
Article

An Overview of the Fuzzy Axiomatic Systems and
Characterizations Proposed at Ghent University

Etienne E. Kerre *, Lynn D´eer and Bart Van Gasse

Department of Applied Mathematics, Computer Science and Statistics, Ghent University,
Building S9 (second floor), Krijgslaan 281, 9000 Ghent, Belgium; Lynn.Deer@UGent.be (L.D.);
Bart.VanGasse@UGent.be (B.V.G.)
* Correspondence: Etienne.Kerre@UGent.be; Tel.: +32-9-264-4765

Academic Editor: Humberto Bustince
Received: 17 March 2016; Accepted: 31 May 2016; Published: 7 June 2016

Abstract: During the past 40 years of fuzzy research at the Fuzziness and Uncertainty Modeling
research unit of Ghent University several axiomatic systems and characterizations have been
introduced. In this paper we highlight some of them. The main purpose of this paper consists of an
invitation to continue research on these first attempts to axiomatize important concepts and systems
in fuzzy set theory. Currently, these attempts are spread over many journals; with this paper they
are now collected in a neat overview. In the literature, many axiom systems have been introduced,
but as far as we know the axiomatic system of Huntington concerning a Boolean algebra has been
the only one where the axioms have been proven independent. Another line of further research
could be with respect to the simplification of these systems, in discovering redundancies between
the axioms.
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1. Overview

We start with the characterization of a Chang fuzzy topology by means of a preassigned
operation such as an interior operator. In Section 3 we dwell upon the separation axioms in Chang
fuzzy topological spaces and refer to dependencies between the different fuzzy separation axioms.
In Section 4 a fuzzy extension of the well-known Armstrong axioms in a fuzzy relational database
is given. A lot of work has been done on the characterization of a fuzzy preference structure.
Some results are repeated in Section 5. In the next section a characterization is given of lattices
that are needed to establish the equivalence between Goguen’s L-fuzzy sets and Gentilhomme’s
L-flou sets, leading to the introduction of the kite-tail lattices. We also dwell upon the modifications
of the condition that sometimes appear in the literature. Section 7 summarizes the work on the
axiomatization of the ordering of fuzzy quantities, in particular fuzzy numbers. In the next section
some axioms are introduced for a defuzzification technique in order to transform a fuzzy set into
a single element of the underlying universe. The concept of a fuzzy implication is important from a
theoretical as well as a practical point of view. In Section 9 we describe the extension of Smets-Magrez
axioms for a fuzzy implication. Finally Section 10 treats the axiomatization of a triangle algebra.

2. On the Characterization of a Chang Fuzzy Topology by Means of Preassigned Operations

Perhaps general topology has been the first mathematical structure that has been fuzzified.
Already in 1968, three years after the publication of Zadeh’s seminal paper “Fuzzy Sets” [1], Chang’s
paper “Fuzzy Topological Spaces” [2] appeared in JMAA. A fuzzy topology on a set X was defined
as a class T of fuzzy sets satisfying the straightforward fuzzifications of the classical axioms for a
fuzzy topology:
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• (O.1) ∅ ∈ T and X ∈ T
• (O.2) (O1 ∈ T and O2 ∈ T)⇒ O1 ∩O2 ∈ T
• (O.3) (∀i ∈ I)(Oi ∈ T)⇒ ⋃

i∈I Oi ∈ T

where fuzzy intersection and arbitrary fuzzy union were modeled by means of the minimum and
supremum in the unit interval [0, 1]. The elements of T were called open fuzzy sets. In [3] the
characterization of a fuzzy topology by means of preassigned operations has been studied. As an
example, we repeat the characterization by means of the interior operator. Let (X, T) be a fuzzy
topological space and A a fuzzy set on X. The interior of A in (X, T) is defined as the greatest open
fuzzy set contained in A, i.e., IntA =

⋃{O|O ∈ T and O ⊆ A}. In [4] it was proven that the interior
operator Int satisfies the following properties:

• (I.1) IntX = X
• (I.2) IntA ⊆ A
• (I.3) Int(IntA) = IntA
• (I.4) Int(A ∩ B) = IntA ∩ IntB

and hence Int is a kernel operator [5] on the class F (X) of all fuzzy sets on X.
Conversely let X be a non-empty set and i a F (X) → F (X) mapping satisfying the

following axioms:

• (i.1) i(X) = X
• (i.2) i(A) ⊆ A
• (i.3) i(i(A)) = i(A)
• (i.4) i(A ∩ B) = i(A) ∩ i(B).

Then the class T = {O|O ∈ F (X) and i(O) = O} is a fuzzy topology on X such that IntA = i(A) for
every A ∈ F (X). See [2] for a proof.

In [2] similar characterizations have been given in terms of closed fuzzy sets and the Kuratowski
closure operator. The characterization in terms of neighborhoods is much more complicated (for
example a straightforward fuzzification of the neighborhood characterization of a classical topology
does not lead to a characterization as in the crisp case) and has been treated by many authors, leading
to the introduction of different definitions of a fuzzy neighbourhood and dito properties. Our research
group has made a complete unifying study of this research. For more details we refer to [6–9].

3. On the Separation Axioms in Chang Fuzzy Topological Spaces

Separation axioms of fuzzy topological spaces have been widely studied. In [10] all different
separation axioms have been discussed in detail. In [4] a characterization of normality in fuzzy
topology has been given as well as a full study of the normality of a fuzzy Sierpinski space [11].
During an attempt to fuzzify upper semi-continuity of multivalued mappings [12] some missing
links were detected in the class of separated, regular and normal fuzzy topological spaces. In the
classical binary case upper semi-continuity is related to the closedness of a mapping. Most of the
links between upper semi-continuity and closed multivalued mappings in the crisp case are with
respect to separated topological spaces. It was observed that in the fuzzy case separated fuzzy
topological spaces are not sufficient to keep these links. To repair these shortcomings the separation
axioms were further studied in [13]. More concretely a Hasse diagram was constructed establishing
the relationship between different separation concepts in fuzzy topological spaces. This diagram is
shown in Figure 1. Three more equivalences hold as well:

• regular⇔ locally closed,
• compact⇔ every closed crisp set is compact,
• quasi-separated⇔ every crisp singleton is closed.
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normal & strongly quasi-separated
& strongly compact

regular & strongly compact normal & strongly quasi-separated

strongly compact normal regular & weakly
quasi-separated

strongly quasi-separated

compact regular

separated

every compact crisp set is closed quasi-separated

weakly quasi-separated

Figure 1. Relationships between the separation axioms in fuzzy topological spaces.

4. Axiomatics in Fuzzy Relational Databases

In a series of papers [14–18] our team focused on the axiomatization of fuzzy functional
dependencies in a fuzzy relational data model, which is considered as a fundamental issue towards
building a theory of fuzzy relational database design. Fuzzy functional dependencies result from
reflections about the real world, they express relationships among the attributes of the objects in
a database.

Let U be a set of attributes, R a relation, I a fuzzy implicator such as Kleene-Dienes or
Łukasiewicz and X, Y, Z subsets of U. Then X functionally determines Y to the degree α

(α ∈ [0, 1]) (or Y is functionally dependent on X to a degree α), denoted by X −→
α

Y if and only

if min I(c(t(X), t′(X)), c(t(Y), t′(Y))) ≥ α, where c is a closeness relation (i.e., c is reflexive and
symmetric) and t(X), t′(X), t(Y) and t′(Y) are the values of tuples t and t′ corresponding to the
attribute sets X and Y. The fuzzy implicator I must possess some properties if the fuzzy functional
dependency is restricted to the inference rules known as the fuzzy extension of Armstrong’s axioms:

(A1) if Y ⊆ X, then X −→
α

Y for all α

(A2) if X −→
α

Y, then XZ −→
α

YZ

(A3) if X −→
α

Y and Y −→
β

Z, then X −−−−−→
min(α,β)

Z

(A4) if X −→
α

Y, then X −→
β

Y for all β ≤ α.

For more details and consequences w.r.t. soundness and completeness, we refer to the references
mentioned above.

5. On the Characterization of a Fuzzy Preference Structure

Classical preference structures are very important for the modeling of decision making problems.
A classical preference structure consists of three binary relations on a set of alternatives A: a strict
preference relation P, an indifference relation I and an incomparability relation J that satisfy the
following axioms:

(P1) I is reflexive, J is irreflexive
(P2) P is asymmetrical: P ∩ Pt = ∅
(P3) I and J are symmetrical: I = It, J = Jt
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(P4) P ∩ I = ∅, P ∩ J = ∅, I ∩ J = ∅
(P5) P ∪ I ∪ J is complete: (P ∪ I ∪ J) ∪ (P ∪ I ∪ J)t = A2

where Pt denotes the converse or transpose of the relation P, i.e., (x, y) ∈ Pt ⇔ (y, x) ∈ P [19].
The relation R = P ∪ I is called the large preference relation. Roubens and Vincke [19] have proved
that a classical preference structure Π = (P, I, J) on A can be characterized by means of the large
preference relation R = P ∪ I in the following way:

(1) P = R ∩ Rd

(2) I = R ∩ Rt

(3) J = Rc ∩ Rd

where Rc is the complement of R (i.e., (x, y) ∈ Rc ⇔ (x, y) /∈ R) and Rd is the dual of R (i.e., (x, y) ∈
Rd ⇔ (y, x) /∈ R). Conversely a triplet (P, I, J) defined from a binary relation R by (1)–(3) is a
preference structure on A.

Classical preference structures do not allow to express degrees of strict preference and
indifference. Hence, that is why fuzzy set theory has been introduced very soon. In various
contributions our research team has tackled the fuzzification of a preference structure and its
characterization. Let us first introduce some preliminary concepts. A binary fuzzy relation on a
set of alternatives A is an A× A→ [0, 1] mapping, i.e., a fuzzy set on A2. The set-theoretic operations
(union, intersection, complementation) on fuzzy sets can be applied to fuzzy relations. Let R1 and R2

be two fuzzy relations on A. Then we define for (x, y) ∈ A2:

(R1 ∪ R2)(x, y) = max(R1(x, y), R2(x, y))

(R1 ∪S R2)(x, y) = S(R1(x, y), R2(x, y))

(R1 ∩ R2)(x, y) = min(R1(x, y), R2(x, y))

(R1 ∩T R2)(x, y) = T(R1(x, y), R2(x, y))

(co R1)(x, y) = 1− R1(x, y)

(coN R1)(x, y) = N(R1(x, y))

where S is a triangular conorm, T is a triangular norm and N a negator (i.e., a strictly decreasing
involution on [0, 1]).

The N-dual of R1 is defined as:

(R1)
d
N(x, y) = N(R1(y, x))

and the transpose or converse of R1 is given by:

Rt
1(x, y) = R1(y, x).

A crucial role in the definition of a fuzzy preference structure is played by the Łukasiewicz
triangular norm to model fuzzy intersection:

W(x, y) = max(x + y− 1, 0), ∀(x, y) ∈ [0, 1]2.

For an extensive motivation for this choice we refer to [20] and [21]. To end the preliminaries, we
introduce the Φ-transform of a mapping, where Φ denotes an order-preserving permutation of [0, 1].
For example, the Φ-transform of the Łukasiewicz intersection operator W is:

WΦ(x, y) = Φ−1(W(Φ(x), Φ(y)))

= Φ−1(max(Φ(x) + Φ(y)− 1, 0))
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The NΦ-triangular conorm corresponding to the Φ-transform WΦ of W is given by:

WNΦ
Φ (x, y) = Φ−1(min(Φ(x) + Φ(y), 1)).

Now we are ready to introduce the axiomatic definition of a fuzzy preference structure.
A Φ-fuzzy preference structure – with Φ a [0, 1]-automorphism – on a set A of alternatives is a triplet
(P, I, J) of binary fuzzy relations on A satisfying the following axioms:

(FP1) I is reflexive, J is irreflexive
(FP2) P is WΦ-asymmetrical: P ∩WΦ Pt = ∅
(FP3) I and J are symmetrical: I = It, J = Jt

(FP4) P ∩WΦ I = ∅, P ∩WΦ J = ∅, I ∩WΦ J = ∅
(FP5) (coNΦ P) ∩WΦ (Pd

NΦ
) ∩WΦ (coNΦ I) = J

In [22] it was proved that the condition (FP5) reduces to the classical completeness condition
(P5) for crisp relations P, I and J. Similarly as in the crisp case it can be shown [22] that a Φ-fuzzy
preference structure (P, I, J) can be characterized by means of a fuzzy large preference relation R
given by:

R = P ∪
WNΦ

Φ
I

in the following way:

(1) P = R ∩WΦ Rd
NΦ

(2) I = R ∩ Rt

(3) J = (coNΦ R) ∩ Rd
NΦ

or explicitly for every (x, y) ∈ A2:

(1) P(x, y) = Φ−1(max(Φ(R(x, y))−Φ(R(y, x)), 0))
(2) I(x, y) = min(R(x, y), R(y, x))
(3) J(x, y) = Φ−1(min(1−Φ(R(x, y)), 1−Φ(R(y, x))))

Conversely a triplet (P, I, J) defined from a binary fuzzy relation R on A by the above expressions
is a Φ-fuzzy preference structure on A.

6. On the Equivalency between L-fuzzy Sets and L-flou Sets

Already in 1967, J. Goguen [23] extended Zadeh’s fuzzy set theory to L-fuzzy set theory, where
L denotes a complete lattice. A fuzzy set takes its degrees of membership in the totally ordered
evaluation set [0, 1]. However, in some applications it may not be possible to compare every
two degrees of membership. To model these situations Goguen introduced the concept of an L-fuzzy
set, i.e., a mapping from a universal set into L.

In 1968, Y. Gentilhomme [24] introduced the concept of a flou set as an alternative to model
uncertainty. A flou set in a universe X is an ordered pair (E, F) of crisp subsets of X satisfying E ⊆ F,
where E is called the certain region, F the region of maximal extension and F \ E the flou region.

In 1975 Negoita and Ralescu [25] extended this notion to L-flou sets where L is a complete lattice.
In order to compare L-fuzzy sets with L-flou sets, Negoita and Ralescu introduced a supplementary
condition for the underlying lattice (L,≤):

(L) (∀A ⊆ L)(∀a ∈ L)(a < sup A⇒ (∃b ∈ A)(a ≤ b))

They proved a famous representation theorem stating that for (L,≤) a complete lattice
satisfying condition (L) the complete lattice of Goguen’s L-fuzzy sets being dual isomorphic to
“Gentilhomme’s” L-flou sets.
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Now we want to dwell upon condition (L) since in the literature one often finds some
modification of condition (L) in which other combinations of the involved inequalities appear:

(L1) (∀A ⊆ L)(∀a ∈ L)(a ≤ sup A⇒ (∃b ∈ A)(a < b))

(L2) (∀A ⊆ L)(∀a ∈ L)(a ≤ sup A⇒ (∃b ∈ A)(a ≤ b))

(L3) (∀A ⊆ L)(∀a ∈ L)(a < sup A⇒ (∃b ∈ A)(a < b))

We analyzed the connections between these four conditions:

(1) There is no lattice satisfying (L1).
(2) If (L,≤) satisfies (L2), then (L,≤) is a chain.
(3) (L,≤) satisfies (L3) if and only if (L,≤) is a chain.

In particular, for finite lattices satisfying condition (L) the following characterization has been
established: (L,≤) satisfies condition (L) if and only if (L,≤) is a kite-tail lattice, where a kite-tail
lattice is defined as a finite vertical sum of the lattice 2 and the diamond M2 defined as

2 = ({0, 1},≤) with ≤= {(0, 0), (1, 1), (0, 1)}
M2 = ({0, 1, α, β},≤) with

≤= {(0, 0), (1, 1), (α, α), (β, β), (0, 1), (0, α), (0, β), (α, 1), (β, 1)}

If the kite-tail lattice (L,≤) is not finite, then it satisfies condition (L), but the converse is not
true. For more details we refer to [26].

7. Axioms for the Ordering of Fuzzy Quantities

The problem of ordering fuzzy quantities (i.e., fuzzy sets on the real line) has been tackled by
many researchers. Till now none of the ordering methods has been widely accepted. In [27] a set of
axioms for an ordering procedure has been introduced.

Let M be an ordering method, S the set of fuzzy quantities for which M can be applied and A a
finite subset of S . The statement “two elements A and B inA satisfy that A has a higher ranking than
B when the ordering method M is applied to the fuzzy quantities in A” will be denoted as “A � B
by M on A”. Similarly, “A ∼ B by M in A” means that A has the same ranking as B and A % B is
equivalent to A � B or A ∼ B. The following facts were assumed:

(i) The fuzzy quantities satisfy the conditions for the application of the ranking method considered.
(ii) When a ranking method is applied on a set S of fuzzy quantities, exactly one of the following

relations hold: A � B, B � A, A ∼ B.

In [27] the following axiom system for a ranking method M on a set S of fuzzy quantities has
been proposed:

(A1) For an arbitrary finite subsetA of S and A ∈ A, A % A by M onA, i.e., the relation% is reflexive.
(A2) For an arbitrary finite subset A of S and (A, B) ∈ A2, A % B and B % A by M on A implies

A ∼ B by M on A, i.e., % is anti-symmetric.
(A3) For an arbitrary finite subset A of S and (A, B, C) ∈ A3, A % B and B % C by M on A implies

A % C by M on A, i.e., % is transitive.
(A4) For an arbitrary finite subset A of S and (A, B) ∈ A2, inf supp A > sup supp B should imply

A % B by M on A. This means that if two fuzzy quantities have separate (non-intersecting)
supports, then the fuzzy quantity with the support on the right is at least as good as the one
with the support on the left.

(A5) Let S and S ′ be two arbitrary finite sets of fuzzy quantities for which the ranking method M
can be applied and (A, B) ∈ (S ∩ S ′)2. Then A � B by M on S ′ if and only if A � B by M on
S . This means that the ranking order of A and B is independent of any other fuzzy quantity.
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Table 1. Fulfilment of axioms for ordening methods discussed in [27].

Ordering Method (A1) (A2) (A3) (A4) (A5) (A6) (A7)

Y1 Y Y Y Y Y N N
Y2 Y Y Y Y Y Y N
Y3 Y Y Y N Y N N
Y4 Y Y Y Y Y N N
C Y Y Y N Y N N

FR Y Y Y Y Y Y N
CL Y Y Y Y Y Y N

LWλ Y Y Y Y Y Y N
CMλ

1 Y Y Y Y Y Y N
CMλ

2 Y Y Y Y Y Y N
ADα Y Y Y Y Y Y Y

K Y Y Y N N N N
W Y Y Y Y N N N
Jk Y Y Y Y N N N

CHk Y Y Y Y N N N
KPk Y Y Y Y N N N

(A6) Let A, B, A + C and B + C be elements of S . If A % B by M on {A, B}, then A + C % B + C
by M on {A + C, B + C}. This means that the fuzzy addition of fuzzy quantities is compatible
with the ordering %.

(A7) Let A, B, AC and BC be elements of S and C ≥ 0 (i.e., supp C ⊆ [0,+∞]). If A % B by M
on {A, B}, then AC % BC by M on {AC, BC}. This means that the fuzzy multiplication with
non-negative fuzzy quantities is compatible with the ordering %.

For an extensive study of more than 35 ranking methods for fuzzy quantities with respect to the
axioms mentioned above, we refer to [27], [28] and [29]. The concluding table from [27] is presented
in Table 1; ‘Y’ denotes the fulfillment of an axiom, ‘N’ is used when the method does not satisfy the
given axiom.

8. Axioms for Defuzzification

In fuzzy systems such as knowledge-based systems and control systems the last step is
defuzzification, i.e., a technique to transform the obtained fuzzy set, in particular fuzzy number,
into a single value or member. There exist many defuzzification techniques such as: random
choice of maxima, first of maxima, last of maxima, middle of maxima, center of gravity, mean of
maxima, basic defuzzification distribution, generalized level set defuzzification, induced center of
gravity, semi-linear defuzzification, fuzzy mean, weighted fuzzy mean, quality method, extended
quality method, center of area, extended center of area, constraint decision defuzzification and fuzzy
clustering defuzzification. For a compact introduction to these techniques we refer to [30]. In order
to get some insight into these very diverse techniques, Van Leekwijck and Kerre [30] proposed a
set of criteria a defuzzification technique should preferably satisfy, of course depending also on the
specific application. For example a continuity condition is very important for fuzzy controllers but
less important for decision support systems. The criteria were divided into several groups, according
the mathematical structure that is needed in the underlying universe: arbitrary universes, ordered
universes and universes endured with an algebraic structure such as the real line R were considered.

(i) Defuzzification axioms in arbitrary universes.
Since there is no structure in the underlying universe of the fuzzy set to be defuzzified, the
criteria depend only on the operations on the unit interval [0, 1].

(D1) Core selection axiom:
(∀A ∈ F (X))(D(A) ∈ core A)

where F (X) denotes the class of all fuzzy sets on the universe X, D(A) is the
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defuzzification value of A in X and core A is defined by:

core A = {x | x ∈ X and (∀y ∈ X)(A(y) ≤ A(x))}.

Axiom (D1) expresses that the defuzzification operator chooses an element with the highest
degree of membership.

(D2) Scale invariance axiom
According to Norwich and Turksen [31] a necessary condition for any application on one
or more membership functions can only be meaningful if it is scale invariant. Since the
membership degrees can be interpreted on different scales, the scale invariance axiom
depends on the scale chosen. For example if the only information conveyed in the fuzzy
set being an ordering of the elements of X based on the degree of membership A(x), the
defuzzification operator should be invariant under any order preserving mapping f , i.e.,
D( f (A)) = D(A), where

f (A) : X → [0, 1] : x 7→ f (A(x)).

For other scales than an ordinal one, such as interval scale, ratio scale, relative scale and
absolute scale, we refer to [30].

(ii) Defuzzification in universes with an ordinal scale
Two more axioms can be considered.

(D3) Monotonicity axiom
Let A and B be two fuzzy sets on X satisfying

1. B(D(A)) = A(D(A)),
2. (∀x < D(A))(B(x) < A(x)),
3. (∀x > D(A))(B(x) ≥ A(x)),

then D(B) ≥ D(A), which means that the defuzzification value can only move to that side
where the elements are getting better.

(D4) Triangular conorm axiom
Let A and B be two fuzzy sets on X for which D(A) ≤ D(B), then

D(A) ≤ D(A ∪S B) ≤ D(B),

which means that the defuzzification value of the union (modelled by a triangular conorm
S) of two fuzzy sets should lie between the defuzzification values of both.

(iii) Defuzzification of fuzzy quantities

(D5) Domain translation axiom
This criterion states that the relative position of the defuzzification value should remain
after a translation of the fuzzy set, i.e., D(B) = D(A) + b, with B(x) = A(x − b), ∀x ∈ R
and b ∈ R.

(D6) Domain rescaling axiom
This criterion states that the defuzzification value should be accordingly adopted after a
rescaling of the fuzzy set, i.e., D(B) = αD(A), with B(x) = A

( x
α

)
, ∀x ∈ R and α ∈ R \ {0}.

(D7) Continuity axiom
A small change in any of the degrees of membership should not result in a big change in
the defuzzification value, i.e.,

(∀a ∈ R)(∀ε > 0)(∃∆∗ > 0)(∀∆ ∈ R)(|∆| < ∆∗ ⇒ |D(∆a A)− D(A)| < ε),

with

∆a A(x) =

{
A(x) + ∆ if x = a

A(x) else
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An example of a defuzzification method is the first of maxima (FOM). It is defined on
universes with an ordinal scale and requires that the core of a fuzzy set has a smallest
element. It is defined by FOM(A) = min core(A), for A ∈ F (X). The least of maxima
(LOM) is another defuzzification method defined on universes with an ordinal scale.
It requires the core of fuzzy sets to have a greatest element and it is defined by LOM(A) =

max core(A), for A ∈ F (X). Both methods fulfil the axioms (D1), (D2), (D3), (D4) for
S = max and (D5).

Other examples of defuzzification methods are the middle of maxima (MOM) satisfying
(D1), (D2), (D3) and (D5). In addition, both the method of center of gravity (COG) and the
method of center of area (COA) satisfy axioms (D3), (D5), (D6) and (D7). For details and an
extensive classification of the most widely used defuzzification methods, we refer to [30].

9. Axioms for a Fuzzy Implication

Fuzzy implications play a key role in many domains of fuzzy logic, especially in approximate
reasoning for extending inference mechanisms such as modus ponens, modus tollens and method of
cases. The most simple definition of a fuzzy implication is a [0, 1] × [0, 1] → [0, 1] mapping I that
reduces to the binary implication in the corners of the unit scale, i.e., I(0, 0) = I(1, 1) = I(0, 1) = 1
and I(1, 0) = 0.

In [32] Smets and Magrez introduced a set of axioms a fuzzy implication should satisfy. Many
authors have continued this work, in particular our research group has made many contributions
to the classification, axiomatization and study of fuzzy implications. In [33] the following broadly
accepted definition for a fuzzy implication was used: a fuzzy implication I is a [0, 1]× [0, 1] → [0, 1]
mapping I satisfying the following basic axioms:

(FI1) First place antitonicity

(∀(x1, x2, y) ∈ [0, 1]3)(x1 < x2 ⇒ I(x1, y) ≥ I(x2, y))

(FI2) Second place isotonicity

(∀(x, y1, y2) ∈ [0, 1]3)(y1 < y2 ⇒ I(x, y1) ≤ I(x, y2))

(FI3) Dominance of falsity of the antecedent

(∀x ∈ [0, 1])(I(0, x) = 1)

(FI4) Dominance of truth of the consequent

(∀x ∈ [0, 1])(I(x, 1) = 1)

(FI5) Boundary condition
I(1, 0) = 0

Many other potential axioms have been proposed in the fuzzy literature, in order to obtain a
fuzzy implication that satisfies a given property:

(FI6) Neutrality of truth
(∀x ∈ [0, 1])(I(1, x) = x)

(FI7) Exchange principle
(∀(x, y, z) ∈ [0, 1]3)(I(x, I(y, z)) = I(y, I(x, z)))

(FI8) Ordering principle
(∀(x, y) ∈ [0, 1]2)(I(x, y) = 1⇔ x ≤ y)
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(FI9) Strong fuzzy negation principle
The mapping NI defined as

(∀x ∈ [0, 1])(NI(x) = I(x, 0))

is a strong fuzzy negation, i.e., a [0, 1]− [0, 1] mapping that is decreasing, NI(0) = 1, NI(1) = 0
and involutive, NI(NI(x)) = x, ∀x ∈ [0, 1].

(FI10) Consequent boundary
(∀(x, y) ∈ [0, 1]2)(I(x, y) ≥ y)

(FI11) Identity
(∀x ∈ [0, 1])(I(x, x) = 1)

(FI12) Contrapositivity principle

(∀(x, y) ∈ [0, 1]2)(I(x, y) = I(N(y), N(x)))

where N is a strong fuzzy negation.
(FI13) Continuity

I is a continuous mapping

For a complete overview of the interrelationships between these additional axioms we refer
to [33] and [34]. Table 2 can be found in [33] and lists all dependencies between the eight additional
axioms. For example: FI7 ∧ FI8⇒ FI6 means that for any fuzzy implication I satisfying the exchange
and ordering principle, also neutrality of truth holds. And FI6∧FI7∧FI8∧FI9∧FI10∧FI11∧FI12 6⇒
FI13 means that a specific fuzzy implication was found that satisfied FI6 – FI12, but that was not a
continuous mapping.

Table 2. Summary of the interrelationships among the eight axioms.

FI7∧FI10∧FI11∧FI12 6⇒ FI6
FI8∧FI9∧FI10∧FI11∧FI12∧FI13 6⇒ FI6

FI7∧FI8⇒ FI6
FI7∧FI9⇒ FI6

FI7∧FI13 6⇒ FI6

FI6∧FI8∧FI9∧FI10∧FI11∧FI12∧FI13 6⇒ FI7
FI6∧FI7∧FI9∧FI10∧FI11∧FI12∧FI13 6⇒ FI8

FI6∧FI7∧FI8∧FI10∧FI11 6⇒ FI9
FI6∧FI12⇒ FI9

FI7∧FI8∧FI12⇒ FI9
FI7∧FI12∧FI13⇒ FI9

FI7∧FI10∧FI11∧FI12 6⇒ FI9
FI7∧FI8∧FI13⇒ FI9

FI6∧FI7∧FI10∧FI11∧FI13 6⇒ FI9
FI6∧FI8∧FI10∧FI11∧FI13 6⇒ FI9

FI8∧FI10∧FI11∧FI12∧FI13 6⇒ FI9
FI6⇒ FI10

FI7∧FI9⇒ FI10
FI7∧FI13⇒ FI10
FI7∧FI8⇒ FI10

FI7∧FI11∧FI12⇒ FI10
FI8∧FI9∧FI11∧FI12∧FI13 6⇒ FI10

FI8⇒ FI11
FI6∧FI7∧FI9∧FI10∧FI12∧FI13 6⇒ FI11

FI6∧FI7∧FI8∧FI10∧FI11 6⇒ FI12
FI7∧FI9⇒ FI12

FI7∧FI8∧FI13⇒ FI12
FI6∧FI7∧FI10∧FI11∧FI13 6⇒ FI12

FI6∧FI8∧FI9∧FI10∧FI11∧FI13 6⇒ FI12
FI6∧FI7∧FI8∧FI9∧FI10∧FI11∧FI12 6⇒ FI13
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In [35] the Smets-Magrez axioms were extended to interval-valued and Atanassov’s intuitionistic
fuzzy set theory.

10. Triangle Algebras: A Characterization of Interval-valued Residuated Lattices

Residuated lattices (more precisely, bounded integral commutative residuated lattices) are
bounded lattices with two extra operators ∗ (which is commutative, associative and has the largest
element 1 as neutral element) and⇒, which satisfy the residuation property:

x ∗ y ≤ z iff x ≤ y⇒ z.

Residuated lattices are important algebraic structures because, amongst others, BL-algebras,
MV-algebras, Heyting algebras and Boolean algebras can all be seen as special cases of it. Each
of them naturally forms the semantics of the corresponding logic. Considering a lattice (L,≤), the
intervals (i.e. elements of the form [a, b], with a, b ∈ L and a ≤ b) form a lattice too if the product order
is used. In such an interval-valued lattice the exact intervals (i.e., elements of the form [a, a]) form a
copy of the original lattice, called the diagonal. As a means to handle interval-valued lattices that are
also residuated lattices, triangle algebras were introduced in [36]. A triangle algebra is an algebra
(A,u,t, ∗,⇒, ν, µ, 0, u, 1) of type (2, 2, 2, 2, 1, 1, 0, 0, 0) such that (A,u,t, ∗,⇒, 0, 1) is a residuated
lattice, and satisfying for all x and y in A,

(T.1) νx ≤ x, (T.1′) x ≤ µx,
(T.2) νx ≤ ννx, (T.2′) µµx ≤ µx,
(T.3) ν(x u y) = νx u νy, (T.3′) µ(x u y) = µx u µy,
(T.4) ν(x t y) = νx t νy, (T.4′) µ(x t y) = µx t µy,
(T.5) νu = 0, (T.5′) µu = 1,
(T.6) νµx = µx, (T.6′) µνx = νx,
(T.7†) νx ∗ νy ≤ ν(νx ∗ νy),
(T.9) νx ⇒ νy ≤ ν(νx ⇒ νy),
(T.10) x = νx t (µx u u), (T.10′) x = µx u (νx t u).

Some of these axioms can still be weakened or even left out [37]. The unary operators ν and
µ correspond to the mappings that map an interval [a, b] on [a, a] and on [b, b] respectively. The
constant u corresponds to the interval [0, 1]. Using these structures the authors could prove that
each interval-valued residuated lattice in which the diagonal is closed under all operators is fully
determined by the subalgebra on the diagonal and the value [0, 1] ∗ [0, 1]. More specifically, in triangle
algebras x ⇒ y and x ∗ y are determined by:

• ν(x ⇒ y) = (νx ⇒ νy) u (µx ⇒ µy),
• µ(x ⇒ y) = (µx ⇒ (µ(u ∗ u)⇒ µy)) u (νx ⇒ µy),
• ν(x ∗ y) = νx ∗ νy,
• µ(x ∗ y) = (νx ∗ µy) t (µx ∗ νy) t (µx ∗ µy ∗ µ(u ∗ u)),

where one has to keep in mind that elements of the forms νz and µz are always on the diagonal.
Using this characterization, it was examined under which conditions a triangle algebra is

distributive, weak divisible, t-definable, a Heyting algebra or an MV-algebra, or has an involutive
negation or pseudocomplementation. Some of the results are listed in Table 3, which should be read
like this: if the diagonal of a triangle algebra satisfies the given property (mentioned in the first
column) and the value of u ∗ u is in the given range (mentioned in the first row), then the triangle
algebra satisfies the property at that place in the table. If also the converse holds (for the given value
of u ∗ u), then the property is underlined. For example (on the fourth row of the table): if the diagonal
of a triangle algebra is strong t-definable (in other words, an MV-algebra), then this triangle algebra
is t-definable (no matter what the value of u ∗ u is). Conversely, if a triangle algebra is t-definable
and u ∗ u = u, then its diagonal is an MV-algebra.
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Table 3. Properties on triangle algebras and their diagonal.

Diagonal u ∗ u = 0 0 < u ∗ u < u u ∗ u = u

distributive distributive distributive distributive
P + div PP + weak div PP + weak div PP + weak div

involution inv no inv no inv
pseudocomplementation no PC depends on ¬(u ∗ u) PC

MV-algebra t-def t-def t-def
Heyting not Heyting not Heyting Heyting

Heyting + α-LEM MV div Heyting
Boolean algebra MV P, not MV G-algebra, not MV

In this table, P stands for prelinearity, PP for pseudo-prelinearity and LEM for law of excluded
middle. The property α-LEM means: for all x on the diagonal, x t ¬x t α = 1, in which α = µ(u ∗ u).
If u ∗ u = 0, this is the same as LEM; if 0 < u ∗ u, this is weaker than LEM (for u ∗ u = u it is
trivially satisfied). Remark that if 1 is t-irreducible (e.g., in linear residuated lattices), then α-LEM is
equivalent with LEM if α < 1. In this case the residuated lattice has only two elements, as ¬x = 1
iff x = 0 because of the residuation principle. A residuated lattice with two elements is a Boolean
algebra. For more information about the precise meaning of the properties mentioned, we refer to [37].
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