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Abstract: We know that quantum logics are the most prominent logical systems associated to the
lattices of closed Hilbert subspaces. However, what happen if, following a quantum computing
perspective, we want to associate a logic to the process of quantum registers measurements?
This paper gives an answer to this question, and, quite surprisingly, shows that such a logic is
nothing else that the standard propositional intuitionistic logic.
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1. Introduction

The long tradition of Quantum Logics comes from the ideas of Birkoff and von Neumann [1]
(see also [2] for an extended tutorial on the subject), where they defined a new “non-classical” logic
to deal with the algebraic structures obtained from Hilbert spaces by means of quantum projective
measurements. Although Quantum Logics are extremely interesting for their ability to formalize
quantum-algebraic structures such as orthomodular lattices, these logics are inadequate to reason on
the computational aspects relevant to Quantum Computing.

Quantum Computing was born from Feynman’s ideas exposed in [3] where, to simulate complex
quantum systems, the author proposed a new computational paradigm based on quantum physics.
The basic units of the standard quantum computing model are the so-called quantum bits, or qubits for
short (mathematically, normalized vectors of the Hilbert Space C2). Qubits represent informational
units and can assume both classical values 0 and 1, and all their super-positional values (see, e.g., [4]
for an extended treatment of quantum computing).

Following the quantum computing paradigm, several authors have proposed both paradigmatic
languages [5–11] and logical systems to cope with quantum computations (see e.g., [12–17]). Most of
these latter approaches are based on a modal logic viewpoint, where the main subject of the study is
the treatment of unitary transformations.

However, what can we say, from a purely logical point of view, about the measurement process of
quantum registers? More precisely, let us suppose to have a quantum register |ψ〉 and, starting from
|ψ〉, to perform an arbitrary numbers of projective measurements. In such a way, we obtain a tree-like
computational structure, which we call here observational tree, with root |ψ〉 and where each node is a
quantum state resulting from a sequence of measurements.

This paper give a positive answer to the following question:

"Is there a propositional logic that has the observational trees as set of models?"

1.1. A Gentle Informal Introduction of Our Proposal

First, let us suppose to have a denumerable set Q = {ei}i∈ω of qubits with distinguishable
names and an arbitrary finite non-empty set R = {ei1 , . . . eik} ⊆ Q. Let RegQ be the set of quantum
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registers based on Q. As we know, each quantum register in RegQ can be represented by an expression
of the kind

j=2k

∑
j=1

aj
∣∣ei1 = vj1 , . . . eik = vjk

〉
where each vji ∈ {0, 1} and each aj ∈ C.

As a second step, let us fix a standard propositional language, where Q is the set of
propositional symbols.

It is immediate to observe that each
∣∣ei1 = vj1 , . . . eik = vjk

〉
is a standard boolean evaluation of

propositional symbols ei1 , . . . eik , namely:

eij is true in
∣∣ei1 = vj1 , . . . eik = vjk

〉
⇔ eij = 1

To simplify the notation, given a finite set R = {ei1 , . . . eik} of qubits, we can represent each
element

∣∣ei1 = vj1 , . . . eik = vjk
〉

of the computational basis as a subset C (eventually empty) of R, where
eik ∈ C iff eik = 1. Consequently, each quantum register can be represented by an expression of the
form ∑Ci∈2R ai |Ci〉.

The idea is that the truth of a propositional symbol must be stable under measurement, i.e., if e is true
in a quantum register |φ〉 = ∑ ai |Ci〉 iff then each possible measurement (to simplify the treatment,
we consider here only the so called PVM-ProjectionValue Measurement [4]) of φ returns (probabilistic)
a set of new quantum registers in which in turn p is true. Following this intuition, we set that e is true
in ∑Ci∈2R ai |Ci〉 iff e is true in each |Ci〉 iff e ∈ Ci.

The notion truth for a generic formula is therefore given in terms of stability under measurements.
Let us consider for example the cases of disjunction and implication:

• S formula A ∨ B is true in a quantum state |ψ〉 iff after every sequence (eventually the empty
sequence) of measurements of |ψ〉 in the resulting state |ψ〉 we have either the truth of A or
those of B.

• S formula A → B is true in a quantum state |ψ〉 iff after each sequence (eventually the empty
sequence) of measurements of |ψ〉, in the resulting state |ψ〉 we have that if A is true then B is true.

To formalize the notion of truth sketched above, we need to introduce suitable partial order
structures, where the order is naturally induced by the measurement process. We call these structures
observational trees. Observational trees represent the core of our investigation; these structures will
allow us to explain the constructive nature of the logic of measurement, and its deep difference from
the classical logic.

1.2. Synopsis

In Section 2.2, we introduce the key notion of observational trees. The observational logic LP is
semantically defined in Section 3, where we state the relationship between observational trees and
intuitionistic Kripke models. Section 4 is finally devoted to possible further work.

2. A Quantum Tree Model for Observations

To introduce the notion of observational trees, in Section 2.1 we first recall some basic notions.
The formal definition of observational trees is in Section 2.2.

2.1. Background

In the following paragraph, we briefly introduce the notion of trees seen as sets of sequences
of natural numbers (see, e.g., [18]), and the mathematical representation of quantum registers and
quantum measurement operators (see, e.g., [4]).
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2.1.1. Trees

Let S∗ be the set of finite sequences of natural numbers. We denote the empty sequence by 〈 〉 and
an arbitrary sequence by 〈n0, . . . , nk〉. We use the symbol ∗ for concatenation of sequences. We define a
partial ordering ≤ on S∗ as follows: t ≤ 〈 〉 for all t ∈ S∗ and 〈n0, . . . , nk〉 ≤ 〈m0, . . . , ml〉 if and only if
l ≤ k and ni = mi for all 0 ≤ i ≤ l. We denote by < the associated strict order.

A tree T = 〈T,≤〉 is a partial order with of T ⊆ S∗ satisfying the property that whenever t ∈ T
and t ≤ s then s ∈ T. Elements of T are called nodes. A leaf is a node with no successors. With E, we
denote the set of edges of T , namely the set {(α, α ∗ 〈n〉) : α, α ∗ 〈n〉 ∈ T, n ∈ N}.

Given a tree T and s ∈ T, we let Ts be the tree defined by: s′ ∈ Ts ⇔ s ∗ s′ ∈ T. Notice that
T〈 〉 = T.

In the graphical representation of a tree, if i < j, we put t ∗ 〈i〉 to the left of t ∗ 〈j〉.

2.1.2. Quantum Registers

Let P be a denumerable set of propositional symbols and let X be a finite non-void subset of P.
Moreover, let F be the set of finite parts of X.

Let us consider the Hilbert-space `2(F) of square summable,F-indexed sequences of complex numbers

HX = {φ | φ : FX → C} ,

equipped with an inner product 〈. | .〉 and the Euclidean norm ‖φ‖ =
√
〈φ|φ〉.

The elements of the setRX = {φ ∈ HX : ‖φ‖ = 1} are called q-registers (quantum registers), and
represent the superposition states of a quantum system.

For any c ∈ FX let |c〉 : FX → C be the function

|c〉 (d) =
{

1 if c = d
0 if c 6= d.

The set CB(X) of all such functions is a Hilbert basis for `2(F). In particular, following the
literature on quantum computing, CB(F) is called the computational basis of `2(F). Each element of the
computational basis is called base q-register.

Let us assume to fix an enumeration {bi}i of FX. We use Dirac notation for the elements φ, ψ ofR,
writing them |φ〉 , |ψ〉. As usual, each quantum state |φ〉 is expressible via the computational basis as
∑i ai |bi〉.

In the following, with a little abuse of notation, we write:

• p ∈ |bi〉 to mean that p ∈ bi; and
• p ∈ ∑i ai |bi〉 to mean that ∀aj 6= 0.p ∈

∣∣bj
〉

2.1.3. Measurement Operators

We introduce now a standard definition of measurements operators in terms of orthogonal projectors.

Definition 1. Let P : HX → HX be a linear operator, P is called orthogonal projector iff

• P is hermitian; and
• ker(P) ⊥ im(P).

With OX, we denote the set of orthogonal projectors ofHX.

Let x ∈ [0, 1]R and P ∈ OX. |ψ〉 →x
P |φ〉means that x = 〈ψ | P | ψ〉 and |φ〉 = P|ψ〉√

x
A register observation is obtained performing an arbitrary, finite sequence of orthogonal projections:



Axioms 2019, 8, 25 4 of 10

Definition 2. Let K ∈ N. A sequence (Pi)i<K of orthogonal projectors is an observation iff ∑i<K Pi = Id.
Let us denote with M the set of observations.

2.2. Observation Trees

We can now introduce our tree models.

Definition 3 (Observational Tree). Let X be a finite set of propositional symbols. An observational tree is a
structure TX = 〈〈T,≤〉, p, a, s〉 where

• T = 〈T,≤〉 is an abstract tree;
• p, a, s are the following labelling functions:

– p : E→ (0, 1]R;
– a : T →M;
– s : T → RX ∪ {0}

• for which some constraints holds. Let us suppose that a(α) = (Pi)i<k ∈M, then:

– ∀i < k. (Pi(α) 6= 0⇒ α ∗ 〈i〉 ∈ T);
– if ∀j ≥ K. α ∗ 〈j〉 6∈ T;
– ∀i < K if α ∗ 〈i〉 ∈ T then

- p(α, α ∗ 〈i〉) = 〈s(α) | Pi | s(α)〉
- s(α ∗ 〈i〉) = Pi(s(α))√

p(α,α∗〈i〉)

Informally:

• p assigns a (correct) probability to each edge.
• a assigns to each node a sequence of observations (an element in M), in particular the sequence

that generates the current (evaluation of the) state, starting from the root node.
• s assigns to each node a quantum register.

The following property trivially holds:

Proposition 1 (Monotonicity). Let TX = 〈〈T,≤〉, p, a, s〉 be an observational tree, then

∀α ∈ T.( q ∈ s(α)⇒ ∀β ≤ α. q ∈ s(β))

Remark 1. In the graphical representation of observation trees, we omit nodes labeled with 0-vectors.

3. The Logic of Observations

In this section, we semantically define the logic LP of quantum observations. As anticipated in
the Introduction, we fix the set of propositional symbols to the set of qubit names and we adopt the
standard connectives of propositional logic. Formally:

Definition 4 (Language of LP). The language LP of LP is built upon propositional symbols, which we set to
P and connectives→,∧,∨,⊥.

We also exploit some auxiliary notation. Let us denote with FormP the set of resulting well formed
formulas built in the standard way. Given a formula A let we denote with P[A] the set of propositional
symbols occurring in A.

We define now the semantics of a formula with respect to an observational tree.
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Definition 5 (Semantics). The semantics of a formula A with respect to to an observational tree TX with
X ⊇ P[A] is defined as:

• TX, α
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• KTX , α , A Ñ B iff @β, α ĎT β ñ pKTX , β , A ñ KTX , β , Bq.174

With KTX , A we mean that @α.KTX , α , A (A is true in KTX ). With , A we mean that175

@TPrAsKTPrAs , A (A is valid).176

Moreover, the following proposition holds:177

Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T

TX, α ( A ô KT, α , A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a178

propositional symbol q, then TX, α ( q iff (by definition of the semantics) q P spαq, iff and only if179

q P VTpαq. The other cases are easily provable by induction on the structure of A. We show the ^ case180

as a title of example. Suppose TX, α ( B^ C. This holds iff TX, α ( B & TX, α ( C. By i.h., we have181

KT, α , B, KT, α , C and, by definition 6, KT, α , B^ C.182

Since for each TX, KTX is a Kripke model, we have trivially that:183

Corollary 1. , A ñ( A.184

Corollary 1 shows that ( is a logic that leaves between intuitionistic and classical logic, namely
the following set of inclusions hold (|ù is the classic logic notion of truth):

tA : , Au Ď tA : ( Au Ĺ tA : |ù Au

The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

q iff q ∈ s(α);
• TX, α 3 ⊥
• TX, α
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Proof. By easy induction on the structure of the formula A, following Definition 5. Let us show some
case for (1), as a title of example. Let A be a propositional symbol q: the thesis follows by Proposition 1
(monotonicity). Let A be of the sharp B∧C. By i.h., for all β ≤ α, we have both TX, β
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Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193
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B and TX, β

Version November 7, 2018 submitted to Axioms 6 of 10

• KTX , α , A Ñ B iff @β, α ĎT β ñ pKTX , β , A ñ KTX , β , Bq.174

With KTX , A we mean that @α.KTX , α , A (A is true in KTX ). With , A we mean that175

@TPrAsKTPrAs , A (A is valid).176

Moreover, the following proposition holds:177

Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T

TX, α ( A ô KT, α , A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a178

propositional symbol q, then TX, α ( q iff (by definition of the semantics) q P spαq, iff and only if179

q P VTpαq. The other cases are easily provable by induction on the structure of A. We show the ^ case180

as a title of example. Suppose TX, α ( B^ C. This holds iff TX, α ( B & TX, α ( C. By i.h., we have181

KT, α , B, KT, α , C and, by definition 6, KT, α , B^ C.182

Since for each TX, KTX is a Kripke model, we have trivially that:183

Corollary 1. , A ñ( A.184

Corollary 1 shows that ( is a logic that leaves between intuitionistic and classical logic, namely
the following set of inclusions hold (|ù is the classic logic notion of truth):

tA : , Au Ď tA : ( Au Ĺ tA : |ù Au

The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

C
then, by Definition 5, TX, β
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B ∧ C. Other cases are similar and (2) plainly follows from (1).

With TX

Version November 7, 2018 submitted to Axioms 6 of 10

• KTX , α , A Ñ B iff @β, α ĎT β ñ pKTX , β , A ñ KTX , β , Bq.174

With KTX , A we mean that @α.KTX , α , A (A is true in KTX ). With , A we mean that175

@TPrAsKTPrAs , A (A is valid).176

Moreover, the following proposition holds:177

Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T

TX, α ( A ô KT, α , A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a178

propositional symbol q, then TX, α ( q iff (by definition of the semantics) q P spαq, iff and only if179

q P VTpαq. The other cases are easily provable by induction on the structure of A. We show the ^ case180

as a title of example. Suppose TX, α ( B^ C. This holds iff TX, α ( B & TX, α ( C. By i.h., we have181

KT, α , B, KT, α , C and, by definition 6, KT, α , B^ C.182

Since for each TX, KTX is a Kripke model, we have trivially that:183

Corollary 1. , A ñ( A.184

Corollary 1 shows that ( is a logic that leaves between intuitionistic and classical logic, namely
the following set of inclusions hold (|ù is the classic logic notion of truth):

tA : , Au Ď tA : ( Au Ĺ tA : |ù Au

The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

A we mean that ∀α.TX, α

Version November 7, 2018 submitted to Axioms 6 of 10

• KTX , α , A Ñ B iff @β, α ĎT β ñ pKTX , β , A ñ KTX , β , Bq.174

With KTX , A we mean that @α.KTX , α , A (A is true in KTX ). With , A we mean that175

@TPrAsKTPrAs , A (A is valid).176

Moreover, the following proposition holds:177

Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T

TX, α ( A ô KT, α , A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a178

propositional symbol q, then TX, α ( q iff (by definition of the semantics) q P spαq, iff and only if179

q P VTpαq. The other cases are easily provable by induction on the structure of A. We show the ^ case180

as a title of example. Suppose TX, α ( B^ C. This holds iff TX, α ( B & TX, α ( C. By i.h., we have181

KT, α , B, KT, α , C and, by definition 6, KT, α , B^ C.182

Since for each TX, KTX is a Kripke model, we have trivially that:183

Corollary 1. , A ñ( A.184

Corollary 1 shows that ( is a logic that leaves between intuitionistic and classical logic, namely
the following set of inclusions hold (|ù is the classic logic notion of truth):

tA : , Au Ď tA : ( Au Ĺ tA : |ù Au

The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

A (A is true in TX). With

Version November 7, 2018 submitted to Axioms 6 of 10

• KTX , α , A Ñ B iff @β, α ĎT β ñ pKTX , β , A ñ KTX , β , Bq.174

With KTX , A we mean that @α.KTX , α , A (A is true in KTX ). With , A we mean that175

@TPrAsKTPrAs , A (A is valid).176

Moreover, the following proposition holds:177

Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T

TX, α ( A ô KT, α , A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a178

propositional symbol q, then TX, α ( q iff (by definition of the semantics) q P spαq, iff and only if179

q P VTpαq. The other cases are easily provable by induction on the structure of A. We show the ^ case180

as a title of example. Suppose TX, α ( B^ C. This holds iff TX, α ( B & TX, α ( C. By i.h., we have181

KT, α , B, KT, α , C and, by definition 6, KT, α , B^ C.182

Since for each TX, KTX is a Kripke model, we have trivially that:183

Corollary 1. , A ñ( A.184

Corollary 1 shows that ( is a logic that leaves between intuitionistic and classical logic, namely
the following set of inclusions hold (|ù is the classic logic notion of truth):

tA : , Au Ď tA : ( Au Ĺ tA : |ù Au

The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

A we mean that
∀TP[A].TP[A]

Version November 7, 2018 submitted to Axioms 6 of 10

• KTX , α , A Ñ B iff @β, α ĎT β ñ pKTX , β , A ñ KTX , β , Bq.174

With KTX , A we mean that @α.KTX , α , A (A is true in KTX ). With , A we mean that175

@TPrAsKTPrAs , A (A is valid).176

Moreover, the following proposition holds:177

Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T

TX, α ( A ô KT, α , A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a178

propositional symbol q, then TX, α ( q iff (by definition of the semantics) q P spαq, iff and only if179

q P VTpαq. The other cases are easily provable by induction on the structure of A. We show the ^ case180

as a title of example. Suppose TX, α ( B^ C. This holds iff TX, α ( B & TX, α ( C. By i.h., we have181

KT, α , B, KT, α , C and, by definition 6, KT, α , B^ C.182

Since for each TX, KTX is a Kripke model, we have trivially that:183

Corollary 1. , A ñ( A.184

Corollary 1 shows that ( is a logic that leaves between intuitionistic and classical logic, namely
the following set of inclusions hold (|ù is the classic logic notion of truth):

tA : , Au Ď tA : ( Au Ĺ tA : |ù Au

The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

A (A is valid).
It is easy to observe that, given a formula A, the set of propositional symbols is enough to state its

satisfiability in a model.

Proposition 3. Let A be a formula, then for each X ⊇ P[A] we have that TX
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We can formally state a relationship between observational trees and Kripke models. In Section 3.1,
we show how to extract a Kripke model from an observation tree. The converse is shown in Section 3.2.

3.1. From Observational Trees to Kripke Models

Let TX = 〈〈T,≤〉, p, a, s〉 be an observational tree. We associate to TX a Kripke model KTX =

〈TT,vT, VT〉 defined in the following way:
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 A OR KTX , α 
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 A→ B iff ∀β, α vT β ⇒ (KTX , β 
 A ⇒ KTX , β 
 B).

With KTX 
 A we mean that ∀α.KTX , α 
 A (A is true in KTX ). With 
 A we mean that
∀TP[A]KTP[A]


 A (A is valid).
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Moreover, the following proposition holds:

Proposition 5. For each formula A, X ⊇ P[A] and observational model TX = 〈〈T,≤〉, p, a, s〉 and for each
α ∈ T

TX, α
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A⇔ KT, α 
 A

Proof. The thesis follows by construction of of the model KT from the observational tree. If A is a
propositional symbol q, then TX, α
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 B, KT, α 
 C and, by Definition 6, KT, α 
 B ∧ C.
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Corollary 1. 
 A⇒
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The last inclusion is trivially shown, since we known that classical validity may be formulated with
finite models. A finite model is nothing else that a finite set X ⊆ P, with the clause for propositional
symbols X |= q⇔ q ∈ X. Given a finite model X = {r0, . . . , rn}, we can associate to X the observation
tree T where the root is labelled with |X〉 and for each node t, a(t) = {I}. It is trivial to observe that
X |= A⇔ T
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A. The thesis follows immediately.
On the other hand, as shown below,
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does not validate the tertium non datur principle, and
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Theorem 1. 3A ∨ ¬A

Proof. Let us consider the observational tree T represented in Figure 1. Let a〈 〉 = (Pr, P⊥r ) where P
is the projector in the subspace of vectors β s.t. r ∈ β. Moreover, for each α 6= 〈 〉, let a(α) = Id. It is
immediate to observe that T 3 r ∨ ¬r, and therefore 3 r ∨ ¬r.

The question is now to classify
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with respect to intuitionistic logic. In the next section, we show
how any (tree-like) Kripke model can be translated into an observational tree.
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Figure 1. Tertium non datur: a counterexample.

3.2. From Kripke Models to Observational Trees

We now show how to associate to a tree-Kripke model K an observational model TK.
Let K be a tree Kripke model 〈N,≤, V〉. We denote with PK the set of propositional symbols

⋃
t∈N V(t)

and with FK the set of formulas built on the basis of PK.

Theorem 2. For each tree-like Kripke model K and for each A ∈ FK

K, t 
 A⇔ TK, t
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3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

A

Proof. We show a simple procedure to associate an observational tree TK = 〈N,v,p,a, s〉 to K = 〈N,≤, V〉.

Step 1 Choose a set of distinguishable propositional symbols PN = {pt : t ∈ N} s.t. PT ∩ N = ∅ and
build the Hilbert Space isHPN∪PT .

Step 2 Define v as ≤− 1 (t v u⇔ u ≤ t).
Step 3 Let a(t) be the set of projectors Ot = {Pi1 , . . . Pim} defined as:

Ot =


∅ if t is a leaf

{Pi1 , . . . Pim} s.t. ∀j ∈ [1, m].Pij is the projector in the subspace of registers

β s.t. t ∗ 〈ij〉 ∈ β and t ∗ 〈ij〉 v t, otherwise.
Step 4 The functions p, s are univocally defined by the following labeling s〈 〉 of the root.

Let us consider the set of L of leaves of K, and consider for each u ∈: the set Cu = {t : t ∈
N & u v t & t ∈ N} and the set Pru =

⋃
t∈Cu V(t). We define s〈 〉 = ∑u∈L

1√
|L| |Cu ∪ Pru〉

Given the above translation, the proof proceeds by means of a standard induction on the
length of formulas.

Example 1. Let us consider the tree-like Kripke model in Figure 2a. Applying the four steps above scripted, we
obtain an observational model as in Figure 2b where the relevant Hilbert space is

Hr,s,u,v,p〈0〉,p〈0〉,p〈1,0〉,p〈1,1〉,p〈1,1,0〉



Axioms 2019, 8, 25 8 of 10
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b) the associated observational model

Figure 2. The transformation of a Kripke model in a observational tree.

As a corollary of Theorem 2, we can state the following:

Corollary 2.
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Proposition 5. For each formula A, X Ě PrAs and observational model TX “ xxT,ďy, p, a, sy and for each
α P T
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The last inclusion is trivially shown, since we known that classical validity may be formulated with185

finite models. A finite model is nothing else that a finite set X Ď P, with the clause for propositional186

symbols X |ù q ô q P X. Given a finite model X “ tr0, . . . , rnu, we can associate to X the observation187

tree T where the root is labelled with |Xy and for each node t, aptq “ tIu. It is trivial to observe that188

X |ù A ô T ( A. The thesis follows immediately.189

On the other hand, as shown below, ( does not validate the tertium non datur principle, and190

consequently the last inclusion is proper.191

Theorem 1. *A_ A192

Proof. Let us consider the observational tree T represented in Figure 1. Let ax y “ pPr, PKr q where P193

is the projector in the subspace of vectors β s.t. r P β. Moreover for each α ‰ x y let apαq “ Id. It is194

immediate to observe that T * r_ r, and therefore * r_ r.195

The question is now to classify ( w.r.t intuitionistic logic. In the next section, we show how any196

(tree-like) Kripke model can be translated into an observational tree.197

3.2. From Kripke models to Observational trees198

We now show how to associate to a tree-Kripke model K an observational model TK.199

Let K be a tree Kripke model xN,ď, Vy. We denote with PK the set of propositional symbols
Ť

tPN Vptq200

and with FK the set of formulas built on the basis of PK.201

Theorem 2. For each tree-like Kripke model K and for each A P FK

K, t , A ô TK, t ( A

A⇒
 A

Therefore, Corollaries 1 and 2 give us the final theorem:
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Theorem 3. The class of valid formulas with respect to the classes of observational trees is exactly the class of
intuitionistic provable formula, or in other words:
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A⇔
 A

4. Possible Developments

The further investigations based on the proposed approach will follow two different
directions of research.

1. We have shown that intuitionistic logic is “the” logic of observational tree. This means that we
could think to move from the model theoretic approach to a proof theoretical one. It is well
known that, via the so called Curry–Howard isomorphism, it is possible to associate a lambda
calculus to the intuitionistic proofs. Is it possible to give a quantum interpretation of such a
calculus? Our idea is to start again with the BHK interpretation of intuitionistic logic. For example,
according to this interpretation, a proof of A→ B could be seen as a measurement process that
transforms each measurement process A into one of B.

2. We think also to extend the model theoretic approach in order to deal with unitary transformations.
One possibility we have in mind is to add a temporal (possibly classical or intuitionistic)
dimension to intuitionistic logic, so that we can move in two different directions: an intuitionist
one linked to the measurement process, and an linear temporal one that is linked to unitary
evolution of the quantum system. The studies of Finger and Gabbay on the temporalization of
logical system could help (see, e.g., [19].)
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