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Abstract: In this paper, we ensure the existence and uniqueness of a best proximity point in
rectangular metric spaces endowed with a graph structure.
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1. Introduction

Over the last decades, many researchers have focused on fixed point theory since it plays a very
important role in the resolution of several mathematical models in various fields, see References [1–14].
One of the tools used is the well-known Banach contraction principle, which states that if (X, d) is a
complete metric space and f : X −→ X is a contraction self-mapping, then f has a unique fixed point in
X. On the other hand, if f is a non-self mapping, that is, f : A −→ B, where A and B are two subsets of
X, then f might not necessary have a fixed point, which leads one to think of an approximate solution
x of f x = x such that x is closet to f x: thereby, best proximity point theory appeared. We recall the
definition of a best proximity point.

Definition 1. Let (X, d) be a metric space, A and B two subsets of X and a mapping f : A −→ B. We denote
by d(A, B) the distance between A and B as follows

d(A, B) = min{d(x, y) : x ∈ A, b ∈ B}.

An element u ∈ A is called a best proximity point of the mapping f if

d(u, f u) = d(A, B). (1)

There are many variants and extensions of results for the existence of a best proximity point.
For more details, we refer to References [15–29].

One of the generalized metric spaces is the rectangular metric space introduced first by
Branciari [30]. Metric spaces endowed with a graph were introduced by Jachymski [31], which
is an extension of metric spaces with partial order structures. In this paper, we consider rectangular
metric spaces with the additional structure of a graph. Our contribution is that of proving the existence
of a unique best proximity point for mappings satisfying different contractive conditions.
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2. Preliminaries

In this section, we present some useful preliminary definitions and results related to our study.
First, we remind the reader of the definition of rectangular metric spaces along with the topology.

Definition 2. [30] Let X be a nonempty set. If the function d : X2 −→ [0, ∞) satisfies the following conditions
for all x, y, z ∈ X:

(r1) x = y if and only if d(x, y) = 0;
(r2) d(x, y) = d(y, x);
(r3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all different u, v ∈ X \ {x, y},

then the pair (X, d) is called a rectangular metric space.

Definition 3. [30] Let (X, d) be a rectangular metric space. Then,

1. a sequence {xn} in X converges to a point x if and only if lim
n→∞

d(xn, x) = 0.
2. a sequence {xn} in X is called Cauchy if lim

n,m→∞
d(xn, xm) = 0.

3. (X, d) is said to be complete if every Cauchy sequence {xn} in X converges to a point x ∈ X.
4. Let Br(x0, δ) = {y ∈ X such that d(x0, y) < δ} be an open ball in (X, d). A mapping f : X −→ X is

continuous at x0 ∈ X if for each ε > 0, there exists δ > 0 so that f (Br(x0, δ)) ⊂ Br( f x0, ε).

Now, we present the definition of a best proximity point in the rectangular metric spaces (X, d).

Definition 4. Let A, B be nonempty subsets of (X, d) and f : A −→ B be a given mapping. We denote by
d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}. An element u ∈ A is called a best proximity point for the mapping f if
d(u, f u) = d(A, B). We denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A, B) for some y ∈ B} (2)

B0 = {y ∈ B : d(x, y) = d(A, B) for some x ∈ A}. (3)

The concept of P-property was defined by Raj in Reference [32].

Definition 5. [32] Let (A, B) be a pair of non-empty subsets of (X, d) such that A0 6= ∅. We say that the

pair (A, B) has the P-property if and only if for x1, x2 ∈ A0 and y1, y2 ∈ B0
d(x1, y1) = d(A, B)
d(x2, y2) = d(A, B)

}
=⇒

d(x1, x2) = d(y1, y2).

Here, let us recall some preliminaries from graph theory. Let X be a nonempty set and ∆ =

{(x, x) ∈ X × X, x ∈ X}. A graph G is a pair (V, E) where V = V(G) is a set of vertices coinciding
with X and E = E(G) the set of its edges such that ∆ ⊂ E(G). Furthermore, throughout this paper, we
assume that the graph G has no parallel edges, that is, we do not allow it to get two or more edges
that are incident to the same two vertices. By reversing the direction of edges in G, we get the graph
denoted G−1 where its set of edges and vertices are defined as follows:

E(G−1) = {(x, y) ∈ X2 : (y, x) ∈ E(G)} and V(G−1) = V(G).

Consider the graph G̃ consisting of all vertices and edges of G and G−1, that is,

E(G̃) = E(G) ∪ E(G−1). (4)

We denote by G̃ the undirected graph obtained by ignoring the direction of edges of G.

Definition 6. [31] A subgraph is a graph which consists of a subset of a graph’s edges and associated vertices.
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Definition 7. [31] Let x and y be two vertices in a graph G. A path in G from x to y of length n (n ∈ N∪{0}) is
a sequence (xi)

n
i=0 of n + 1 distinct vertices such that x0 = x, xn = y and (xi, xi+1) ∈ E(G) for i = 1, 2, ..., n.

Definition 8. [31] A graph G is said to be connected if there is a path between any two vertices of G and it is
weakly connected if G̃ is connected.

Definition 9. [31] A path is called elementary if no vertices appear more than once in it. For more details see
Figures 1 and 2.

Let (X, d) be a rectangular metric space. The graph G may be converted to a weighted graph
by assigning to each edge the distance given by the rectangular metric between its vertices. In order
to later apply the rectangular inequality to the vertices of the graph, we need to consider a graph of
length bigger than 2, which means that between two vertices, we can find a path through at least two
other vertices.

1 2

6

5
4

3

Figure 1. Elementary path.

1 2
7

5 4 3

6

Figure 2. Non Elementary path.

3. Main Results

First, let (X, d) be a rectangular metric space and G be a directed graph without parallel edges
such that V(G) = X.

Definition 10. Let A and B be two nonempty subsets of (X, d). A mapping f : A −→ B is said to be a G-
contraction mapping if for all x, y ∈ A, x 6= y with (x, y) ∈ E(G):

(i) d( f x, f y) ≤ αd(x, y), for some α ∈ [0, 1),
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(ii)
d(x1, f x) = d(A, B)
d(y1, f y) = d(A, B)

}
=⇒ (x1, y1) ∈ E(G), ∀x1, y1 ∈ A.

Our first main result is as follows:

Theorem 1. Let (X, d) be a complete rectangular metric space, A and B be two nonempty closed subsets of
(X, d) such that (A, B) has the P-property. Let f : A −→ B be a continuous G-contractive mapping such that
f (A0) ⊆ B0 and A0 6= ∅. Assume that d is continuous and the following condition (C1) holds: there exist x0

and x1 in A0 such that there is an elementary path in A0 between them and d(x1, f x0) = d(A, B).
Then, there exists a sequence {xn}n∈N with d(xn+1, f xn) = d(A, B) for n ∈ N. Moreover, if there exists

a path (yi)s
i=0 ⊆ A0 in G between any two elements x and y, then f has a unique best proximity point.

Proof. From the condition (C1), there exist two points x0 and x1 in A0 such that d(x1, f x0) = d(A, B)
and a path (ti

0)
N
i=0 in G between them such that the sequence {ti

0}N
i=0 containing points of A0.

Consequently, t0
0 = x0, tN

0 = x1 and (ti
0, ti+1

0 ) ∈ E(G) ∀0 ≤ i ≤ N.
Given that t1

0 ∈ A0, f (A0) ⊆ B0 and from the definition of A0, there exists t1
1 ∈ A0 such that

d(t1
1, f t1

0) = d(A, B). Similarly, for i = 2, ..., N, there exists ti
1 ∈ A0 such that d(ti

1, f ti
0) = d(A, B).

As (ti
0)

N
i=0 is a path in G then (t0

0, t1
0) = (x0, t1

0) ∈ E(G). From the above, we have d(x1, f x0) =

d(A, B) and d(t1
1, f t1

0) = d(A, B). Therefore, as f is a G-contraction, it follows that (x1, t1
1) ∈ E(G). In a

similar manner, it follows that

(ti−1
1 , ti

1) ∈ E(G) for i = 2, ..., N. (5)

Let x2 = tN
1 . Then, (ti

1)
N
i=0 is a path from x1 = t0

1 to x2 = tN
1 . For each i = 2, ..., N, as ti

1 ∈ A0 and
f ti

1 ∈ f (A0) ⊆ B0, then by the definition of B0, there exists ti
2 ∈ A0 such that d(ti

2, f ti
1) = d(A, B). In

addition, we have d(x2, f x1) = d(A, B). As above mentioned, we obtain

(x2, t1
2) ∈ E(G) and (ti−1

2 , ti
2) ∈ E(G)∀i = 1, 2, ..., N. (6)

Let x3 = tN
2 . Then, (ti

2)
N
i=0 is a path from t0

2 = x2 and tN
2 = x3.

Continuing in this process, for all n ∈ N, we generate a path (ti
n)

N
i=0 from xn = t0

n and xn+1 = tN
n .

As a consequence, we build a sequence {xn}n∈N where xn+1 ∈ [xn]NG and d(xn+1, f xn) = d(A, B)
such that

d(ti
n+1, f ti

n) = d(A, B) ∀ i = 0, ..., N. (7)

From the P-property of (A, B) and (7), it follows for each n ∈ N,

d(ti−1
n , ti

n) = d( f ti−1
n−1, f ti

n−1)∀i = 1, ..., N. (8)

Next, we claim that d(xn, xn+1) ≤ αnC, where C is a constant. To prove the claim, we need to
consider the following two cases where (ti

n)i=0,...,N is a path from xn to xn+1.
Note that for all i = 0, ..., N, (ti

n)i=0,...,N are different owing to the fact that the considered path
(ti

n) is elementary. Then, we can apply the triangular inequality (r3).

Case 1: N = 2k + 1 (N is odd).
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For any positive integer n, we get

d(xn, xn+1) = d(t0
n, tN

n ) = d(t0
n, t2k+1

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + d(t2
n, t2k+1

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + ... + d(t2k
n , t2k+1

n )

≤
2k+1

∑
i=1

d(ti−1
n , ti

n)

=
N

∑
i=1

d( f ti−1
n−1, f ti

n−1). (9)

Knowing that (ti−1
n−1, ti

n−1) ∈ E(G) for all n ∈ N, and f is a G-contraction, we obtain from (9)

d(xn, xn+1) ≤ α
N

∑
i=1

d(ti−1
n−1, ti

n−1) ∀n ∈ N. (10)

By induction, it follows that for all n ∈ N

d(xn, xn+1) ≤ αn
N

∑
i=1

d(ti−1
0 , ti

0) = Cαn (11)

where C =
N

∑
i=1

d(ti−1
0 , ti

0).

Case 2: N = 2k (N is even).

d(xn, xn+1) = d(t0
n, tN

n ) = d(t0
n, t2k

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + d(t2
n, t2k

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + ... + d(t2k−3
n , t2k−2

n ) + d(t2k−2
n , t2k

n )

=
2k

∑
i=1

d(ti−1
n , ti

n)− d(t2k−2
n , t2k−1

n )− d(t2k−1
n , t2k

n ) + d(t2k−2
n , t2k

n )

≤
2k

∑
i=1

d(ti−1
n , ti

n) + d(t2k−2
n , t2k

n )

≤
2k

∑
i=1

d( f ti−1
n−1, f ti

n−1) + d(t2k−2
n , t2k

n ).

By the same arguments used in Case 1, we deduce that
2k

∑
i=1

d( f ti−1
n−1, f ti

n−1) ≤ αn
N

∑
i=1

d(ti−1
0 , ti

0).

On the other hand, d(t2k−2
n , t2k

n ) ≤ αnd(t2k−2
0 , t2k

0 ). Indeed, from (7), we have d(t2k−2
n , f t2k−2

n−1 ) = d(A, B)
and d(t2k

n , f t2k
n−1) = d(A, B) and using the P-property, we get

d(t2k−2
n , t2k

n ) = d( f t2k−2
n−1 , f t2k

n−1)

≤ αd(t2k−2
n−1 , t2k

n−1)

≤ αnd(t2k−2
0 , t2k

0 ). (12)

Then, we conclude that d(xn, xn+1) ≤ αnC where C =
N

∑
i=1

d(ti−1
0 , ti

0) + d(t2k−2
0 , t2k

0 ).

Let us prove that {xn} is a Cauchy sequence. Let n, m ∈ N such that m ≥ n. We suppose w.l.o.g
that m is odd (m = 2k + 1) since the case m = 2k is similar. Note that xn = tn

0 , xn+1 = tN
n and tn

0 6= tN
n



Axioms 2019, 8, 17 6 of 13

for all n since the path (ti
n)i=0,...,N is elementary. Then, using the triangular inequality of the rectangular

metric, we obtain

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ Cαn + Cαn+1 + ... + Cαm−1

= Cαn(1 + α + ... + αm−n−1)

≤ C
αn

1− α
.

As α < 1, then lim
n,m−→∞

d(xn, xm) = 0. Therefore, {xn}n∈N is a Cauchy sequence and there exists

u ∈ A such that xn −→ u as n −→ ∞.
Using the continuity of f , we get f xn −→ f u as n −→ ∞. Now, using the continuity of the

rectangular metric function, we obtain d(xn+1, f xn) converges to d(u, f u) as n −→ ∞.
Since d(xn+1, f xn) = d(A, B), the sequence {d(xn+1, f xn)}n is constant. Consequently, d(u, f u) =

d(A, B). Then, u is a best proximity point of f .
In order to prove the uniqueness of the best proximity point u, we assume that there exist u and

u′ such that

d(u, f u) = d(A, B) (13)

d(u′, f u′) = d(A, B). (14)

Knowing that the pair (A, B) has the P-property, from (13) and (14), we get d(u, u′) = d( f u, f u′).
Since f is a G-contraction, we obtain d(u, u′) = d( f u, f u′) ≤ αd(u, u′), which holds unless

d(u, u′) = 0, then u = u′.

Definition 11. Let f : A −→ B be a mapping. Define X f (GA0) as

X f (GA0) := {x ∈ A0 : ∃y ∈ A0 for which d(y, f x) = dist(A, B) and (x, y) ∈ E(G)}. (15)

Definition 12. Let A and B be two non-empty subsets of (X, d). A mapping f : A −→ B is said to be a
G-weakly contractive mapping if for all x, y ∈ A, x 6= y with (x, y) ∈ E(G):

(i) d( f x, f y) ≤ d(x, y) − ψ(d(x, y)), where ψ : [0, ∞) −→ [0, ∞) is a continuous and nondecreasing
function such that ψ is positive on (0, ∞), ψ(0) = 0 and lim

t→∞
ψ(t) = ∞. If A is bounded, then the infinity

condition can be omitted.

(ii)
d(x1, f x) = d(A, B)
d(y1, f y) = d(A, B)

}
=⇒ (x1, y1) ∈ E(G), ∀x1, y1 ∈ A.

Our second main result is as follows:

Theorem 2. Let (X, d) be a complete rectangular metric space endowed with a directed graph, A and B be
two nonempty closed subsets of (X, d) such that (A, B) has the P-property. Let f : A −→ B be a continuous
G-weakly contractive mapping such that f (A0) ⊆ B0. Assume that d is continuous and A0 is a closed nonempty
set. Then, there exists a sequence {xn}n∈N in A0 such that d(xn+1, f xn) = d(A, B) for n ∈ N. Moreover,
f has a unique best proximity point.
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Proof. It follows from the definition of A0 and B0 that for every x ∈ A0, there exists y ∈ B0 such that
d(x, y) = dist(A, B). Conversely, for every y′ ∈ B0 there exists x′ ∈ A0 such that d(x′, y′) = dist(A, B).
Since f (A0) ⊂ B0, for every x ∈ A0 there exists y ∈ A0 such that d(y, f x) = dist(A, B).

Let x0 ∈ X f (GA0), then there exists x1 ∈ A0 such that (x0, x1) ∈ E(G) and d(x1, f x0) = dist(A, B).
On the other hand, since x1 ∈ A0 and f (A0) ⊂ B0, there exists x2 ∈ A0 such that d(x2, f x1) = dist(A, B)
and because f is a G-weakly contractive mapping, we get (x1, x2) ∈ E(G). We repeat this process in a
similar way, we build a sequence {xn} in A0 such that

(xn, xn+1) ∈ E(G) (16)

d(xn+1, f xn) = dist(A, B)∀n ∈ N. (17)

Since the pair (A, B) has the P-property, we conclude that d(xn, xn+1) = d( f xn−1, f xn) for all
n ∈ N. Then, for any positive integer n

d(xn, xn+1) = d( f xn−1, f xn)

≤ d(xn−1, xn)− ψ(d(xn−1, xn))

≤ d(xn−1, xn). (18)

If we denote by vn = d(xn, xn+1), from (18), {vn} is a nonnegative decreasing sequence. Hence,
{vn} converges to some real number v ≥ 0. Suppose that v > 0. As ψ is increasing, for any positive
integer n, we have

vn = d(xn, xn+1) ≤ d(xn−1, xn)− ψ(d(xn−1, xn))

= vn−1 − ψ(vn−1)

≤ vn−1 − ψ(v).

At the limit, v ≤ v− ψ(v) < v, which is a contradiction, so v = 0, that is,

d(xn, xn+1) −→ 0 as n −→ ∞. (19)

Similarly, we find that
d(xn, xn+2) −→ 0 as n −→ ∞. (20)

Now, let us prove that {xn} is a Cauchy sequence.
For any ε > 0, choose N such that

d(xN , xN+1) < min{ ε

8
, ψ(

ε

8
)} (21)

d(xN , xN+2) < min{ ε

8
, ψ(

ε

8
)}. (22)

Let B[xN , ε] := {x ∈ X : d(xN , x) < ε} be a closed ball with center xN and radius ε. We claim that
f (B[xN , ε]) ⊆ B[ f xN−1, ε].

Using the P-property, we obtain
d(xN , f xN−1) = dist(A, B)
d(xN+1, f xN) = dist(A, B)

}
=⇒

d(xN , xN+1) = d( f xN−1, f xN). (23)

Consider x ∈ B[xN , ε], i.e., d(xN , x) ≤ ε. We distinguish two cases d(xN , x) ≤ ε

2
and d(xN , x) >

ε

2
.

Case 1: d(xN , x) ≤ ε

2
.
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Using the rectangular inequality, we distinguish the following two subcases:

• If f xN−1 = f xN+1, f xN+2 = f x and f xN+1 6= f xN+2, we have

d( f xN−1, f x) = d( f xN+1, f xN+2)

≤ d(xN+1, xN+2)− ψ(d(xN+1, xN+2))

≤ d(xN+1, xN+2)

= d( f xN , f xN+1)

≤ d(xN , xN+1)

≤ ε

8
.

In the case where f xN+1 = f xN+2, we obtain d( f xN−1, f x) = 0.

• If f xN−1 6= f xN+1, f xN+2 6= f x and f xN+1 6= f xN+2, we have

d( f xN−1, f x) ≤ d( f xN−1, f xN+1) + d( f xN+1, f xN+2) + d( f xN+2, f x)

= d(xN , xN+2) + d( f xN+1, f xN+2) + d( f xN+2, f x)

≤ d(xN , xN+2) + d(xN+1, xN+2)− ψ(d(xN+1, xN+2)) + d(xN+2, x)− ψ(d(xN+2, x))

≤ d(xN , xN+2) + d(xN+1, xN+2) + d(xN+2, x)

≤ d(xN , xN+2) + d(xN+1, xN+2) + d(xN+2, xN+1) + d(xN+1, xN) + d(xN , x)

≤ d(xN , xN+2) + 2d(xN+1, xN+2) + d(xN+1, xN) + d(xN , x)

≤ d(xN , xN+2) + 2d(xN , xN+1)− 2ψ(d(xN , xN+1)) + d(xN+1, xN) + d(xN , x)

≤ d(xN , xN+2) + 3d(xN , xN+1) + d(xN , x)

≤ ε

8
+ 3× ε

8
+

ε

2
= ε

which implies that f x ∈ B[ f xN−1, ε].

Case 2:
ε

2
< d(xN , x) ≤ ε.

• If f xN−1 = f xN+1, f xN = f x and f xN+1 = f xN , we get

d( f xN−1, f x) ≤ d( f xN+1, f xN)

≤ d(xN+1, xN)− ψ(d(xN+1, xN))

≤ d(xN+1, xN)

≤ ε

8
.

• If f xN−1 6= f xN+1, f xN 6= f x and f xN+1 6= f xN , we have

d( f xN−1, f x) ≤ d( f xN−1, f xN+1) + d( f xN+1, f xN) + d( f xN , f x)

≤ d(xN , xN+2) + d(xN+1, xN)− ψ(d(xN+1, xN)) + d(xN , x)− ψ(d(xN , x))

≤ d(xN , xN+2) + d(xN+1, xN) + d(xN , x)− ψ(d(xN , x))

≤ ε

8
+

ε

8
+ ε− ψ(

ε

2
)

=
ε

4
+ ε− ψ(

ε

2
)

≤ ε

2
+ ε− ψ(

ε

2
)

≤ ψ(
ε

2
) + ε− ψ(

ε

2
) = ε.(since ψ is increasing ).
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Then, d( f xN−1, f x) ≤ ε, which gives that f x ∈ B[ f xN−1, ε]. Thus, we obtain that

f (B[xN , ε]) ⊆ B[ f xN−1, ε]. (24)

Claim: If y ∈ B[ f xN−1, ε] with d(x, y) = dist(A, B) for some x ∈ A0, then x ∈ B[xN , ε].

Let y ∈ B[ f xN−1, ε]. Then,
d( f xN−1, y) ≤ ε. (25)

Assume that there exists x ∈ A0 such that d(x, y) = dist(A, B). From (17), we get d(xN , f xN−1) =

dist(A, B) which gives us using the P-property,

d(x, xN) = d(y, f xN−1). (26)

From (25) and (26), we obtain that d(x, xN) ≤ ε, i.e., x ∈ B[xN , ε] and the claim is proved.
From (21) and (23), we have xN+1 ∈ B[xN , ε]. Then, using (24), we get f xN+1 ∈ B[ f xN−1, ε], i.e.,

d( f xN+1, f xN−1) ≤ ε. (27)

Since d(xN+2, f xN+1) = dist(A, B), by the precedent claim d(xN+2, f xN) ≤ ε. Again, from (24),
d(xN+2, f xN−1) ≤ ε and from the claim d(xN+3, f xN) ≤ ε. In this way, we obtain

d(xN+m, xN) ≤ ε ∀m ∈ N. (28)

Thus, the sequence {xn} is Cauchy. Since A is a closed subset of the complete rectangular metric
space, there exists x∗ ∈ A such that

lim
n→∞

xN = x∗. (29)

From the continuity of f , we obtain

lim
n→∞

f xN = f x∗. (30)

Then, using the continuity of the rectangular metric, we obtain

d(xN+1, f xN) −→ d(x∗, f x∗) as N −→ ∞. (31)

From (17), d(xN+1, xN) = dist(A, B), we conclude that {d(xN+1, xN)}N is a constant sequence
equal to dist(A, B). Therefore, from (31), d(x∗, f x∗) = dist(A, B). Thereby, x∗ is a best proximity point
of f .

Let us prove the uniqueness of the best proximity point. Consider x1, x2 two different best
proximity points. Then, d(x1, f x1) = d(x2, f x2) = dist(A, B). From the P-property, we obtain
d(x1, x2) = d( f x1, f x2). Using that f is weakly G-contractive, we get

0 < d(x1, x2) = d( f x1, f x2) ≤ d(x1, x2)− ψ(d(x1, x2)) < d(x1, x2), (32)

which is a contradiction. Therefore, x1 = x2.

Definition 13. Let (X, d) be a rectangular metric space and G be a directed graph. Let A, B be two nonempty
subsets of X. A non-self mapping T : A −→ B is said to be

• a G- proximal Kannan mapping if for x, y, u, v ∈ A, there exists b ∈ [0, 1
2 ) such that

(x, y) ∈ E(G)

d(u, Tx) = d(A, B)
d(v, Ty) = d(A, B)

 =⇒ d(u, v) ≤ b[d(x, v) + d(y, u)].



Axioms 2019, 8, 17 10 of 13

• proximally G-edge preserving if for each x, y, u, v ∈ A
(x, y) ∈ E(G)

d(u, Tx) = d(A, B)
d(v, Ty) = d(A, B)

 =⇒ (u, v) ∈ E(G).

Our third main result is as follows:

Theorem 3. Let (X, d) be a rectangular metric space and G a directed graph. Let A, B be two nonempty closed
subsets of X. Assume that A0 is nonempty and d is continuous. Let T : A −→ B be a continuous non-self
mapping satisfying the following properties:

• T is proximal G-edge preserving and a G-proximal Kannan mapping such that T(A0) ⊆ B0.
• There exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A, B) and (x0, x1) ∈ E(G). (33)

Then, T has a best proximity point x∗ in A. Furthermore, the sequence {xn} defined by d(xn, Txn−1) =

d(A, B) for all n ∈ N converges to x∗. Moreover, if there exists a path in G between any two points of A,
then the best proximity point is unique.

Proof. From (33), there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A, B) and (x0, x1) ∈ E(G). (34)

Since T(A0) ⊆ B0, we have Tx1 ∈ B0 and there exists x2 ∈ A0 such that

d(x2, Tx1) = d(A, B). (35)

Using the proximally G-edge preserving of T, (34) and (35), we get (x1, x2) ∈ E(G). By continuing
this process, we obtain the sequence {xn} in A0 such that

d(xn, Txn−1) = d(A, B) (36)

with (xn, Txn−1) ∈ E(G) ∀n ∈ N. (37)

Now, let us prove that {xn} is a Cauchy sequence in A. Note that if there exists n0 ∈ N such that
xn0 = xn0+1, from (36), we get that xn0 is a best proximity point of T. Therefore, we may assume that
xn−1 6= xn for all n ∈ N.

Since T is a G-proximal Kannan mapping for each n ∈ N, we obtain (xn−1, xn) ∈ E(G),
d(xn, Txn−1) = d(A, B) and d(xn+1, Txn) = d(A, B) which imply that

d(xn, xn+1) ≤ b[d(xn−1, xn+1) + d(xn, xn)] ≤ bd(xn−1, xn+1).

By induction, we obtain

d(xn, xn+1) ≤ bnd(x0, x2) = bnC ∀n ∈ N. (38)

As b <
1
2

, then d(xn, xn+1) −→ 0 as n −→ ∞. Let p ≥ 1.
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Case 1:

d(xn, xn+(2p+1)) = d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+2p, xn+2p+1)

≤ bnC + bn+1C + ... + bn+2pC

= (bn + bn+1 + ... + bn+2p)C −→ 0 as n, p −→ ∞. (39)

Case 2:

d(xn, xn+(2p)) = d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+2p−2, xn+2p)

≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+2p−2, xn+2p−1) + d(xn+2p−1, xn+2p)

+ d(xn+2p−2, xn+2p)

≤
n+2p−1

∑
k=n

Cbk + d(xn+2p−2, xn+2p). (40)

Knowing that
n+2p−1

∑
k=n

Cbk −→ 0 as n, p −→ ∞, we shall prove that d(xn+2p−2, xn+2p) −→ 0 as

n, p −→ ∞. From (36), we can conclude that

d(xn+2p−2, Txn+2p−1) = d(A, B) (41)

d(xn+2p, Txn+2p+1) = d(A, B). (42)

On the other hand, from (37) we get (xn+2p−1, xn+2p) ∈ E(G) and (xn+2p, xn+2p+1) ∈ E(G). Then,
since G is a connected graph, there exists a path between xn+2p−1 and xn+2p+1 in G. Therefore,

(xn+2p−1, xn+2p+1) ∈ E(G). (43)

Knowing that T is a G-proximal Kannan mapping and from (41)–(43), we obtain

d(xn+2p−2, xn+2p) ≤ b[d(xn+2p−1, xn+2p) + d(xn+2p+1, xn+2p−2)] (44)

≤ b[d(xn+2p−1, xn+2p) + d(xn+2p−2, xn+2p−1) + d(xn+2p−1, xn+2p) + d(xn+2p, xn+2p+1)]

= b[2d(xn+2p−1, xn+2p) + d(xn+2p−2, xn+2p−1) + d(xn+2p, xn+2p+1)]

≤ b[2Cbn+2p−1 + Cbn+2p−2 + Cbn+2p] −→ 0 as n, p→ ∞.

Therefore, from (40), we conclude that d(xn, xn+2p) −→ 0 as n, p −→ ∞. It follows that {xn} is
a Cauchy sequence in A. Since A is closed, there exists x∗ ∈ A such that xn −→ x∗ as n −→ ∞. By
the continuity of T, we obtain Txn −→ Tx∗ as n −→ ∞. Since d is assumed to be continuous, we get
d(xn+1, Txn) −→ d(x∗, Tx∗) as n −→ ∞. By (36), we conclude that

d(x∗, Tx∗) = d(A, B).

Thus, x∗ is a best proximity point of T and the sequence {xn} defined by d(xn+1, Txn) = d(A, B)
converges to x∗ for all n ∈ N.

Let us prove the uniqueness of the best proximity point x∗. Suppose that x∗1 and x∗2 are two best
proximity points. Then, we obtain d(x∗1 , Tx∗1) = d(A, B), d(x∗2 , Tx∗2) = d(A, B) and (x∗1 , x∗2) ∈ E(G),
which gives d(x∗1 , x∗2) ≤ b[d(x∗1 , x∗2) + d(x∗1 , x∗2)] = 2bd(x∗1 , x∗2). Therefore, we get (1− 2b)d(x∗1 , x∗2) ≤ 0,

which implies that 1 − 2b ≤ 0 =⇒ b ≥ 1
2

. It is a contradiction with respect to b <
1
2

. Then,

d(x∗1 , x∗2) = 0, that is, x∗1 = x∗2 and so the uniqueness of the best proximity point follows.



Axioms 2019, 8, 17 12 of 13

4. Conclusions and Perspectives

In Theorems 1–3, we assumed that the rectangular metric space is continuous, which is a strong
hypothesis and does not hold in general. To our knowledge, our work is the first attempt to prove best
proximity point results not only in the setting of rectangular metric spaces, but with the addition of a
graph theory structure. Finally, an open question, how does one prove the above three theorems when
omitting the continuity of the rectangular metric?
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