
axioms

Letter

Doily as Subgeometry of a Set of Nonunimodular
Free Cyclic Submodules

Metod Saniga 1,∗ and Edyta Bartnicka 2

1 Astronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovakia
2 Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Słoneczna 54 Street,

P-10710 Olsztyn, Poland; edytabartnicka@wp.pl
* Correspondence: msaniga@astro.sk

Received: 31 January 2019; Accepted: 2 March 2019; Published: 4 March 2019
����������
�������

Abstract: In this paper, it is shown that there exists a particular associative ring with unity of order 16
such that the relations between non-unimodular free cyclic submodules of its two-dimensional free
left module can be expressed in terms of the structure of the generalized quadrangle of order two.
Such a doily-centered geometric structure is surmised to be of relevance for quantum information.
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Let R be a finite associative ring with unity (1), and R2 its free left module. The set R(a, b) ={
(αa, αb)|(a, b) ∈ R2, α ∈ R

}
is called a cyclic submodule of R2. R(a, b) is called free if the mapping

α 7→ (αa, αb) is injective. A pair/vector (a, b) ∈ R2 is called unimodular over R if there exist c, d ∈ R
such that ac + bd = 1. It is well-known (see, for example, [1]) that if (a, b) is unimodular, then R(a, b)
is free. A great majority of finite rings have the property that all their free R(a, b)’s are generated by
unimodular vectors. Here we shall consider a specific ring where this is not true—that is, a ring that
also features free R(a, b)’s containing no unimodular vector. In what follows, we shall call such free
cyclic submodules “non-unimodular”. Our ring R is a non-commutative one of order 16, defined
as follows:

R =


 a c d

0 b 0
0 0 b

 | a, b, c, d ∈ GF(2)

 .

Labeling the 16 matrices as follows:

0 ≡

 0 0 0
0 0 0
0 0 0

 , 1 ≡

 1 0 0
0 1 0
0 0 1

 , 2 ≡

 1 1 0
0 1 0
0 0 1

 , 3 ≡

 0 1 0
0 0 0
0 0 0

 ,

4 ≡

 1 1 1
0 1 0
0 0 1

 , 5 ≡

 0 1 1
0 0 0
0 0 0

 , 6 ≡

 0 0 1
0 0 0
0 0 0

 , 7 ≡

 1 0 1
0 1 0
0 0 1

 ,

8 ≡

 0 0 0
0 1 0
0 0 1

 , 9 ≡

 1 0 0
0 0 0
0 0 0

 , 10 ≡

 1 1 0
0 0 0
0 0 0

 , 11 ≡

 0 1 0
0 1 0
0 0 1

 ,

12 ≡

 1 1 1
0 0 0
0 0 0

 , 13 ≡

 0 1 1
0 1 0
0 0 1

 , 14 ≡

 0 0 1
0 1 0
0 0 1

 , 15 ≡

 1 0 1
0 0 0
0 0 0

 ,
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we see that 0 is the additive identity, 1 is the multiplicative identity, and the only invertible elements
are 1, 2, 4, and 7. The ring features two (two-sided) maximal ideals, namely:

Il = {0, 3, 5, 6, 8, 11, 13, 14}

and
Ir = {0, 3, 5, 6, 9, 10, 12, 15},

and its Jacobson radical reads:
J = {0, 3, 5, 6}.

From the above-given matrix representation of R, we find that R2 contains nine distinct free cyclic
submodules generated by non-unimodular vectors, which are listed in Table 1.

Table 1. The explicit form of the nine non-unimodular free cyclic submodules.

α R(3, 8) R(5, 8) R(6, 8) R(8, 11) R(8, 13) R(8, 14) R(8, 6) R(8, 5) R(8, 3)

0 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
1 (3, 8) (5, 8) (6, 8) (8, 11) (8, 13) (8, 14) (8, 6) (8, 5) (8, 3)
2 (3, 11) (5, 11) (6, 11) (11, 8) (11, 14) (11, 13) (11, 6) (11, 5) (11, 3)
3 (0, 3) (0, 3) (0, 3) (3, 3) (3, 3) (3, 3) (3, 0) (3, 0) (3, 0)
4 (3, 13) (5, 13) (6, 13) (13, 14) (13, 8) (13, 11) (13, 6) (13, 5) (13, 3)
5 (0, 5) (0, 5) (0, 5) (5, 5) (5, 5) (5, 5) (5, 0) (5, 0) (5, 0)
6 (0, 6) (0, 6) (0, 6) (6, 6) (6, 6) (6, 6) (6, 0) (6, 0) (6, 0)
7 (3, 14) (5, 14) (6, 14) (14, 13) (14, 11) (14, 8) (14, 6) (14, 5) (14, 3)
8 (0, 8) (0, 8) (0, 8) (8, 8) (8, 8) (8, 8) (8, 0) (8, 0) (8, 0)
9 (3, 0) (5, 0) (6, 0) (0, 3) (0, 5) (0, 6) (0, 6) (0, 5) (0, 3)

10 (3, 3) (5, 3) (6, 3) (3, 0) (3, 6) (3, 5) (3, 6) (3, 5) (3, 3)
11 (0, 11) (0, 11) (0, 11) (11, 11) (11, 11) (11, 11) (11, 0) (11, 0) (11, 0)
12 (3, 5) (5, 5) (6, 5) (5, 6) (5, 0) (5, 3) (5, 6) (5, 5) (5, 3)
13 (0, 13) (0, 13) (0, 13) (13, 13) (13, 13) (13, 13) (13, 0) (13, 0) (13, 0)
14 (0, 14) (0, 14) (0, 14) (14, 14) (14, 14) (14, 14) (14, 0) (14, 0) (14, 0)
15 (3, 6) (5, 6) (6, 6) (6, 5) (6, 3) (6, 0) (6, 6) (6, 5) (6, 3)

We shall show that the way in which these free cyclic submodules are interwoven is intricately
related to the structure of the generalized quadrangle of order two, the doily. To this end, we employed
a duad-syntheme model of the latter (see, for example, [2]). Take a six-element set S = {1, 2, 3, 4, 5, 6}.
Let us call a two-element subset of S a duad, and a set of three duads forming a partition of S a
syntheme. Then, the point-line incidence structure whose points are 15 duads and whose lines are
15 synthemes, with incidence being containment, is isomorphic to the doily. The structure of the doily
is illustrated in Figure 1 (left). Here, the points of the doily are represented by circles, labeled by
duads, and its lines are represented by nine straight segments, three concentric circles, and three arcs of
circles; one can readily check that each line corresponds to a syntheme. Next, we employ the following
bijection between the 15 duads and 15 nontrivial vectors (a, b) ∈ R2, where a, b ∈ J and (a, b) 6= (0, 0):

{1, 2} ↔ (3, 3), {1, 3} ↔ (5, 3), {1, 4} ↔ (0, 6), {1, 5} ↔ (3, 6), {1, 6} ↔ (5, 0),

{2, 3} ↔ (6, 0), {2, 4} ↔ (3, 5), {2, 5} ↔ (0, 5), {2, 6} ↔ (6, 3), {3, 4} ↔ (5, 5),

{3, 5} ↔ (6, 5), {3, 6} ↔ (0, 3), {4, 5} ↔ (3, 0), {4, 6} ↔ (5, 6), {5, 6} ↔ (6, 6).

We thus get a new labeling of the points of the doily in terms of these particular non-unimodular
vectors of R2, as illustrated in Figure 1 (right). From a comparison of the latter figure with Table 1,
it follows that each submodule shares with the doily seven vectors, forming three concurrent lines—as
depicted in Figure 2. From this figure, one can easily discern that six lines of the doily have a different
status than the other nine, as each of them belongs to three submodules. Given the fact that each point
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of concurrence belongs to two such lines, the nine points and the six lines are found to form inside
the doily a point-line incidence structure isomorphic to the generalized quadrangle of type GQ(2,1)
(see [2]).
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Figure 1. A pictorial representation of the doily, with its points labeled by duads (left) and
non-unimodular vectors (right); both a duad {a, b} and a vector (a, b) are abbreviated to ab.
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Figure 2. A graphical illustration of “Jacobson traces” of individual non-unimodular free cyclic
submodules in the core doily; consecutively from top left to bottom right, they are shown the traces of
R(6, 8), R(8, 14), R(8, 6), R(8, 3), R(8, 11), R(3, 8), R(8, 5), R(8, 13), and R(5, 8). In each subfigure, the
corresponding concurrent lines are shown in boldface, the point of concurrence being encircled.

A complete view of the relation between individual submodules is outlined in Figure 3.
The pronounced automorphism of order three of the figure stems from the fact that the submodules
form three disjoint triples according to the number of shared vectors. One further observes that
all vectors lying on our submodules acquire values from the ideal Il . It can readily be verified that
a completely analogous geometric structure is obtained if we take the free right module, in which
case the corresponding vectors have entries from the ideal Ir. Obviously, the two structures share
the same doily, as its points are labeled by vectors from J2. At this point it is well worth recalling
the existence of a similar geometrical structure in the case of the smallest ring of ternions and its
three-dimensional free left (and also right) module [3]. There, the associated geometry, referred to as
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the “Fano-snowflake”, has its center isomorphic to the Fano plane, a generalized triangle of order two
(see also [4] for generalization to an arbitrary ring of ternions).
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Figure 3. Visualisation of the full geometric structure formed by the nine nonunimodular free cyclic
submodules, with the doily lying in its center. For each submodule there are shown all of its vectors
except for the trivial one. For six submodules pairs of identical symbols are employed to identify the
corresponding points of concurrence; the remaining three cases are obtained by swapping the figure
with respect to the vertical axis passing through the center. The distinguished GQ(2,1) of the doily is
shown in bold.

The occurrence of the doily in this remarkable nonunimodular ring-theoretic setting is quite
intriguing. We checked, case by case, all non-commutative associative rings with unity up to order
31 inclusive and found, up to the isomorphism, no other ring having a similar property. However,
there does exist a ring of order 32 which is a promising candidate in this respect. This particular ring
features 21 non-unimodular free cyclic submodules whose mutual relations seem to be expressible in
terms of the structure of the split Cayley hexagon of order two; the latter is, like the doily, a generalized
polygon and a distinguished subgeometry of the symplectic polar space of type W(5, 2) at that.
We, therefore, surmise that the “phenomenon” described above is an example of a more general
mathematical rule linking ring geometry and polar spaces (or generalized polygons).

This doily-based setting is also of considerable interest in view of possible physical applications.
For example, among the finite geometric concepts relevant for the theory of quantum information,
the doily—though in various disguises—has been recognized to play the foremost role. Firstly, being
isomorphic to the symplectic polar space of type W(3, 2), it underlies the commutation relations
between the elements of the two-qubit Pauli group [5] and provides us with the simplest settings for
observable proofs of quantum contextuality. Secondly, being isomorphic to a non-singular quadric of
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type Q(4, 2), it also lies in the heart of a remarkable magic three-qubit Veldkamp line of form theories
of gravity and its four-qubit extensions [6]. Finally, being a subquadrangle of a generalized quadrangle
of type GQ(2, 4), it enters in an essential way certain black-hole entropy formulas and the so-called
black-hole/qubit correspondence [7].

It is, in particular, the first aspect of the above-mentioned three ones that our non-unimodular
doily has a particular link to. For if we label its 15 points by the 15 elements (identity disregarded) of
the two-qubit Pauli group in such a way that each of its 15 lines features three pairwise commuting
elements, then each of the ten labeled copies of GQ(2,1) (also known in the physics community as
Mermin “magic” squares) contained in the doily furnishes an observable-based proof of quantum
contextuality (see, e.g., Section 2 and Figure 3 of [6] for a particularly illustrative description of
this quantum phenomenon). It is quite appealing to realize that not only does our non-unimodular
geometry exhibit the doily, but it also selects in the latter a particular copy of GQ(2,1) (see Figure 3).
Moreover, it has recently been shown [8] that this contextual character of GQ(2,1) is preserved also
for doilies embedded in arbitrary symplectic polar spaces of type W(2N − 1, 2) and, thus, labeled by
elements of the arbitrary N-qubit Pauli group, N ≥ 2.
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