,
1, 499–509.

22. Hida, T. Infinite dimensional harmonic analysis from the viewpoint of white noise theory. In Harmonic,
Wavelet and p-adic Analysis; World Sci. Publ.: Hackensack, NJ, USA, 2007; pp. 313–330.

23. Hida, T. Functionals of Brownian motion. In Lectures in Applied Mathematics and Informatics; Manchester
University Press: Manchester, UK, 1990; pp. 286–329.

24. Hida, T. Brownian motion and its functionals. Ricerche Mat. 1985, 34, 183–222.
25. Hida, T. Quadratic functionals of Brownian motion. J. Multivariate Anal. 1971, 1, 58–69.
26. Hida, T. A role of the Lévy Laplacian in the causal calculus of generalized white noise functionals.

In Stochastic Processes; Springer: New York, NY, USA, 1993; pp. 131–139.
27. Dunford, N.; Schwartz, J.T. Linear Operators; John Wiley & Sons, Inc.: New York, NY, USA, 1988.



Axioms 2016, 5, 12 26 of 26

28. Araki, H.; Woods, E.J. Representations of the canonical commutation relations describing a nonrelativistic
infinite free Bose gas. J. Math. Phys. 1963, 4, 637–662.

29. Arveson, W. Aspectral theorem for nonlinear operators. Bull. Amer. Math. Soc. 1976, 82, 511–513.
30. Arveson, W. Spectral theory for nonlinear random processes. In Symposia Mathematica; Academic Press:

London, UK, 1976; Volume XX, pp. 531–537.
31. Parthasarathy, K.R.; Schmidt, K. Factorisable representations of current groups and the Araki-Woods

imbedding theorem. Acta Math. 1972, 128, 53–71.
32. Parthasarathy, K.R.; Schmidt, K. Positive definite kernels, continuous tensor products, and central limit theorems

of probability theory; Lecture Notes in Mathematics; Springer-Verlag: Berlin, Germany, 1972; Volume 272,
p. vi+107.

33. Araki, H.; Woods, E.J. Topologies induced by representations of the canonical commutation relations.
Rep. Math. Phys. 1973, 4, 227–254.

34. Glimm, J.; Jaffe, A. Quantum Physics, 2nd ed.; Springer-Verlag: New York, NY, USA, 1987; p. 535.
35. Jorgensen, P.E.T.; Powers, R.T. Positive elements in the algebra of the quantum moment problem.

Probab. Theory Related Fields 1991, 89, 131–139.
36. Biagini, F.; Øksendal, B.; Sulem, A.; Wallner, N. An introduction to white-noise theory and Malliavin

calculus for fractional Brownian motion. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 460, 347–372.
37. Alpay, D.; Jorgensen, P.; Levanony, D. A class of Gaussian processes with fractional spectral measures. J.

Funct. Anal. 2011, 261, 507–541.
38. Alpay, D.; Jorgensen, P.E.T. Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim.

2012, 33, 708–735.
39. Viens, F.; Feng, J.; Hu, Y.; Nualart, E., Eds. Malliavin Calculus and Stochastic Analysis; Springer Proceedings

in Mathematics & Statistics; Springer: New York, NY, USA, 2013; Volume 34, p. 583.
40. Alpay, D.; Jorgensen, P.; Salomon, G. On free stochastic processes and their derivatives.

Stochastic Process. Appl. 2014, 124, 3392–3411.
41. Alpay, D.; Jorgensen, P. Spectral theory for Gaussian processes: reproducing kernels, boundaries, and

L2-wavelet generators with fractional scales. Numer. Funct. Anal. Optim. 2015, 36, 1239–1285.
42. Hida, T. Brownian Motion; Applications of Mathematics; Springer-Verlag: New York, NY, USA, 1980;

Volume 11, p. 325.
43. Gross, L. Abstract Wiener measure and infinite dimensional potential theory. In Lectures in Modern Analysis

and Applications, II; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1970; Volume 140, pp. 84–116.
44. Jorgensen, P.; Tian, F. Noncommutative analysis, Multivariable spectral theory for operators in Hilbert

space, Probability, and Unitary Representations. 2014, arXiv:math.FA/1408.1164.
45. Malliavin, P. Stochastic calculus of variation and hypoelliptic operators. In Proceedings of the International

Symposium on Stochastic Differential Equations; Wiley: New York, NY, USA, 1978; pp. 195–263.
46. Nualart, D. The Malliavin Calculus and Related Topics, 2nd ed.; Springer: Berlin, Germany, 2006; p. xiv+382.
47. Bell, D.R. The Malliavin Calculus; Dover Publications, Inc.: Mineola, NY, USA, 2006; p. x+113.
48. Privault, N. Random Hermite polynomials and Girsanov identities on the Wiener space. Infin. Dimens.

Anal. Quantum Probab. Relat. Top. 2010, 13, 663–675.
49. Šilov, G.E. On a property of rings of functions. Doklady Akad. Nauk SSSR (N. S.) 1947, 58, 985–988.
50. Sakai, S. C∗-algebras and W∗-algebras; Springer-Verlag: Berlin, Germany, 1998; p. xii+256.
51. Bratteli, O.; Jorgensen, P.E.T.; Kishimoto, A.; Robinson, D.W. A C∗-algebraic Schoenberg theorem.

Ann. Inst. Fourier (Grenoble) 1984, 34, 155–187.
52. Hida, T. Laplacians in white noise analysis. Contemp. Math. 2003, 317, 137–142.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Unbounded Operators and the CCR-algebra
	Unbounded Operators between Different Hilbert Spaces: Closable Pairs
	The CCR-algebra, and the Fock Representations
	An Infinite-dimensional Lie Algebra
	Gaussian Hilbert Space

	The Malliavin Derivatives
	A Derivation on the Algebra D
	Infinite-dimensional  and 
	Realization of the operators
	The Unitary Group

	The Fock-state, and Representation of CCR, Realized as Malliavin Calculus
	Conclusions: The General Case

