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Abstract: In this paper, some new results are given on fixed and common fixed points of Geraghty
type contractive mappings defined in b-complete b-metric spaces. Moreover, two examples are
represented to show the compatibility of our results. Some applications for nonlinear integral
equations are also given.
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1. Introduction

In 1989, Bakhtin [1] introduced b-metric spaces as a generalization of metric spaces. Since then,
several papers have been published on the fixed point theory in such spaces. For further works and
results in b-metric spaces, we refer readers to References [2-22].

Definition 1. Let X be a (nonempty) set and s > 1 be a given real number. A functiond : X x X — [0, 00) is
called a b-metric on X if the following conditions hold for all x,y,z € X:

(i) d(x,y) =0ifand only if x =y,
(ii) d(x,y) = d(y, x),
(iii) d(x,y) < sld(x,z) +d(z,y)] (b-triangular inequality).

Then, the pair (X, d) is called a b-metric space with parameter s.

Example 1. [14] Let (X, d) be a metric space and let p > 1,A > 0and y > 0. For x,y € X, set p(x,y) =
Ad(x,y) + ud(x,y)P. Then (X, p) is a b-metric space with the parameter s = 2P~1 and not a metric space
on X.

In 1973, Geraghty [23] introduced a class of functions to generalize the Banach contraction
principle. Let S be the family of all functions « : [0, c0) — [0, 1) satisfying the property:

nlgxgovc(tn) =1 implies nlglc}o t, = 0.
Theorem 1. [23] Let (X, d) be a complete metric space. Let T : X — X be given mapping satisfying:
d(Tx, Ty) < a(d(x,y))d(x,y), x,y€X,

where o € S. Then T has a unique fixed point.
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In 2011, Dukic et al. [24] reconsidered Theorem 1 in the framework of b-metric spaces (see also
Reference [25]).

Let (X,d) be a b-metric space with parameter s > 1 and S denote the set of all functions
w: [0,00) — [0, 1), satisfing the following condition:

1
lim a(t,) = - = lim t, = 0.
n—o00 S n—oo

Theorem 2. [24] Let (X, d) be a b-complete b-metric space with parameter s > 1 and let T : X — X bea
self-map. Suppose that there exists B € S such that:

d(Tx,Ty) < B(d(x,y))d(x,y),

holds for all x,y € X. Then T has a unique fixed point x* € X.

In recent years, many researchers have extended the result of Geraghty in the context of various
metric spaces (e.g., see References [26-29]). In the present paper, we extended some fixed point
theorems for Geraghty contractive mappings in b-metric spaces.

2. Results

Let B denote the set of all functions f : [0,00) — [0, 1) which satisfies the condition
limsup,,_,, B(t:) = 1 implies that t, — 0 as n — oo [25].

Theorem 3. Let (X,d) be a b-complete b-metric space with parameter s > 1. Let T : X — X bea
self-mapping satisfying:

d(Tx, Ty) < B(M(x,y))M(x,y), xy€X, M

where:

1
M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty), 5 (d(x, Ty) + d(y, Tx)) },
and B € B. Then T has a unique fixed point.

Proof of Theorem 3. Let xy € X be arbitrary. Consider the sequence {x, } where:
xp=Tx,_1=T"'xy, neN.

If there exists n € N such that x,,;1 = x,, then x,, is a fixed point of T and the proof is finished.
Otherwise, we have d(x,41,x,) > 0 for all n € N. By Condition (1), for all n € N we have:

d(xn, xp1) = d(Txp—1, Txn) < B(M(x4-1,%n) ) M(xy-1,%n), ()
where:
M(x, 1,xp) = max{d(x,_1,%),d(x,_1,Txy_1),d(xn, Txy), d(xp—1, Txn) ;—S d(xn, Tx, 1) )
= max{d(x,_1,%n),d(xy_1,%n),d(Xn, Xn11), d(x,—1, Xn+;1 +d(xn, xn) }
< max{d(x,—1,%n),d(Xn, Xn41), s(d(xp—1,%n) + d(xXn, Xn41)) }

2s
= max{d(x,—1,%n),d(xn, Xp41)}-
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Ifd(x, q,xn) <d(xn, xn41), then M(x,,_1,%,) = d(xy, x,.1). From Condition (2), we have:

d(xn/ xn+1) < ﬁ(M(xnflr xn)>M(xn71/ xn)

1
< =d(xp,xp41) neN

95}

This is a contradiction. Thus, we have:

M(XVI—]./ xn) = d(xn, xﬂ—l)

Then, from Condition (2), we get:

d(xn, xps1) < B(M(xp—1,%4))d(x4-1,%n) 3)
< d(xy_1,x1), neN

So {d(x,_1,x,)} is a decreasing sequence of non-negative reals. Hence, there exists r > 0 such
that d(x,,_1,x,) — ras n — co. We claimed that » = 0. Suppose on the contrary that » > 0, then from
Condition (3), we have:

r < limsup B(M(x,—1,xn))r.

n—o0

Then,
<1 <limsup B(M(x,_1,%n)) <

n—00

1
s

0 | =

Since B € B, then limy, 5o M(x,,—1, x4) = 0. So limy, 0 d(x,—1, X)) = 0, which is a contradiction,
that is, r = 0. Now we show that {x,} is a b-Cauchy sequence. Suppose on the contrary that {x, }
is not a b-Cauchy sequence. Then there exists ¢ > 0 for which we can find subsequences {x,,)}
and{x, )} of {x,} such that n(k) is the smallest index for which n(k) > m(k) > k,

A(Xp(k), Xn(k)) = & 4)
and
A(X (k) Xn(r)—1) < & (5)
From Condition (5) and using the b-triangular inequality, we have:

& < d (X Xn(r)) < S(@Xnr)y Xm(k)+1) T A Xm) 41, Xn(k)))-

Then, we get:

» | M

< limsup d(x,,5) 1, Xu (k) )- (6)
k—o0
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Therefore,

hfkn sup M(Xy(k), Xu(t)-1) = 111131 sup max{d (X k), Xn(k)~1), A (Xu(k)r TXn(x) ),
—00 —

d(x K Tk —1) +d(x =17 T Xk )
d(xn(k)—l'Txn(k)—l)/ m(k) k) oF n(k) m (k) }

= ﬁI;ﬂ sup max{d (X, k), Xn(k)~1)s A (Xp(k)s Xm(k)+1)s
—00

A(X (k) Xniy) + 400 -1, Xim()+1)
d(xn(k)—lrxn(k))r m(k)’ *n(k) % n(k) m(k)+ }

1ifkn sup max{d (X, k), Xn(k)-1) A (Xm(i)r Xm()+1)r A (X () =1 Xn(i) )
—00

IN

$A (X (k) (k) —1) + 54 (X (k) (k) —1)
2s
$A(Xy (k) —1, Xm(k)) + 54 (Xpu(k) Xm(k)+1)
2s }

+
< e

From Condition (6) and Condition (1), we have:

€

§ < limsupd(xm(k)ﬂfxn(k))
< liif‘supﬁ(M(xm<k>rxn<k>—1))M(xm<k>rxn(kH)
—00
< elimsup,B(M(xm(k),xn(k)q))-
k—o0

Then 1 < limsupy_, o, BIM (1), Xn()—1)) < 1. Since p € B, so M(Xy k), Xp(k)-1) — 0, as a

s =
result, d(x,,(k), X, (k)—1) — 0. From Condition (4) and using the b-triangular inequality, we have:

e < d(Xp(k) Xn(k)) < S(A(Xp(k)y Xn(e)—1) + (X =1 Xnk)))-

Therefore, limy ,eo d(X(k), Xp(x)) = 0. This contradicts with Condition (4). Hence, {x,} is a
b-Cauchy sequence. The completeness of X implies that there exists © € X such that x, — u.
We showed that u is a fixed point of T. By b-triangular inequality and Condition (1), we have:

d(u, Tu) s(d(u, Txy) 4+ d(Txy,, Tu))

<
< sd(u, Txy) + sP(M(xp, u))M(xy, u).

Letting n — oo in the above inequality, we obtain:

d(u, Tu) < slimsupd(u,x,.1) 7)
n—o0
+slimsup B(M(x,, u)) limsup M(xy, u),
n—00 n—oo

where:

limsup,,_, ., M(xp, u) limsup,,_,, max{d(xy, 1), d(xy, Txy),d(u, Tu), 5 (d(xn, Tu) + d(u, Txy))}
limsup,,_,, max{d(xy, 1), d(xu, Xy11),d(1, Tu), % (sd(xn, u) + sd(u, Tu) + d(u, x,41)) }

d(u, Tu).

INIA I

Hence, from Condition (7), we have:

d(u, Tu) < slimsup B(M(x,, u))d(u, Tu).
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Consequently, I < limsup,, ., B(M(xy,u)) < 1. Since B € B, we concluded limy,—,co M (xy, u) = 0.
Therefore, Tu = u. To see that the fixed point u € X is unique, suppose there is v # u in X such
that Tv = v. From Condition (1), we get:

d(u,v) = d(Tu, Tv) < B(M(u,v))M(u,v),
where:

M(u,v) = max{d(u,v),d(u,Tu),d(v, Tv), zls(d(u, Tv) +d(v, Tu))}

< d(u,v).
Therefore, we have d(u,v) < %d(u, v). Then u = v, which is a contradiction. O

Example 2. Let X = {1,2,3} and d : X x X — [0, c0) be defined as follows:

) d(1,2) =d(2,1) =1,
(i) d(1,3) =d(3,1) = g,
(iif) d(2,3) =d(3,2) =
(iv) d(1,1) = d(2,2

It is easy to check that (X,d) is a b-metric space with constant s = % Set T1 = T3 = 1,T2 = 3 and
)

d(T2,T3) =d(3,1) =
Therefore, the conditions of Theorem 3 are satisfied.

Theorem 4. Let (X, d) be a b-complete b-metric space with parameter s > 1. Let T, S be self-mappings on X
which satisfy:

sd(Tx,Sy) < B(M(x,y))M(x,y), xy€X, ®)

where M(x,y) = max{d(x,y),d(x, Tx),d(y,Sy)} and p € B. If T or S are continuous, then T and S have a
unique common fixed point.

Proof of Theorem 4. Let x( be arbitrary. Define the sequence {x,} in X by x2,11 = Txp, and x2,42 =
Sxppq forallnm =0,1,.... From Condition (8), foralln =0,1,2,..., we have:

sd(xop41, Xon+2) = sd(Tx2u, Sx2p41) )
< B(M(x2, X2041)) M (X201, X2n41),
where:
M(xon, Xop41) = max{d(xon, X2p41), d(X2n, TX2), d(X2041, SX2n+1) }

= max{d(xon, Xon41),d(X2n41, X2n42)}, n=0,1,2,....

If M(x20, X2041) = d(X2n41, X2u12), then:

1
sd(Xon+1, Xon+2) < B(M (X210, X2n+1))d(X2n41, Xont2) < gd(x2n+1,x2n+2),
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which is a contradiction. Hence, we have M(x2,,, X2,,41) = d (X2, X2,11)- From Condition (9), we have:

d(xons1, Xon42) < B(M(x2n, X2n+1))d(X2n, X2041) (10)

1
< gd(Xan x2n+1)'

Then, we get d(X2n+1, x2n+2) < d(xZn, x2n+1). Similarly, d(x2n+3, x2n+2) < d(szz, x2n+1). SO,
we have d(xy,, x,41) < d(x,_1,xn). Thus {d(x, x,,41)} is a nonincreasing sequence, hence there exists
r > 0 such that d(x,, x,1+1) — r as n — oo. We showed that r = 0. Suppose on the contrary that r > 0.
Letting n — oo in (10), we obtain:

r < limsup (M (x2p, X21+1))7-
n—oo

Then, we have:

<1 < limsup B(M(x2, X2+1)) <
n—o0o

1
s

(I)\H

Since B € B, we have:

nlglgoM(XZn/ Xon41) = 0.

Hence,
r= nlgrolo d(x2n, Xop41) =0,

which is a contradiction. Now, we show that {xp,} is a b-Cauchy sequence. Suppose that {x,,} is
not a b-Cauchy sequence. Then there exists ¢ > 0 for which we can find subsequences {x,,,()} and
{2 (k) } Of {x21} such that (k) is the smallest index for which n(k) > m(k) > k,

d(Xan(k), X2m(k)) = & (11)

and

A (X (k) Xom(k)—2) < & (12)

From Condition (8) and Condition (11) and the b-triangular inequality, we have:

e < d(xum), Xom(k))
< sd(Xu(k), Xon(k)+1) T 54 (Xon(k)+1, X2m(k))
- Sd(x2n(k x2n(k +1) +5d(Txk), SXom(k)—1)
< sd(Xu(k), X2n(k)+1)

+,B(M(x2n /x2m(k)fl))M(x2n(k)rx2m(k)71)r (13)

where:

M(X2(k), X2m(k)—1) = Mmax{d (X k), Xom(k)—1)r (o) TX2n(k))r A (X2m(k)—1/ SXom(k)—1) }-

Letting k — oo, we have:

lim sup M (X, (k), X2 (k) 1) = Hmsup d(xo, k), Xom(k)-1)-
k—o0 k—o0

From the b-triangular inequality, we have:

A% (k) Xom(k)—1) < S(A( X2 (k) X2m(k)—2) + A(Xom(k) -2 Xom(k)—-1))-
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Letting again k — oo in the above inequality, we get:

liin sup d(Xo, k), Xam(k)—1) < Se. (14)
— 00

From Condition (13) and Condition (14), we obtain:

e < limsup (B(M(xX2u(k), X2m(k)—1)) M (X2n (k) X2m(k)-1))

k—o0

= limsup B(M (X2 (k), X2m(k)—1)) W sup d (X2, k), Xom(k)—1)
k—o0 k—oc0

IN

selim sup ﬁ(M(xzn(k), sz(k)fl))'

k—00

Therefore,

< limsup B(M(Xp (k) Xom(k)-1)) <

k— o0

[V

1
s
Since B € B, it follows that:

Jim M (1), Xam(k) 1) = 0.

Consequently,
B d (x5, Xom(r)-1) = 0. (15)
From Condition (11) and using the b-triangular inequality, we get:

& < d(xnk), Xom()) < 5(d(Xon(k)r Xom(r)—1) T A(X2m(k)—1, X2m(k)))-

Letting k — oo in the above inequality and using Condition (15), we obtain:

lim sup d(x2n(k), x2m(k)) =0.
k—o0

This contradicts Condition (11). This implies that {x,, } is a b-Cauchy sequence and so is {x; }.
There exists x* € X such that lim;,_, x;; = x*. If T is continuous, we have:

Tx* = nlgrolo Txp, = nlgrolo Xopy1 = X
From Condition (8), we have:
sd(x*,Sx™) = sd(Tx*,Sx™) < B(M(x*, x*))M(x*,x*),
where:

M(x*,x*) = max{d(x*,x*),d(x*, Tx*),d(x*,Sx*)}
d(x*,Sx*).

Since § € B, we have,

sd(x*,Sx™) < B(M(x*, x*))d(x*, Sx™) < %d(x*,Sx*).
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Hence, Sx* = x*. If S is continuous, then, by a similar argument to that of above, one can show
that T, S have a common fixed point. Now, we prove the uniqueness of the common fixed point.
Let y = Ty = Sy, is another common fixed point for T and S. From Condition (8), we obtain:

sd(x",y) = sd(Tx", Sy) < B(M(x", y) ) M(x",y),

where:
M(x*,y) = max{d(x",y),d(x*, Tx"),d(y,Sy)} = d(x*, y).

Therefore, x* = y and the common fixed point T and f is unique. O

In Theorem 4, if T = S, we get the following result.

Corollary 1. Let (X,d) be a b-complete b-metric space with parameter s > 1 and T be self-mapping on X
which satisfy:

sd(Tx, Ty) < B(M(x,1))M(x,y), %y €X, (16)
where M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty) } and T is continuous. Then T has a unique fixed point.
Example 3. Let X = [0,1] and d : X x X — [0, 00) be defined by d(x,y) = |x —y|?, forall x,y € [0

is easy to check that (X, d) is a b-metric space with parameter s = 2. Set Tx = ¢ forall x € X and B(t)
forall t > 0. Then,

1. It

1
4

X
2d(Tx, Ty) = 2|Z—%|2
1
< 1|x—y|2
< B(M(x,y))M(x,y).

Then, the conditions of Corollary 1 are satisfied.

3. Applications to Nonlinear Integral Equations

In this section, we studied the existence of solutions for nonlinear integral equations, as an
application to the fixed point theorems proved in the previous section.

Let X = C[0,!] be the set of all real continuous functions on [0,/] and d : X x X — [0, 0) be
defined by:

d(u,0) = maxo<i<;|u(t) — o(t)?, u,v e X.
Obviously, (X,d) is a complete b-metric space with parameter s = 2. First, consider the
integral equation:
1
u(t) :h(t)+/ G(t, $)k(t, s, u(s)) ds, (17)
0

where I > Oand h : [0,]] — R,G : [0,]] x[0,]] - Rand k : [0,]] x[0,]] x R — R are
continuous functions.

Theorem 5. Suppose that the following hypotheses hold:
(1) forall t,s € [0,1] and u,v € X, we have:

e~ M) M(u,v)
|k(t,s,u(s)) —k(t,s,v(s))| < > ,
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(2) forall t,s € [0,1], we have:

—_

l
t,s)"ds < -
max /0 G(t,s)? i
Then, the integral equation (see Condition (17)) has a unique solution u € X.

Proof of Theorem 5. Let T : X — X be a mapping defined by:
= h(t) +/Ol G(t,s)k(t,s,u(s))ds, ueX,tsel0l].
From Condition (1) and Condition (2), we can write:
d(Tu, To) = maxycoy|Tu(t) — To(t)|?
= max;cpo{|h(t) + /Ol G(t,s)k(t,s,u(s))ds —h(t) — /Ol G(t,s)k(t,s,0(s)) ds|*}
= mazcpnt] [| Gl s)(k(E s u(5) — k(t5,0(5))) )

1 'l
< maxte[o,]{/ G(t,s)zds/ Ik(t, s, u(s)) — k(ts,0(s))[2 ds}
g 0
e M(u,0)
< 7 / | MO D) o
—M (u,0)
< 7 M(u,v).
So, we get:
d(Tu, Tv) < B(M(u,v))M(u,v).
Thus, all conditions in Theorem 3 for (t) = % t > 0and B(0) € [0, 1) are satisfied and hence T

has a fixed point. O

Let X = Cla, b] be the set of all real continuous functions on [a,b] and X equipped with the
b-metric below,
d(u,v) = max,<p<p{(lu(t) —o(®))’}, p>LuveX

Then (X,d) is a complete b-metric space with parameter s = 27~1. Now, consider the
integral equations:

b
u(t) = / G(t,5)ky (1,5, u(s)) ds, (18)
a
and
b
u(t) = / G(t,)ka(t,s,u(s)) ds, (19)
a
where G : [4,b] X [a,b] — Rand kq, ks : [a,b] X [a,b] Xx R — R are continuous functions.

Theorem 6. Suppose that:
(1) Forall t,s € [a,b] and u,v € X, we have:

In(1+ (Ju(s) —U(S)I)”))

1
b
22p-1

[k1(t,s,u(s)) — ka(t,s,0(s))| < (
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(2) For all t,s € [a, b], we have:

b 1 1
mﬂxagtgb/ G(ts)lds< ———, —+-=1
a

1
(b — g) 2 p q
Then the integral equations (Condition (18) and Condition (19)) have a unique common solution.

Proof of Theorem 6. Let T, S : X — X be mappings defined by:

Tu(t) = / Gt skt u(s)) ds, 20)

and

Su(t) = / "Gt s)a (L, u(s)) ds. 1)

From Condition (1) and Condition (2), we have:

HTu,To) = mavecisp (ITu(t) — So(8))7)
< masyail (1 G35, () ds — [ G5 kalt s o0s))asl))
< marzezy ([ 1603t 1(5)) —Kalt,5,0(5)) ) )}
< moxpaa{(( " |G (1,511 ds) / (Ka(t,5,(5)) — ka5, 2()) )P ds) )P
< maxgcezs ([ 1605)71d5) ([ (a5, u(5)) ~ Kalt5,0(5)])P )}
R
S
s ln(l—i2—2ﬁ/£(1u,v))‘

Therefore, we get the following result:

M(u,v)
2p
< B(M(u,0))M(u, v).

2P~ 14(Tu, To)

IN

Hence, all of the hypotheses of Theorem 4 for s = 2P~! and B(t) = Zip are satisfied. Then T and S
have a common fixed point u € X. [
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