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Abstract: We survey some results and pose some open problems related to boundedness of
real-valued functions on balleans and coarse spaces. Special attention is paid to balleans on
groups. The boundedness of functions that respect the coarse structure of a ballean could be
considered as a coarse counterpart of pseudo-compactness.
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1. Introduction

In this paper, we consider various classes of real-valued functions (bornologous,
macro-uniform, eventually macro- uniform, boundedly oscillating, slowly oscilllating) that respect
the coarse structure of a ballean and study balleans on which every such function is bounded on
the complement of some bounded set. The boundedness of functions with respect to the coarse
structure of a ballean could be considered as a coarse counterpart of compactness (which is a very
important notion in Topology).

Balleans are sets endowed with the ball structure. Ball structures are bases of coarse structures.
Coarse structures play an important role in Geometric Theory of Groups (see ([1], Chapter 3)
and ([2], Chapter 4)), where groups G are studied as balleans endowed with the finitary ball
structure E = {EF : F ∈ [G]<ω} where EF = {(x, y) ∈ G× G : y ∈ {x} ∪ Fx} for a finite subset
F of G. The finitary ballean of a group G is a partial case of the κ-ballean where κ is an infinite
cardinal. The κ-ballean of a group G consists of entourages EF = {(x, y) ∈ G× G : y ∈ {x} ∪ Fx}
parametrized by subsets F ⊂ G of cardinality |F| < κ.

Various types of real-valued functions that respect the coarse structure, play an important role
in studying balleans and coarse spaces. In particular, macro-uniform maps are natural morphisms
between balleans; slowly oscillating functions are used to define the Higson compactification and
the Higson corona of a ballean, see [3,4], ([5], Chapter 8), [6], §2.9. Many properties of the coarse
structure of a ballean reflect in the topological properties of its Higson corona.

Section 2 is of preliminary character and contains the definitions of various types of
real-valued functions on balleans, as well as the corresponding notions of boundedness of balleans.

In Section 3, we study various real-valued functions on discrete balleans and show
(in Proposition 3) that a ballean X is discrete if and only if (iff) every real-valued function on X
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is slowly oscillating. Moreover, if no measurable cardinal exists, then ballean X is discrete iff
every real-valued function on X is boundedly oscillating iff every real-valued function on X is
eventially macro-uniform. In Proposition 4, we characterize discrete balleans on which every
slowly oscillating real-valued function is bounded on the complement of some bounded set
(such balleans are called so-bounded).

In Section 4, we put and discuss some open problems on the behavior of functional
boundedness under products.

In Section 5, we study the boundedness properties of κ-balleans of groups. In Theorem 3, we
prove that the |G|-ballean of infinite group G of regular cardinality is not so-bounded, which meant
that G admitts a slowly oscillating function f : G → R, which is unbounded on the complement
G \ F of any subset F ⊂ G of cardinality |F| < |G|. For groups of singular cardinality, the situation
depends on the algebraic properties of the group. If a group G is free, then its |G|-ballean is
not so-bounded (see Theorem 4). On the other hand, the |G|-ballean of any Abelian group G of
singular cardinality is emu-bounded and hence so-bounded (see Theorem 7). Moreover, for any
cardinal κ < |G| of uncountable cofinality, the κ-ballean of an Abelian group G is emu-bounded
and so-bounded. This implies that for any Abelian group G of cardinality continuum (for example,
G = R), the ω1-ballean of G is so-bounded iff ω1 < c (i.e., if the Continuum Hypothesis fails).

In Section 5, we also characterize groups whose finitary ballean is mu-bounded and show that
such groups are tightly related with Bergman and (almost) Shelah groups, studied by Bergman [7]
and Shelah [8].

In spite of the obtained results, many interesting problems related to the boundedness
of real-valued functions on coarse spaces remain open. Such problems are formulated in the
corresponding sections of the paper.

2. Preliminaries

A ballean is a pair (X, EX) consisting of a set X and a family EX of subsets of the square X× X
satisfying the following three axioms:

1. Each E ∈ EX contains the diagonal ∆X = {(x, x) : x ∈ X} of X.
2. for any E, F ∈ EX there exists D ∈ EX , such that E ◦ F−1 ⊂ D, where

E ◦ F := {(x, z) : ∃y (x, y) ∈ E, (y, z) ∈ F} and F−1 := {(y, x) : (x, y) ∈ F}.
3.

⋃ EX = X× X.

The family EX is called the ball structure of the ballean (X, EX), and its elements are called
entourages. For each entourage E ∈ EX and point x ∈ X, we could consider the set E[x] := {y ∈ X :
(x, y) ∈ E}, called the ball of radius E, centered at x. For a subset A ⊂ X, the set E[A] :=

⋃
a∈A E[a]

is called the E-neighborhood of A. Since E =
⋃

x∈X{x} × E[x], the entourage E can be recovered
from the family of balls E[x], x ∈ X.

For a ballean (X, EX) and a subset Y ⊂ X, the ballean (Y, EX�Y) is called a subballean of X
when endowed with the following ball structure:

EX�Y := {(Y×Y) ∩ E : E ∈ EX}.

Any metric space (X, d) carries a natural ball structure {Eε : ε > 0} consisting of the
entourages Eε := {(x, y) ∈ X× X : d(x, y) < ε}.

A ballean (X, EX) is called a coarse space if for any entourage E ∈ EX , any subset F ⊂ E with
∆X ⊂ F belongs to EX . In this case, EX is called the coarse structure of X. For a coarse structure E ,
a subfamily B ⊂ E is called a base of E if each set E ∈ E is contained in some set B ∈ B. It is easy
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to see that each base of a coarse structure is a ball structure. On the other hand, each ball structure
E on a set X is a base of the unique coarse structure:

↓E := {E ⊂ X× X : ∆X ⊂ E ⊂ F for some F ∈ E}.

If the ball (or coarse) structure EX is clear from the context, we shall write X instead of (X, EX).
More information on balleans and coarse spaces can be found in [1,5,6,9–11].

A subset B ⊂ X of a ballean (X, EX) is called bounded if B ⊂ E[x] for some E ∈ EX and x ∈ X.
A ballean X is bounded if X is a bounded set in (X, EX).

The family BX of all bounded subsets is called the bornology of the ballean (X, EX). If the
ballean X is unbounded, then the bornology BX is an ideal of subsets of X. A family I of subsets
of a set X is called an ideal on X if I is closed under finite unions and taking subsets, and X /∈ I .

A real-valued function f : X → R on a ballean X is called:

• bornologous if f (B) is bounded for each B ∈ BX ;
• macro-uniform (or a mu-function) if for every E ∈ EX there exists a real number C such that

diam f (E[x]) < C for every x ∈ X;
• eventually macro-uniform (or an emu-function) if for every E ∈ EX there exists a bounded set

B ∈ BX and a real number C such that diam f (E[x]) < C for every x ∈ X \ B;
• boundedly oscillating (or a bo-function) if there exists a real number C such that for every E ∈ EX

there is B ∈ BX such that diam f (E[x]) < C for each x ∈ X \ B;
• slowly oscillating (or a so-function) if for every E ∈ EX and ε > 0, there exists B ∈ BX such that

diam f (E[x]) < ε for each x ∈ X \ B; and
• constant at infinity if for every ε > 0 there exists a bounded set B ∈ BX such that

diam f (X \ B) < ε.

Here, for a subset A of the real line, we put diam A = sup({0} ∪ {|x− y| : x, y ∈ A}). We say
that a ballean X is:

• b-bounded if every bornologous function f : X → R is bounded;
• mu-bounded if every mu-function f : X → R is bounded;
• emu-bounded if for every emu-function f : X → R there exists B ∈ BX such that f is bounded

on X \ B;
• bo-bounded if for every bo-function f : X → R there exists B ∈ BX such that f is bounded

on X \ B;
• so-bounded (or pseudobounded) if for every so-function f : X → R there exists B ∈ BX such that

f is bounded on X \ B.

For any ballean X, we would have the following implications:

b-bounded +3 mu-bounded emu-boundedks +3 bo-bounded +3 so-bounded.

If a ballean X is unbounded and EX has a linearly ordered base, then X is b-unbounded iff X is
mu-unbounded iff EX has a countable base.

We say that a ballean X is locally finite if BX = [X]<ω, equivalently, each ball in X is finite.
Here, for a set X and a cardinal κ by [X]<κ , we denote the family of subsets A ⊂ X of cardinality
|A| < κ.

A locally finite ballean X is emu-bounded iff X is mu-bounded. If a locally finite ballean X is
bo-bounded (so-bounded), then every bo-function (so-function) on X is bounded.
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Example 1. Let κ, µ be infinite cardinals such that κ ≤ µ. We denote by Sκ the group of all
permutations of κ and, for each F ∈ [Sκ ]<µ, put EF = {(x, y) ∈ κ × κ : y ∈ {x} ∪ { f (x)} f∈F}.
Then the family {EF : F ∈ [Sκ ]<µ} forms a base for some coarse structure E on κ. We denote the
ballean (κ, E) by Bκ,µ and observe that a subset B ⊂ κ is bounded iff |B| < µ.

We show that Bκ,µ is emu-bounded (and hence mu-bounded).
First, we check that Bκ,µ is mu-bounded. Given any unbounded function f : κ → R, we shall

prove that f is not macro-uniform. We choose a sequence (xn)n∈ω in κ such that | f (xn+1) −
f (xn)| > n and define a bijection h : κ → κ by the rule h(x2n) = x2n+1, h(x2n+1) = x2n and
h(x) = x for all x ∈ X \ {xn : n ∈ ω}. Then diam f (E{h}[xn]) > n, which means that f is not
macro-unifiorm.

Next, we show that the ballean Bκ,µ is emu-bounded. Given an eventually macro-uniform
function f : κ → R, we should find a set B ⊂ κ of cardinality |B| < µ such that the set f (κ \ B)
is bounded. If µ = ω, then the eventually macro-uniform function f is macro-uniform and f is
bounded by the mu-boundedness of Bκ,µ. So, we assume that the cardinal µ is uncountable.

To derive a contradiction, assume that for any subset B ⊂ κ of cardinality |B| < µ, the set
f (κ \ B) is unbounded. By transfinite induction, for every ordinal α < µ, we can construct a
sequence {xα,n}n∈ω ⊂ κ such that | f (xα,n+1)− f (xα,n)| > n and xα,n /∈ {xβ,m : β < α, m ∈ ω}
for every n ∈ ω. Consider a permutation h ∈ Sκ such that h(xα,2n) = xα,2n+1, h(xα,2n+1) = xα,2n
for all α < µ and n ∈ ω. Since the sets {xα,n}n∈ω, α < µ, are pairwise disjoint, for any set
B ⊂ κ of cardinality |B| < µ there exists an ordinal α < µ such that B ∩ {xα,n}n∈ω = ∅. Then
diam f (E{h}[xα,2n]) ≥ diam { f (xα,2n+1), f (xα,2n)} > 2n, which means that f is not eventually
macro-uniform. But this contradicts the choice of f . This contradiction implies that for some set
B ⊂ κ of cardinality |B| < µ the set f (κ \ B) is bounded.

Let (X, E), (X′, E ′) be balleans. A mapping f : X → X′ is called macro-uniform if for every
E ∈ E there is E′ ∈ E ′ such that f (E[x]) ⊆ E′[ f (x)] for all x ∈ X. A bijection f : X → X′

is called an asymorphism if f , f−1 are macro-uniform. The balleans (X, E), (X′, E ′) are called
coarsely equivalent if there exists a large subset Y ⊆ X, Y′ ⊆ X such that the balleans (Y, E�Y) and
(Y′, E ′�Y′) are asymorphic. A subset Y is called large if X = E[Y] for some E ∈ E .

It can be shown that all the notions of boundedness, as defined above, are stable under
coarse equivalences.

By a bornology on a set X, we understand any family B of subsets of X such that
⋃B = X

and B is closed under finite unions and taking subsets. In particular, for any infinite cardinal κ,
the family

[X]<κ := {A ⊂ X : |A| < κ}

is a bornology on X.
A bornology B on a set X is called tall if every infinite subset of X has an infinite bounded

subset. A bornology B is tall iff every bornologous function on X is bounded. Hence, a ballean X
is b-bounded iff its bornology BX is tall.

A bornology B on X is called antitall if every unbounded subset of X contains an unbounded
subset Y such that all bounded subsets of Y are finite. A bornology B is antitall iff for every
unbounded subset Y of X there is a bornologous function on X such that f is unbounded on Y.

By Proposition 1 in [12], each bornology is the intersection of tall and antitall bornologies.
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3. Discrete Balleans

A ballean X is discrete if X is not bounded and for any E ∈ EX there exists a bounded set
B ⊂ X such that E[x] = {x} for all x ∈ X \ B. More information on discrete balleans can be found
in ([5], Chapter 3).

Example 2. Let X be a discrete ballean with bornology that coincides with the family [X]≤ω of at
most countable sets on an uncountable set X. The ballean X is mu-bounded, but each function
f : X → R is slowly oscillating and hence eventually macro-uniform. So, X is not emu-bounded
and not so-bounded.

Since each macro-uniform function is eventually macro-uniform, each emu-bounded ballean
is mu-bounded. Example 2 shows that the converse implication does not hold, even for
discrete balleans.

Proposition 1. For a ballean X, the following statements are equivalent:

1. Every function f : X → R is macro-uniform.
2. X is discrete and BX = [X]<ω.

Proof. (2)⇒ (1) is evident. To verify (1)⇒ (2), assume that each real-valued function on X is
macro-uniform. In this case, BX = [X]<ω . To derive a contradiction, assume that X is not discrete.
Then there exists E ∈ EX and a sequence (xn)n∈ω in X such that the subsets {E[xn] : n ∈ ω} are
pairwise disjoint and |E[xn]| > 1 for all n ∈ ω. Then the function f : X → R defined by f (xn) = n
and f (x) = 0 for x /∈ {xn : n ∈ ω} is not macro-uniform, which contradicts our assumption.

The following characterization can be easily derived from the definitions.

Proposition 2. For a discrete ballean X, the following conditions are equivalent:

1. X is b-bounded.
2. X is mu-bounded.
3. The bornology of X is tall.

A characterization of emu-bounded discrete balleans is more complicated and involves
countably complete ultrafilters.

A filter F on a set X is called countably-complete if for any countable subfamily C ⊂ F the
intersection

⋂ C belongs to the filter F .
A cardinal κ is measurable if there exists a countably complete free ultrafilter U on κ.

A measurable cardinal, if it exists, is not smaller than the first strongly inaccessible cardinal,
see ([13], Chapter 20). This implies that the existence of measurable cardinals cannot be proved in
Zermelo-Fraenkel set theory (ZFC).

Proposition 3. For a ballean X, the following statements are equivalent:

1. Every function f : X → R is slowly oscillating.
2. Every function f : X → {0, 1} is slowly oscillating.
3. X is discrete.

If any unbounded subset of X contains an unbounded set of non-measurable cardinality, then
conditions (1)–(3) are equivalent to:
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4. Every function f : X → R is boundedly oscillating.
5. Every function f : X → R is eventually macro-uniform.

In particular, conditions (1)–(5) are equivalent if no measurable cardinal exists.

Proof. The equivalence of conditions (1)–(3) has been proven in Theorem 3.3.1 of [5], and the
implications (1) ⇒ (4) ⇒ (5) are trivial. Now, assuming that any unbounded subset of X
contains an unbounded set of non-measurable cardinality, we shall prove that (5)⇒ (3) (which is
equivalent to ¬(3)⇒ ¬(5)). Assume that X is not discrete. Then there exists an entourage E ∈ EX
such that the set L = {x ∈ X : E[x] 6= {x}} is unbounded. Using Zorn’s Lemma, find a maximal
subset M ⊂ L such that E[x] ∩ E[y] = ∅ for any distinct elements x, y ∈ M. The maximality of
M ensures that L ⊂ E−1[E[M]], which implies that the set M is unbounded. By our assumption,
the unbounded set M contains an unbounded subset N ⊂ M of non-measurable cardinality |N|.
Using the Zorn’s Lemma, extend the free filter {N \ B : B ∈ BX} to any (free) ultrafilter U . Since
N ∈ U and the cardinal |N| are not measurable, the ultrafilter U is not countably-complete, so there
exists a decreasing sequence of subsets {Un}n∈ω ⊂ U of N such that

⋂
n∈ω Un /∈ U . Consider the

function f : X → R assigning to each x ∈ X the number:

f (x) =

{
n if x ∈ Un \Un+1 for some n ∈ ω;

0 otherwise.

Assuming that f is eventually macro-uniform, we could find a bounded set B ⊂ X such
that C := supx∈X\B diam f (E[x]) < ∞. Choose any number n ∈ ω with n > C. It follows from
Un \ B = Un ∩ (X \ B) ∈ U and

⋂
m∈ω Um /∈ U that Un \ B 6⊂ ⋂

m∈ω Um and hence Un \ B 6⊂ Um

for some m ∈ ω. So, we can find a point x ∈ Un \ B such that x /∈ Um. It follows that x ∈ Uk \Uk+1
for some k ∈ [n, m) and hence diam f (E[x]) ≥ diam { f (x), 0} = k ≥ n > C, which contradicts
the definition of C. This contradiction shows that the function f is not eventually macro-uniform,
which means that condition (5) does not hold.

Example 3. Let X be a set of measurable cardinality |X|. We define a coarse structure E on X such
that (X, E) is not discrete but each function f : X → R is eventually macro-uniform. Write X as
the union X = Y ∪ Z of two disjoint sets of the same cardinality and fix any bijection h : Y → Z.
Let Γ := {(x, h(x)) : x ∈ Y} be the graph of the bijection h.

By the measurability of the cardinal |X| = |Y|, there exists a countably complete ultrafilter p
on Y. For any set P ∈ p, consider the subset:

BP := (Y \ P) ∪ h(Y \ P)

of X and the entourage:
EP := (BP × BP) ∪ ∆X ∪ Γ ∪ Γ−1

on X. Let E be the coarse structure on X, generated by the base {EP : P ∈ p}. It is easy to check
that the bornology of the coarse space (X, E) is generated by the base {BP : P ∈ p}. Using this fact
and looking at the definition of the basic entourages EP, we can conclude that the ballean (X, EX)

is not discrete.
Now we check that each function f : X → R is eventually macro-uniform. Given any set

P ∈ p, we should find a bounded set B ∈ BX such that supx∈X\B diam f (EP[x]) < ∞. Observe that
for any x ∈ P = Y \ BP we get EP[x] = {x, h(x)} = EP[h(x)]. This implies that diam f (EP[x]) < ∞
and hence P =

⋃
n∈ω Pn where Pn = {x ∈ P : diam f (EP[x]) ≤ n} for n ∈ ω. Since the
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ultrafilter p is countably complete, there exists n ∈ ω such that Pn ∈ p. Then for the bounded
set B = BPn and any x ∈ X \ B we get diam f (EP[x]) ≤ n. Indeed, if x ∈ Y, then x ∈ Y \
BPn = Pn and hence diam f (EP[x]) = diam {x, h(x)} ≤ n by the definition of Pn. If x ∈ Z,
then x ∈ Z \ BPn = h(Pn) and then h−1(x) ∈ Pn and EP[x] = {x, h−1(x)} = EP[h−1(x)] and
diam f (EP[x]) = diam f (EP[h−1(x)]) ≤ n.

Given a ballean X, we denote by X] the set of all ultrafilters p on X such that each member of
p is unbounded in X. It is easy to see that the set X] is closed in the Stone–Čech extension βX of X
endowed with the discrete topology.

Proposition 4. For a discrete ballean X, the following statements are equivalent:

1. X is emu-bounded.
2. X is bo-bounded.
3. X is so-bounded.
4. X] is finite and each ultrafilter p ∈ X] is countably complete.
5. each ultrafilter p ∈ X] is countably complete.

Proof. The implication (3) ⇒ (4) is proven in Theorem 3.3.2 of [5], and (1) ⇒ (2) ⇒ (3)
are evident.

(4) ⇒ (1) Assume that X] is finite and each ultrafilter p ∈ X] is countably complete.
To show that X is emu-bounded, take any eventually macro-uniform function f : X → R. Let
X] = {p1, . . . , pk} and observe that

⋂k
i=1 pk = {X \ B : B ∈ BX} where BX is the bornology

of the ballean X. For every n ∈ ω consider the set Xn = {x ∈ X : | f (x)| ≤ n} and observe
that X =

⋃
n∈ω Xn. For every i ≤ k, the countable completeness of the ultrafilter pi 3

⋃
n∈ω Xn

yields a number ni ∈ ω such that Xni ∈ pi. Then for the number n = maxi≤k ni, we obtain
Xn ∈

⋂k
i=1 pi = {X \ B : B ∈ BX}. Therefore, the complement B := X \ Xn is bounded and

f (X \ B) = f (Xn) ⊂ [−n, n] is bounded in the real line.

The implication (4) ⇒ (5) is trivial. To prove that (5) ⇒ (4), assume that the set X] is
infinite and hence contains a sequence (pn)n∈ω of pairwise distinct ultrafilters. Since X] is a closed
subspace of the compact Hausdorff space βX, we can replace (pn)n∈ω by a suitable subsequence
and assume that the subspace {pn}n∈ω is discrete in X]. Fix any free ultrafilter U on the set ω

and consider the ultrafilter p = limn→U pn, consisting of the sets
⋃

n∈U Pn where U ∈ U and
Pn ∈ pn for all n ∈ U. Since the set X] is closed in βX, the ultrafilter p belongs to the set X],
being an accumulation point of the set {pn : n ∈ ω} in βX. We claim that the ultrafilter p is not
countably complete. Using the discreteness of the subspace {pn}n∈ω in X], in each ultrafilter pn

we can choose a set Pn so that the family (Pn)n∈ω is disjoint. Now observe that for every n ∈ ω

the set Qn =
⋃

m≥n Pm belongs to the ultrafilter p but
⋂

n∈ω Qn = ∅, witnessing that p is not
countably complete.

A discrete ballean X is called ultradiscrete if the family {X \ B : B ∈ BX} is an ultrafilter on X.
Proposition 4 implies the following characterization.

Corollary 1. For an ultradiscrete ballean X, the following statements are equivalent:

1. X is emu-bounded.
2. X is bo-bounded.
3. X is so-bounded.
4. The bornology BX of X is σ-additive.
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4. Products

In this section, we discuss the problem of preservation of various notions of boundedness by
products of balleans.

Theorem 1. The product X×Y of two mu-bounded balleans X, Y is mu-bounded.

Proof. Let f : X×Y → R be a mu-function. For each x ∈ X, the function fx : Y → R, defined as
fx(y) = f (x, y), is a mu-function, so fx is bounded. It is easy to check that the function s : X → R,
s : x 7→ sup{| fx(y)| : y ∈ Y} is macro-uniform and hence bounded (as X is mu-bounded).
Then the function f is bounded, as well.

Theorem 2. Let X, Y be balleans and Y is either bounded or locally finite. If X, Y are either emu-bounded
or bo-bounded or so-bounded, then the product X×Y has the same property.

Proof. We proved only the third statement. Assume that the balleans X, Y are so-bounded. Take
any so-function f : X × Y → R. Assume that Y is bounded, fix any y0 ∈ Y and consider the
so-function fy0 : X → R, fy0 : x 7→ f (x, y0). Since X is so-bounded, there exists a bounded set
B ⊂ X such that fy0 is bounded on X \ B. Since Y is bounded and f is slowly oscillating, we can
replace B by a larger bounded set, and assume that the number c := supx∈X\B diam f ({x} ×Y) is
finite. Then f is bounded on (X×Y) \ (B×Y).

Now assume that Y is locally finite. In this case, for every x ∈ X the so-function fx : Y → R,
fx : y 7→ f (x, y), is bounded. Then the function s : X → R, s : x 7→ supy∈Y | fx(y)|, is well-defined
and slowly oscillating. Since X is so-bounded, there is B ∈ BX such s is bounded on X \ B. Then f
is bounded on (X×Y) \ (B×Y). By first case, there is a bounded subset C of Y such f is bounded
on (B×Y) \ (B× C).

Question 1. Is the product of any two emu-bounded balleans emu-bounded?

Question 2. Is the product of any two bo-bounded balleans bo-bounded?

Question 3. Is the product of any two so-bounded balleans so-bounded?

For more results on products of balleans, see [14]. Now, we give some partial answers to
Questions 1–3.

For any bornology B on a set X /∈ B, consider the cardinal characteristics:

add(B) = min{|A| : A ⊂ B,
⋃A /∈ B},

non(B) = min{|A| : A ⊂ X, A /∈ B},
cov(B) = min{|A| : A ⊂ B,

⋃A = X},
cof(B) = min{|A| : A ⊂ B, ∀B ∈ B ∃A ∈ A (B ⊂ A)}

It is known (and easy to see) that:

add(B) ≤ min{cov(B), non(B)} ≤ max{cov(B), non(B)} ≤ cof(B).

Proposition 5. Let X, Y be two balleans with cof(BX) < non(BY). If X and Y are emu-bounded
(bo-bounded or so-bounded, respectively), then so is the product X×Y.
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Proof. We shall present a proof only for the case of emu-boundedness. The other two cases can
be considered by analogy. Assume that the balleans X, Y are emu-bounded. If the ballean X
is bounded, then the product X × Y is emu-bounded by Theorem 2. So we assume that X is
unbounded. By the definition of the cardinal κ = cof(BX), the bornology BX of X has a base
B ⊂ BX of cardinality |B| = κ.

To prove that the product X × Y is emu-bounded, take any emu-function f : X × Y → R.
Fix any point y0 ∈ Y. Since the function fy0 : X → R, fy0 : x 7→ f (x, y0), is emu-bounded, for any
entourage E ∈ EY there exists a bounded set BE ∈ B such that:

cE := sup
x∈X\BE

diam f ({x} × E[y0])

is finite. We claim that for some B ∈ B and m ∈ N, the union

UB,m :=
⋃{E[y0] : E ∈ EY, BE = B, cE ≤ m}

equals Y. To derive a contradiction, assume that for every B ∈ B and m ∈ N the union UB,m does
not contain some point yB,m ∈ Y. Since ω ≤ κ < non(BY), the set V = {yB,m : B ∈ B, m ∈ N} is
bounded in Y and hence is contained in the ball E[y0] for some E ∈ EY. Then for the set B = BE
and any number m ∈ N with m ≥ cE, we get yB,m ∈ E[y0] ⊂ UB,m, which contradicts the choice of
yB,m. This contradiction shows that UB,m = Y for some B ∈ B and m ∈ N.

Then diam f ({x} × Y) ≤ 2m for each x ∈ X \ B. Since X is emu-bounded, there exists
D ∈ BX such that the number c := supx∈X\D | f (x, y0)| is finite. Replacing D by B ∪ D, we can
assume that B ⊂ D. Then | f (x, y)| < c + 2m for all (x, y) ∈ (X \ D) × Y. By Theorem 2, the
ballean D×Y is emu-bounded, which implies that the function f is bounded on the complement
D× Y \ D× C for some bounded set C ∈ BY. Now we see that f is bounded on X × Y \ D× C,
witnessing that the ballean X×Y is emu-bounded.

Proposition 6. Let X, Y be two so-bounded balleans. If cov(BX) < add(BY), then the product X × Y
is so-bounded.

Proof. By the definition of the cardinal κ = cov(BX), there exists a subfamily {Bα}α∈κ ⊂ BX with⋃
α∈κ Bα ∈ X.

To show that the ballean X × Y is so-bounded, take any so-function f : X × Y → R.
Fix any point x0 ∈ X, and for every α ∈ κ find an entourage Eα on X such that Bα ⊂
Eα[x0]. Then X =

⋃
α∈κ Eα[x0]. Since f is slowly oscillating, there exists Cα ∈ BY such that

supy∈Y\Cα
diam f (Eα[x0] × {y}) ≤ 1. Since add(BY) > cov(BX) = κ, the set C =

⋃
α<κ Cα

is bounded in Y. If y ∈ Y \ C, then diam f (Eα[x0] × {y}) ≤ 1 for every α ∈ κ and hence
diam f (X× {y}) ≤ 2.

Since Y is so-bounded, there exists a bounded set D ∈ BY such that supy∈Y\D | f (x0, y)| < 1.
Replacing D by C ∪ D, we can assume that C ⊂ D. Then | f (x, y)| < 1 + diam f (X × {y}) ≤
1 + 2 = 3 for all x ∈ X and y ∈ Y \ D. Therefore, f is bounded on the set (X×Y) \ (X× D).

By Theorem 2, X × D is so-bounded, so there exists a bounded set B ⊂ X such that f is
bounded on the set (X × D) \ (B × D). Summing up, we conclude that f is bounded on the
complement of the bounded set B× D.

Proposition 7. Let X, Y be two balleans such that cov(BX) < add(BY) and the bornology BX is tall.
If X and Y are emu-bounded (respectively, bo-bounded), then so is the product X×Y.
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Proof. We shall provide a detailed proof only for the case of emu-boundedness. The case of
bo-boundedness can be considered by analogy. So assume that the balleans X, Y are emu-bounded.
By the definition of the cardinal κ = cov(BX), there exists a subfamily {Bα}α∈κ ⊂ BX with⋃

α∈κ Bα ∈ X.
To show that the ballean X×Y is emu-bounded, take any emu-function f : X×Y → R. Fix

any point x0 ∈ X, and for every α ∈ κ find an entourage Eα on X such that Bα ⊂ Eα[x0]. Since f is
eventually macro-uniform, there exists Cα ∈ BY such that:

cα := sup
y∈Y\Cα

diam f (Eα[x0]× {y})

is finite. For every m ∈ N let Km = {α ∈ κ : cα ≤ m}. We claim that for some m ∈ N the union
Um =

⋃
α∈Km Eα[x0] coincides with X. In the opposite case, for every m ∈ N, we can choose a

point xm ∈ X \Um. Since the bornology BX is tall, there exists an increasing number sequence
(mk)k∈ω such that the set {xmk}k∈ω is bounded and hence is contained in Bα ⊂ Eα[x0] for some
α ∈ κ. Then, for any k ∈ ω with mk ≥ cα, we have xmk ∈ Eα[x0] ⊂ Umk , which contradicts the
choice of xmk . This contradiction shows that Um = X for some m ∈ N.

Since add(BY) > cov(BX) = κ ≥ |Km|, the set C =
⋃

α∈Km Cα is bounded in Y. If y ∈ Y \ C
then diam f (Eα[x0]×{y}) ≤ cα ≤ m for every α ∈ Km and hence diam f (X×{y}) = diam (Um×
{y}) ≤ 2m.

Since Y is emu-bounded, there exists a bounded set D ∈ BY such that the number

c := sup
y∈Y\D

| f (x0, y)|

is finite. Replacing the set D by C ∪ D, we can assume that C ⊂ D. Then | f (x, y)| < c +
diam f (X × {y}) < c + 2m for all x ∈ X and y ∈ Y \ D. Therefore, f is bounded on the set
(X×Y) \ (X× D).

By Theorem 2, the ballean X× D is emu-bounded, so there exists a bounded set B ⊂ X such
that f is bounded on the set (X× D) \ (B× D). Summing up, we conclude that f is bounded on
(X×Y) \ (B× D), witnessing that X×Y is emu-bounded.

5. Group Balleans

A bornology B on a group G is called a group bornology if for any sets A, B ∈ B the set
AB−1 = {ab−1 : a ∈ A, b ∈ B} belongs to B.

Each group bornology B on a group G induces the coarse structure EB , generated by the base
{EB : B ∈ B} consisting of the entourages EB = {(x, y) ∈ G× G : y ∈ {x} ∪ Bx} where B ∈ B.

It is easy to see that for any infinite cardinal κ and any group G, the family

[G]<κ := {B ⊂ G : |B| < κ}

is a group bornology on G. It induces the coarse structure E[G]<κ on G. The ballean (G, E[G]<κ )

will be called the κ-ballean of G. The ω-ballean of G is called the finitary ballean of G. It should be
mentioned that the finitary balleans of finitely generated groups G have been intensively studied
in Geometrical Group Theory, see [2, Chapter 4], Chapter 4. For properties of the κ-balleans of
groups, see [15–17].

Theorem 3. For any infinite regular cardinal κ, the κ-ballean of any group G of cardinality |G| = κ is
not so-bounded.
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Proof. Since κ is regular, the coarse structure E[G]<κ has a linearly ordered base. By Proposition 3.1
of [18], the κ-ballean (G, E[G]<κ ) is not so-bounded.

Example 3.3 from [19] shows that the finitary ballean of any infinite free group F(X) is
not so-bounded.

Theorem 4. For any infinite cardinal κ and set X of cardinality |X| ≥ κ the κ-ballean of the free group
G = F(X) is not so-bounded.

Proof. We partition X =
⋃

n∈N Xn so that |Xn| = |X| for each n ∈ N, and define a function
h : X ∪ {e} ∪ X−1 → R by h(e) = 0 and h(x) = h(x−1) = n for any x ∈ Xn, n ∈ N. Then we
define a mapping f : G → R, assigning to each word w ∈ G = F(X) the number h(a) where a is
the last letter in the irreducible representation of w. It is easy to see that f is unbounded on the
complement G \ B of any set B ∈ [G]<κ .

To show that f is slowly oscillating, we take an arbitrary subset B ∈ [G]<κ and denote by
S the subgroup of G generated by all letters which appear in the (irreducible) words from B.
If w ∈ G \ S and y ∈ S, then f (yw) = f (w), so diam f (Sw) = 0.

Following [20], we define group G to be κ-normal if every subset F ∈ [G]<κ is contained in a
normal subgroup H ∈ [G]<κ of G.

Theorem 5. Let κ be a cardinal of uncountable cofinality and G be a group of cardinality |G| > κ. If the
group G is κ+-normal, then the κ-ballean of G is emu-bounded.

Proof. Given any emu-function f : G → R, we should prove that f is bounded on the complement
G \ B of some set B ∈ [G]<κ . First, we prove two claims.

Claim 1. There exists a normal subgroup H ⊂ G of cardinality κ such that:

sup
x∈G\H

diam f (Hx) < ∞.

Proof. Since G is a κ+-normal group of cardinality |G| > κ, there exists a normal subgroup
H0 ⊂ G of cardinality |H0| = κ. By transfinite induction of length ω1, we shall construct an
increasing sequence (Hα)α∈ω1 of normal subgroups of cardinality κ such that for any ordinal
α < ω1 the supremum supx∈X\Hα+1

diam f (Hαx) is finite.
Assume that, for some non-zero ordinal α < ω1, we have constructed an increasing sequence

(Hβ)β<α of normal subgroups of cardinality κ in G such that for any ordinal β with β + 1 < α the
supremum supx∈X\Hβ+1

diam f (Hβx) is finite. If α is a limit ordinal, put Hα =
⋃

β<α Hβ.
If α = β + 1 is a successor ordinal, then write the group Hβ as the union Hβ =

⋃
i∈cf(κ) Γi of an

increasing sequence (Γi)i∈cf(κ) of sets of cardinality |Γi| < κ. Since f is eventually macro-uniform,
for every i ∈ cf(κ) there exists a set Bi ∈ [G]<κ such that ci := supx∈G\Bi

diam f (Γix) is finite.
Since G is κ+-normal, the set Hβ ∪

⋃
i∈cf(κ) Bi is contained in a normal subgroup Hα of cardinality

|Hα| = κ. Since the cardinal cf(κ) is uncountable and regular, there exists c ∈ N such that
the set Ω = {i ∈ cf(κ) : ci ≤ c} is unbounded in cf(κ). Then Hβ =

⋃
i∈Ω Γi and for any

x ∈ X \ Hα = X \ Hβ+1:

diam f (Hβx) = sup
i∈Ω

diam f (Γix) ≤ sup
i∈Ω

ci ≤ c.
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Claim 2. The function f is bounded on the set G \ H.

Proof. To derive a contradiction, assume that f is unbounded on G \ H and choose a sequence
(gn)n∈ω in G \ H such that the set { f (gn) : n ∈ ω} is unbounded. We put K = {gng−1

0 : n ∈ ω}
and choose B ∈ [G]<κ such that the number

C := sup
x∈X\B

diam f (Kx)

is finite. By Claim 1, the supremum

c := sup
x∈G\H

diam f (Hx)

is finite. Since |H| = κ > |B| = |g−1
0 B|, there exists x ∈ H \ g−1

0 B. Then g0x /∈ B and
| f (gng−1

0 (g0x))− f (g0x)| ≤ diam f (Kx) ≤ C for each n > 0. Since H is normal, gnx ∈ gn H =

Hgn, and then

| f (gn)| = | f (gn)− f (gnx) + f (gnx)− f (g0x) + f (g0x)| ≤
≤ | f (gn)− f (gnx)|+ | f (gnx)− f (g0x)|+ | f (g0x)| <
< diam f (Hgn) + C + | f (g0x)| < c + C + | f (g0x)|

for every n, which contradicts the choice of (gn)n∈ω. This contradiction shows that f is bounded
on G \ H.

Fix any element g ∈ G \H and observe that gH ⊂ G \H, and hence the set f (gH) ⊂ f (G \H)

is bounded in the real line (according to Claim 2). Consequently, the supremum

c := sup
x∈G\H

| f (x)|

is finite.
Since f is eventually macro-uniform, there exists a set B ∈ [G]<κ such that the number

c′ := sup
x∈G\B

| f (gx)− f (x)|

is finite. Now take any x ∈ H \ B and observe that

| f (x)| ≤ | f (gx)− f (x)|+ | f (gx)| ≤ c′ + c,

witnessing that f is bounded on H \ B and, consequently, bounded on G \ B = (G \H)∪ (H \ B).

A subset A of a group G is defined to be κ-large if G = FA for some F ∈ [G]<κ . In the proof of
Theorem 7, we shall need the following result, proven in [20].

Theorem 6 (Protasov, Slobodianiuk). Let κ be a singular cardinal and let G be a κ-normal group of
cardinality κ. For every finite partition of G, at least one cell of the partition is κ-large.

Theorem 7. Let κ be a singular cardinal and let G be a group of cardinality |G| = κ. If the group G is
κ-normal, then the κ-ballean of G is emu-bounded.
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Proof. Assuming that the κ-ballean of G is not emu-bounded, we can find an emu-function
f : G → N such that f (G \ B) is unbounded for every |B| ∈ [G]<κ . This property of f implies that
for any m ∈ N the preimage f−1([m, ∞)) has cardinality κ.

Claim 3. There exists a number sequence (ni)i∈ω such that n0 = 0, ni+1 − ni > i for all i ∈ ω and for
every m ∈ ω and r ∈ {0, 1, 2, 3} the set

Xm,r :=
∞⋃

k=m

f−1([n4k+r, n4k+r+1))

has cardinality |Xm,r| = κ.

Proof. Separately, we shall consider two cases.
1. The set W = {n ∈ ω : | f−1([n, n + 1))| = κ} is infinite. In this case let {ni}i∈ω ⊂ ω be any

increasing number sequence such that n0 = 0, ni+1 − ni > i and [ni+1, ni) ∩W 6= ∅ for all i ∈ ω.
It is clear that the sequence (ni)i∈ω has the required property.

2. The set W is finite. Put n0 = 0 and find a number n1 ∈ N with W ⊂ [n0, n1). The definition
of W implies that for any m > n1 the preimage f−1([n1, m)) has cardinality < κ. Taking into
account that f−1([n1, ∞)) =

⋃
m>n1

f−1([n1, m)) has cardinality κ, we conclude that the cardinal κ

has countable cofinality. So, we can find a strictly increasing sequence of cardinals (κi)i∈ω with
supi∈ω κi = κ. Since f−1([n1, ∞)) =

⋃
n>m f−1([n1, m)) has cardinality κ, there exists a number

n2 > n1 + 1 such that | f−1([n1, n2))| ≥ κ1. Proceeding by induction, for every i ∈ N we can find a
number ni+1 > ni + i such that | f−1([ni, ni+1))| > κi. It is easy to see that the sequence (ni)i∈ω

has the required property.

Since G =
⋃3

r=0 X0,r, we can apply Theorem 6 and find a number r ∈ {0, 1, 2, 3} such that the
set X0,r is κ-large in G and hence G = FX0,r for some set F ∈ [G]<κ containing the unit e of G.

Since the function f is eventually macro-uniform, there exists a set B ∈ [G]<κ such that
supx∈G\B diam f (Fx) < m for some number m ∈ N. Let q ∈ {0, 1, 2, 3} be a unique number
with |q− r| = 2. Since |Xm,q| = κ > |FB|, there exists an element y ∈ Xm,q \ FB. Taking into
account that y ∈ G \ FB = FX0,r \ FB = F(X0,r \ B), we see that y ∈ Fx for some x ∈ X0,r \ B.
The choice of B ensures that diam f (Fx) ≤ m and hence | f (y) − f (x)| ≤ diam f (Fx) ≤ m.
It follows from x ∈ X0,r =

⋃∞
k=0 f−1([n4k+r, n4k+r+1)) that f (x) ∈ [n4i+r, n4i+r+1) for some i ∈ ω.

On the other hand, y ∈ Xm,q =
⋃∞

k=m f−1([n4k+q, n4k+q+1)) yields a number j ≥ m such that
f (y) ∈ [n4j+q, n4j+q+1). Now, we arrive at a contradiction with | f (y)− f (x)| ≤ m, considering
the following four cases.

If i < j, then 4i + r + 1 ≤ 4(j− 1) + 1 + r ≤ 4j− 3 + q + |r− q| = 4j + q− 1 and hence

f (y) ≥ n4j+q > n4j+q−1 + (4j + q− 1) ≥ n4i+r+1 + (4m + q− 1) > f (x) + m.

If j < i, then 4j + q + 1 ≤ 4(i− 1) + 1 + q ≤ 4i− 3 + r + |r− q| = 4i + r− 1 and hence

f (x) ≥ n4i+r > n4i+r−1 + (4i + r− 1) ≥ n4j+q+1 + (4j + r + 3) > f (y) + m.

If i = j and r < q, then

f (y) ≥ n4j+q > n4j+q−1 + (4j + q− 1) = n4j+r+1 + (4j + q− 1) > f (x) + m.
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If i = j and q < r, then

f (x) ≥ n4i+r > n4i+r−1 + (4i + r− 1) = n4j+q+1 + (4j + r− 1) > f (y) + m.

Theorem 8. Let G be a group. If the κ-ballean of each subgroup H of G with |H| = κ is emu-bounded,
then the κ-ballean of G is emu-bounded.

Proof. Assuming that the κ-ballean of G is not emu-bounded, we can find an emu-function
f : G → N, which is unbounded on each subset G \ B, |B| < κ. This property of f implies that for
every m ∈ N the set f−1([m, ∞) has cardinality ≥ κ and hence contains a subset Xm of cardinality
|Xm| = κ. Then the set

⋃
m∈ω Xm generates a subgroup H ⊂ G of cardinality |H| = κ such that

f (H \ B) is unbounded for any B ∈ [H]<κ . Now we see that the restriction f �H witnesses that H
is not emu-bounded.

Remark 1. By Theorems 3, 4, 5, 7 and 8, for an uncountable cardinal κ, the κ-ballean of an Abelian
group G is emu-bounded iff either κ is singular or κ is regular and |G| > κ. In this case, the
emu-boundedness is equivalent to the so-boundedness. If κ is regular and G is an Abelian group
of cardinality |G| > κ, then the κ-ballean of G is emu-bounded but the κ-ballean of every subgroup
H, |H| = κ is not emu-bounded.

Remark 2. By Theorems 3 and 5, the ω1-ballean of the group R is emu-bounded iff CH holds. On the
other hand, by Theorem 4, the ω1-ballean of the free group F(R) is not emu-bounded in ZFC.

Question 4. Is the ω1-ballean of the permutation group Sω emu-bounded in ZFC?

By analogy with Theorem 3.1 of [19], the following theorem can be proven.

Theorem 9. If G is an uncountable ω1-normal group, then the finitary ballean of G is bo-bounded and
so-bounded, and every so-function on G is constant at infinity.

Question 5. Assume that the finitary ballean of a group G is so-bounded. Is every so-function on G
constant at infinity?

Question 6. Is the so-boundedness of the finitary ballean of a group equivalent to its bo-boundedness?

Finally, we shall discuss the mu-boundedness of finitary balleans on groups. Since the fintary
ballean of any group is locally finite, each emu-function is a mu-function. Consequently, the
finitary ballean of any group is mu-bounded iff it is emu-bounded.

Definition 1. A group G is defined to be:

• n-Shelah for some n ∈ N if for each subset A ⊂ G of cardinality |A| = |G| we have An = G;
• Shelah if it is n-Shelah for some n ∈ N;
• almost Shelah if for each subset A ⊂ G of cardinality |A| = |G| there exists n ∈ N such that

An = G;
• Jónsson if each subsemigroup A ⊂ G of cardinality |A| = |G| coincides with G;
• Kurosh if each subgroup A ⊂ G of cardinality |A| = |G| coincides with G;
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• Bergman if G cannot be written as the union a strictly increasing sequence (Xn)n∈ω of subsets such
that Xn = X−1

n and X2
n ⊂ Xn+1 for all n ∈ ω.

For any group G, the following implications hold:

finite ks +3 1-Shelah +3 Shelah +3 almost Shelah +3 Jónsson +3 Kurosh.

In [8], Shelah constructed a ZFC-example of an uncountable Jónsson group and a CH-example
of an infinite 6640-Shelah group. More precisely, for every cardinal κ with κ+ = 2κ , there exists a
6640-Shelah group of cardinality κ+ = 2κ . In [7], Bergman proved that the permutation group SX of
any set X is Bergman. Later it was shown [21–23] that many automorphism groups (of sufficiently
homogeneous structures) are Bergman.

Theorem 10. For a group G the following conditions are equivalent:

1. The finitary ballean of G is mu-bounded.
2. The finitary ballean of G is emu-bounded.
3. The group G is Bergman.

The conditions (1)–(3) follow from:

4. G is almost Shelah and cf(|G|) > ω.

Proof. The equivalence (1)⇔ (2) follows from the local finiteness of the finitary ballean on G.
(1)⇒ (3). Assume that the group G fails to be Bergman. Then G =

⋃
n∈ω Xn for some strictly

increasing sequence of subsets of G such that Xn = X−1
n and X2

n ⊂ Xn+1 for all n ∈ ω. We lose no
generality assuming that X0 = ∅.

We claim that the function ϕ : G → N ⊂ R assigning to each x ∈ X the unique number n ∈ N
such that x ∈ Xn \ Xn−1 is macro-uniform. It follows from X2

n ⊂ Xn+1 that

ϕ(gx) ≤ 1 + max{ϕ(g), ϕ(x)} ≤ ϕ(x) + (1 + ϕ(g))

for every g, x. Then ϕ(x) = ϕ(g−1gx) ≤ ϕ(gx) + (1 + ϕ(g−1)) and hence ϕ(gx) ≥ ϕ(x)− (1 +

ϕ(g−1). Therefore,

ϕ(x)− (1 + ϕ(g−1)) ≤ ϕ(gx) ≤ ϕ(x) + (1 + ϕ(g)),

which implies that the map ϕ is macro-uniform. Since the sequence (Xn)n∈ω is strictly increasing,
the map ϕ is unbounded, so the finitary ballean of G is not mu-bounded.

(3)⇒ (1) Assume that G admits an unbounded macro-uniform function ϕ : G → R. We lose
no generality assuming that ϕ(e) = 0 where e is the unit of the group G. Then for every finite
set F ⊂ G there exists a number nF ∈ N such that ϕ(Fx) ⊂ [−nF, nF] + ϕ(x) for every x ∈ G.
For every n ∈ N let Xn = {g ∈ G : n{g,g−1} ≤ n} and observe that (Xn)n∈ω is an increasing

sequence such that Xn = X−1
n and

⋃
n∈ω Xn = G. For every n ∈ ω let Yn = X2n

n and observe that
Yn = Y−1

n and Yn ·Yn = X2n
n X2n

n = X2n+1
n ⊂ X2n+1

n+1 = Yn+1.
Assuming that G is Bergman, we conclude that G = Yn = X2n

n for some n ∈ ω.
By induction, we shall prove that ϕ(Xk

n) ⊂ [−nk, nk] for k ∈ ω. For k = 0, we have ϕ(X0
n) =

ϕ({e}) = {0} = [−n0, n0]. Assume that for some k ∈ ω we have proven that ϕ(Xk
n) ⊂ [−nk, nk].
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Taking into account that for every g ∈ Xn and x ∈ G we have ϕ(gx) ⊂ ϕ(x) + [−n{g}, n{g}] ⊂
ϕ(x) + [−n, n], we conclude that ϕ(Xnx) ⊂ ϕ(x) + [−n, n] and hence,

ϕ(Xk+1
n ) = ϕ(Xn · Xk

n) ⊂ ϕ(Xk
n) + [−n, n] ⊂ [−nk, nk] + [−n, n] ⊂ [−n(k + 1), n(k + 1)].

Then ϕ(G) = ϕ(X2n
n ) ⊂ [−n2n, n2n], which means that the function ϕ is bounded.

Finally, we prove that (4)⇒ (3). Assume that G is almost Shelah and cf(|G|) > ω. Assume
that G =

⋃
n∈ω Xn for some increasing sequence of subsets such that Xn = X−1

n and Xn · Xn ⊂
Xn+1 for all n ∈ ω. By induction we can show that X2k

n ⊂ Xn+k for every k ∈ ω.
Since cf(|G|) > ω, there exists n ∈ ω such that |Xn| = |G|. Since G is almost Shelah,

G = X2m
n ⊂ Xn+m for some m ∈ ω and hence Xn+m = G, which contradicts the choice of the

sequence (Xk)k∈ω.

Corollary 2. The finitary ballean of the permutation group SX of any set X is mu-bounded.

Question 7. Is every so-function on a Bergman group (in particular, on the group SX) constant at infinity?

Problem 1. Find the largest n for which every n-Shelah group is finite.

Remark 3. Answering the problem [24], Yves Cornulier proved that each 3-Shelah group is finite.
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