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Abstract: Methods for ordering fuzzy numbers play an important role as decision criteria,
with applications in areas such as optimization and data mining, among others. Although there
are several proposals for ordering methods in the fuzzy literature, many of them are difficult to
apply and present some problems with ranking computation. For that reason, this work proposes
an ordering method for fuzzy numbers based on a simple application of a polynomial function.
We study some properties of our new method, comparing our results with those generated by other
methods previously discussed in literature.
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1. Introduction

In the fuzzy number literature, there are many proposals for ordering left and right (L-R)-type
fuzzy numbers. Although most of these proposalsare based on a common strategy, the characterization
of a fuzzy number by a real number in order to obtain a ranking for the first ones can be classified
into four main groups. The first group includes ordering methods based on geometric procedures for
the characterization of a fuzzy number by a real number. These methods are based on the centroid,
area, mode, expansions, and/or weights of fuzzy numbers, and they are considered too restrictive and
far from simple (see [1]). Some of these proposals can be found in the works of [2–6], among others.
The second group of ordering methods includes those based on the distance between a fuzzy number
and the origin (0, 0, 0), using metrics like Euclidean distance, Hamming distance, and Tchebychev
distance, among others. These metrics are used to generate a real number, and therefore to obtain the
ranking of a particular fuzzy number. Examples of ordering methods belonging to this group can
be found in [7–9], among others. The third group of methods uses probability/possibility measures
defined over fuzzy events to generate a real number (see [10,11]). However, these last two methods
present the problem that for two different fuzzy numbers, the same real number is generated; therefore,
those fuzzy numbers are considered equals. Finally, the fourth group of methods involves ordering
fuzzy numbers by generating a sequence of finite/infinite real numbers. For more details, see [12].

Since a method for ordering fuzzy numbers is an important decision criterion, we believe such a
method should have the following properties:

(1) The method should be consistent with the ranking of real numbers when a real number is
considered as a particular situation of a fuzzy number.

(2) The method should avoid evaluating expressions such as a/0 or 0/0, where a is a real number in
the calculus of the ordering.
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(3) The method should avoid inconsistencies, such as two different fuzzy numbers with the
same ranking.

(4) The method should be based on easy calculation of mathematical expressions.
(5) The method should show consistency with other ordering methods proposed in literature.

As mentioned previously, there are many proposals for the ordering of fuzzy numbers.
However, many of these do not consider the five points referred to above. For example, the methods
proposed by [3,13,14] can generate situations where expressions such as those mentioned in point
(2) take place (see [15,16]). On the other hand, the methods proposed by [4–7,9] present the problem
pointed out in (3). In the works of [12,15], the issue pointed out in (1) is not discussed. Finally, [12] does
not present a discussion about point (5).

Consequently, the aim of the paper is to propose a method for the ordering of L-R-type
fuzzy numbers, considering the five aspects mentioned above. Our method is based on a matrix
representation of fuzzy numbers through a polynomial function. This function is mathematically
tractable, and allows us to obtain a unique real number. The paper is organized as follows: Section 2
provides a brief review of fuzzy theory. In Section 3, we present our proposal for ordering fuzzy
numbers. Section 4 presents an application of our proposed method, and in Section 5 we present some
conclusions and further discussion.

2. Elementary Definitions of Fuzzy Theory

The basic element of fuzzy theory is the concept of a fuzzy set, where this concept is presented in
general form in Definition 1. In our proposal, we considered the unidimensional situation (k = 1).

Definition 1. Fuzzy set. Let Ω ⊆ Rk be a non-empty subset of the k-dimensional Euclidean space and
µÃ : Ω → [0, 1] be a function. A fuzzy set Ã is a set of ordered pairs Ã =

{
(ω, µÃ(ω)) : ω ∈ Ω

}
.

Here, µÃ is called the membership function for the fuzzy set Ã.

Other important definitions of our proposal are the concepts of support and core, presented in
Definitions 2 and 3. They allow the comparison and differentiation of fuzzy sets.

Definition 2. The support of a fuzzy set Ã is defined as supp(Ã) =
{

ω ∈ Ω : µÃ(ω) > 0
}

.

Definition 3. The core of a fuzzy set Ã is defined as core(Ã) = {ω ∈ Ω : µÃ(ω) = 1}. When the core has
as least one element, we have a normal fuzzy set.

Dubois and Prade [17] define the class of L-R (left and right) membership functions defined over
Ω = R; i.e., the class of membership functions that can be entirely characterized by three parameters,
namely, (al , am, ar), and two functions L and R. The next definition is related to the concept of L-R-type
fuzzy numbers (throughout the text, we refer to L-R-type fuzzy numbers simply as fuzzy number).

Definition 4. A fuzzy number Ã is said to be of L-R-type if there exist two decreasing functions
L, R:[0,+∞)→ [0, 1] with L(0) = R(0) = 1, lim

ω→+∞
L(ω) = lim

ω→+∞
R(ω) = 0 and positive real numbers

am ≥ 0, α > 0, β > 0 such that

µÃ (ω) =


L
(

am −ω

α

)
, for ω ≤ am,

R
(

ω− am

β

)
, for ω ≥ am,

where am is called the center of Ã and α = am − al and β = ar − am are called the left and right
propagations, respectively.



Axioms 2016, 5, 22 3 of 8

If α = β, Ã is called a symmetric fuzzy number; it is important to stress that for a symmetric
membership function, the equality L( am−ω

α ) = R(ω−am
β ) holds for all ω ∈ R. If L and R are segments

that start at points (al , 0) and (ar, 0), respectively, and end at (am, 1), then we say that Ã is a triangular
fuzzy number.

3. The Proposal

In this section, we present a new proposal for the ordering of fuzzy numbers. Let F+ be the
family of fuzzy numbers with positive components. A fuzzy number Ã belonging to F+ is of the form
Ã = (al , am, ar). Moreover, let l =

∣∣ ∫ 1
0 L−1(w)dw

∣∣ and r =
∣∣ ∫ 1

0 R−1(w)dw
∣∣ be two constants defined

by [18]. The following definition introduces the concept of a fuzzy matrix.

Definition 5. A matrix Ã is called a fuzzy matrix if it is defined as Ã = h(Ã), where h : F+ → R3 ×R3 is

an injective function such that h(Ã) =

 al 0 l
0 am 0
r 0 ar

, where R3 ×R3 represents the space of matrices of

dimension 3× 3.

Now, let λ be a real number such that 0 < λ ≤ 1, and let

P(λ) =

{
n

∑
i=0

aiλ
i : ∀n ∈ N, ∀i ∈ {0, . . . , n} , ai ∈ R

}
,

be a polynomial. Then, for P(λ), the following result holds:

Theorem 1. The function f : R3×R3 → P(λ) defined by f (Ã) = a11λ + a12λ2 + a13λ3 + a21λ4 + a22λ5 +

a23λ6 + a31λ7 + a32λ8 + a33λ9 is injective.

Proof. Note that if f (Ã) = f (B̃), then a11λ+ . . .+ a33λ9 = b11λ+ . . .+ b33λ9. Therefore, based on the
equality of polynomials, we conclude that aij = bij for all i and j in {0, . . . , n}, concluding the proof.

Theorem 1 guarantees that the real number that characterizes a fuzzy number is unique and
exclusive, avoiding the case that two different fuzzy numbers can share the same ranking. The next
example shows how our method can be applied to fuzzy numbers.

Example 1. Let Ã = (2, 3, 5) and B̃ = (4, 5, 6) be two triangular fuzzy numbers, with their respective fuzzy
matrices given by

Ã =

 2 0 1
0 3 0

0.5 0 5

 and B̃ =

 4 0 0.5
0 5 0

0.5 0 6

 .

Thus, from Theorem 1 and considering λ = 0.5, we have that f (Ã) = 1.2324 and f (B̃) = 2.2344.

Example 1 shows that the fuzzy number Ã� B̃. Note that although our election of λ is arbitrary,
for other values of this constant, the ordering relationship remains the same (see Figure 1).



Axioms 2016, 5, 22 4 of 8

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

λ

f 
 

Figure 1. Values of f (Ã) (solid line) and f (B̃) (dotted line) for different values of λ.

Let Ã = (a, a, a) be the fuzzy representation of a real number a. In the following, we will show
that there exists a unique value of λ such that f (Ã) = a. We focus on proving the existence of such λ,
since the proof of the uniqueness of λ is straightforward from the global convergence theorem of the
Newton–Raphson method [19,20].

Theorem 2. If Ã = (a, a, a), a ∈ R, then there exists 0 < λ ≤ 1 such that f (Ã) = a.

Proof. If Ã = (a, a, a), then Ã = aI3, where Ip denotes the p × p identity matrix. Then, applying
Theorem 1, we have that aλ + aλ5 + aλ9 = a or equivalently λ + λ5 + λ9 = 1. From the fundamental
theorem of algebra, we assure that there exists at least one real root satisfying λ + λ5 + λ9 = 1,
concluding the proof.

The real root of the polynomial P (λ) = λ + λ5 + λ9 − 1 is defined as the “Origo” constant, and is
denoted by a. An approximation of a to five significant digits is given by 0.73121. Figure 2 shows that
when λ goes to a, lim

λ→a
f (Ã) = 2 and lim

λ→a
f (B̃) = 4, where Ã = (2, 2, 2) and B̃ = (4, 4, 4), respectively.
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Figure 2. Values of f (Ã) (solid line) and f (B̃) (dotted line) for different values of λ.
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Remark 1. We note that, when fuzzy numbers are symmetric, they converge to the expected value. On the
contrary, they do not.

Finally, the next result shows that (�,F+) generates an order relation.

Theorem 3. We say that the fuzzy number Ã1 = (a1l , a1m, a1r) is smaller than or equal to the fuzzy number
Ã2 = (a2l , a2m, a2r) if f (Ã1) ≤ f (Ã2).

Proof. Note that for all Ã ∈ F+, we have that Ã � Ã, since f (Ã) ≤ f (Ã) (reflexivity). Moreover,
for all Ã1, Ã2 ∈ F+, if Ã1 � Ã2 and Ã2 � Ã1, we have that Ã1 = Ã2 since the function f is injective
and f (Ã1) and f (Ã2) belong to R (antisymmetry). Finally, for all Ã1, Ã2, Ã3 ∈ F+, if Ã1 � Ã2 and
Ã2 � Ã3 then Ã1 � Ã3. This happens since if Ã1 � Ã2 and Ã2 � Ã3 we have that f (Ã1) ≤ f (Ã2)

and f (Ã2) ≤ f (Ã3), respectively, and by transitivity of (≤,R+), f (Ã1) ≤ f (Ã3) (transitivity).

Remark 2. As the defined order is comparing real numbers, Wang and Kerre conditions are transformed to
basic properties of an order relation on any empty set. Consequently, all of them are satisfied (see [21]).

4. Application

In this section, we compare the performance of our ordering method with other methods proposed
in literature. As in [15], we consider the methods proposed by [2,3,22–26] for the comparison.
We compare three fuzzy numbers, say, Ã = (0.1, 0.5, 0.5), B̃ = (0.3, 0.3, 0.7), C̃ = (0.1, 0.5, 0.9),
and we set λ = 0.8. The ordering procedure for these numbers is presented in Table 1. Table 2 shows
the ranking comparison of our proposed method with the other methods considered.

Finally, Figure 3 shows f (Ã), f (B̃), and f (C̃) for different values of λ. It can be observed that the
decision about the ranking of the fuzzy numbers Ã, B̃, and C̃ does not change for different values of λ.

Table 1. Values of function f (·) for the fuzzy numbers Ã, B̃, and C̃.

f (Ã) = 0.1× (0.8) + 0.5× (0.8)5 + 0.5× (0.8)9 + 0.5× (0.8)3 + 0.5× (0.8)7 = 0. 6961
f (B̃) = 0.3× (0.8) + 0.3× (0.8)5 + 0.7× (0.8)9 + 0.5× (0.8)3 + 0.5× (0.8)7 = 0. 7918
f (C̃) = 0.1× (0.8) + 0.5× (0.8)5 + 0.9× (0.8)9 + 0.5× (0.8)3 + 0.5× (0.8)7 = 0. 8876
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Figure 3. Values of f (Ã) (solid line), f (B̃), (dashed line) and f (C̃) (dotted line) for different values
of λ.
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Table 2. Comparison of methods for ordering fuzzy numbers.

Fuzzy Number Set

Ã 0.6961
Our proposal B̃ 0.7918

C̃ 0.8876
Ã� B̃� C̃

Ã 0.333
Choobineh and Li [23] B̃ 0.50

C̃ 0.667
Ã� B̃� C̃

Ã 0.6
Yager [24] B̃ 0.7

C̃ 0.8
Ã� B̃� C̃

Ã 0.3375
Chen [27] B̃ 0.50

C̃ 0.667
Ã� B̃� C̃

Ã 0.3
Baldwin and Guild [22] B̃ 0.33

C̃ 0.44
Ã� B̃� C̃

Ã 0.299
Chu and Tsao [3] B̃ 0.350

C̃ 0.3993
Ã� B̃� C̃

Ã 0.6
Yao and Wu [25] B̃ 0.7

C̃ 0.8
Ã� B̃� C̃

Ã 0.79
Cheng distance [13] B̃ 0.8602

C̃ 0.9268
Ã� B̃� C̃

Ã 0.0272
Cheng CV uniform [13] B̃ 0.0214
distribution C̃ 0.0225

Ã� B̃� C̃

Ã R(B, A) > R(A, B)
Nasseri, Taleshian B̃ R(C, B) > R(B, C)
Alizadeh and Vahidi [15] C̃ R(C, A) > R(A, C)

Ã� B̃� C̃

5. Conclusions

In this paper we present a new proposal to order L-R-type fuzzy numbers, based on the
transformation of a fuzzy number to a real number using a fuzzy matrix and a polynomial. The use of
this polynomial ensures that there are not two different fuzzy numbers with the same ranking, so the
real number generated by the polynomial for each fuzzy number is unique and exclusive. The fuzzy
matrix is a new way to represent a fuzzy number which allows consideration of the additional
information about the membership function or fuzzy number, and it opens a line of research around
their algebraic properties, such as inverse or eigenvalues, and how they characterize a fuzzy number.
This method avoids the evaluation of expressions like a/0 or 0/0 where a is a real number, and it
is very easy to calculate, overcoming the limitations discussed by [1] in the calculus of ordering.



Axioms 2016, 5, 22 7 of 8

The method shows consistency with other ordering methods proposed in literature and consistency
with intuition, as discussed by [12,13,27,28]. Finally, we define the constant “Origo” (a), which
transforms the polynomial f (Ã) into the identity function for real numbers a considered as fuzzy
numbers. In addition, if λ < a, then we have a smaller scale of values for f (Ã), and higher in the
contrary case.
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