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Abstract: The solution of pseudo initial value differential equations, either ordinary or partial
(including those of fractional nature), requires the development of adequate analytical methods,
complementing those well established in the ordinary differential equation setting. A combination of
techniques, involving procedures of umbral and of operational nature, has been demonstrated to be a
very promising tool in order to approach within a unifying context non-canonical evolution problems.
This article covers the extension of this approach to the solution of pseudo-evolutionary equations.
We will comment on the explicit formulation of the necessary techniques, which are based on
certain time- and operator ordering tools. We will in particular demonstrate how Volterra-Neumann
expansions, Feynman-Dyson series and other popular tools can be profitably extended to obtain
solutions for fractional differential equations. We apply the method to several examples, in which
fractional calculus and a certain umbral image calculus play a role of central importance.

Keywords: pseudo-evolutionary differential equations; fractional differential equations; operational
methods; umbral image techniques

1. Introduction

We discuss in this paper the notion of so-called pseudo-evolutionary differential equations, which we
define as equations of the Cauchy type,

D̂tF(x, t) = α Ôx F(x, t) F(x, 0) = f (x) . (1)

Here, D̂t is an operator playing the role of the derivative with respect to the variable t, α is a
constant, Ôx is an operator of differential or pseudo-differential nature (to be specified later in our
discussion), and where f (x) is the initial condition.

The development of suitable solution methods, mimicking those exploited for the ordinary
Cauchy problem setting, requires the following steps:

1. Finding an eigenfunction of the D̂t operator, such that

D̂tE(λt) = λE(λt) . (2)

2. Constructing a pseudo evolution operator (PEO) as

Û(t) = E(α t Ôx) , (3)
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which leads to the solution of Equation (1) via

F(x, t) = E(α t Ôx) f (x) . (4)

3. Establishing rules that permit the explicit evaluation of the action of the PEO Û(t) on the initial
function f (x) in the formal solution Equation (4).

Consequently, the precise properties of the eigenfunctions E that arise in the first step of
this procedure are of crucial importance in terms of developing explicit calculation techniques.
It is evident that the strategy we have in mind is that of treating E as a kind of exponential function
(the eigenfunction of the ordinary derivative operator)—in this way, we can recover most of the
techniques associated with operator disentanglement and time-ordering (whenever necessary).

A first study in this direction has been addressed by D. Babusci and one of the present authors
in [1], which has later been specialized in several papers for situations in which D̂t is a fractional [2]
or Laguerre [3] derivative. In elaborating this program, we have been faced with some difficulties
associated with the fact that the corresponding eigenfunctions E lack the semi-group property, namely

E(x + y) 6= E(x) E(y) = E(y) E(x) . (5)

This is an additional source of difficulties also when dealing with operator-ordering in
pseudo-evolutionary problems. If x̂, ŷ are non-commuting operators, such that

[x̂ , ŷ] 6= 0 , (6)

it is well known that even for the exponential function one finds that [4]

ex̂+ŷ 6= ex̂eŷ 6= eŷex̂ . (7)

Instead, one finds the following types of expansions [5,6]

ex̂+ŷ = ex̂eŷe f̂1 . . . e f̂n . . . = eŷex̂eĝ1 . . . eĝn . . . , (8)

where f̂n, ĝn are expressed in terms of chains of commutators involving x̂, ŷ, as it happens
e.g., for the Zassenhaus expansion [7]. It is evident that in the special case [x̂ , ŷ] = 0, the f̂n and ĝn

operator functions vanish, and the semi-group property is restored.
Time-ordering is a further element of complication, which may arise in evolutionary problems

(ordinary or pseudo) whenever the operator Ôx on the rhs of Equation (1) is explicitly time-dependent
and does not commute with itself at different times.

In this paper, we reconsider the operator-ordering problem for pseudo-evolutionary problems
in more general terms than those considered in [1–3], and we address the time-ordering problem
by discussing the possibility of adapting for this purpose the use of expansions such as the
Volterra-Neumann or Feynman-Dyson series [8]. The paper is organized as follows: In Section 2,
we summarize and extend the results contained in [2,3]. In Section 3, we provide a general view on the
problem of time-ordering for pseudo evolution equations, while Section 4 contains several specific
examples and final comments.

2. Laguerre Derivative, Laguerre Exponential and Operator-Ordering

The Laguerre transform and the associated operational calculus have played a crucial role in the
theory of operational calculus [9,10]. They have offered elements of key importance within the context
of the monomiality theory [11] and for the study of integro-differential equations of Volterra type [12].
We will outline the procedure allowing the merging of ordering procedures and umbral image type
methods, using as a reference example the so-called “Laguerre-calculus” along the lines of [1].



Axioms 2019, 8, 35 3 of 16

We introduce the forthcoming discussion by going back to the paradigmatic strategy sketched in
the introductory section and, accordingly, fix the following specific steps:

1. We specialize the operators in Equation (1) to

D̂t = l∂t = ∂tt ∂t , Ôx = ∂x , (9)

where l∂t is the Laguerre derivative [3,10,11,13].
2. The eigenfunction of the Laguerre derivative operator is the Bessel-like function le(x) [14],

le(x) = ∑
r≥0

xr

(r!)2 , (10)

which satisfies D̂t le(λt) = λ le(λt).
3. In view of explicit computations, it will prove advantageous to express le(x) via an

umbral image [15,16] (where we refer to Appendix A for the explicit definition of the full formalism)

le(x) = Î (vevx) . (11)

Here, v is a formal variable, and Î a formal integration operator, which acts according to

Î (vα) :=
1

Γ(α)
(α ∈ C) . (12)

We can therefore write the solution of our problem as

F(x, t) = Î
(

veαvt∂x f (x)
)
= Î (v f (x + αvt)) , (13)

where we have just adopted the properties of the exponential shift operator (i.e., Taylor’s formula).
This illustrates one particularly simple scenario in which the approach sketched in the introduction
may be explicitly carried out.

The next example addresses the problem of operator-ordering. We consider a Laguerre-type
evolution problem (with x̂ the operator of multiplication by x, i.e., x̂(xn) := xn+1,

Ôx = −(α x̂− β ∂x) , (14)

in which the novelty and the difficulty stems from the fact that it consists of the sum of two terms that
are not commuting with each other (due to [∂x, x̂] = 1 6= 0). The solution of our problem can be cast in
a first step into the form

F(x, t) = Î
(

ve−vt(αx̂−β∂x) f (x)
)

. (15)

However, the PEO in this expression cannot be disentangled into the product of two exponentials,
because the operators in the argument of the exponential do not commute. We thus proceed as follows:

1. We define the auxiliary operators

X̂ := −αvtx̂ , Ŷ := βvt∂x . (16)

2. Applying the Weyl disentanglement rule (taking advantage of the fact that [[X̂, Ŷ], X̂] = [[X̂, Ŷ], Ŷ] =
0), we find that

eX̂+Ŷ = e−
1
2 [X̂,Ŷ]eX̂eŶ . (17)

3. We then eventually arrive at the closed-form expression

F(x, t) = Î
(

ve−
(vt)2

2 αβe−vtαx̂evtβ∂x f (x)
)
= Î

(
ve−

(vt)2
2 αβe−vtαx̂ f (x + vβt)

)
. (18)
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It important to emphasize that the operational ordering as performed above thus brings into
play a term depending on the square of the formal variable v (which commutes with the differential
operators x̂ and ∂x). Assuming for simplicity f (x) = 1, we find that

F(x, t) = Î
(

ve−
(vt)2

2 αβe−vtαx
)

. (19)

Finally, after Taylor-expanding the exponential and evaluating the action of the formal integral
operator Î according to Equation (12), we find the closed-form expression

F(x, t) = Î
(

v ∑
n≥0

(−vtα)n

n!
e−

(vt)2
2 αβ

)
= ∑

n≥0

(−αt)n

n! le(2)
(
−αβt2

2

)
, (20)

where le
(m)
n (x) is the Bessel-like function defined as

le
(m)
n (x) := Î

(
vn+1ex vm

)
= ∑

r≥0

xr

r!Γ(mr + n + 1)
. (21)

The example we have discussed is sufficient to demonstrate that the umbral image
formalism naturally yields the solution of evolution problems involving a Laguerre derivative and
non-commuting operators.

In order to stress the generality and the flexibility of our method, we consider the further example
concerning the Schrödinger-type equation

i l∂tΨ(x, t) = Ôx Ψ(x, t) , Ôx = −
(

α x + β
2 ∂2

x

)
. (22)

We will derive the PEO associated with Equation (22) in complete analogy to the procedure
discussed in the previous example (see also Appendix B for an alternative approach using a Berry-type
formula). As a preparatory step, let us recall for the readers’ convenience the Zassenhaus formula in its
“right- and left-oriented” forms (see e.g., [7]), whereby for a formal variable λ and for two composable
linear operators X and Y one has

eλ(X+Y) = eλXeλYeλ2C2(X,Y)eλ3C3(X,Y)eλ4C4(X,Y) · · ·

eλ(X+Y) = . . . eλ4Ĉ4(X,Y)eλ3Ĉ3(X,Y)eλ2Ĉ2(X,Y)eλYeλX

C2(X, Y) = 1
2 [Y, X] , C3(X, Y) = 1

3 [C2(X, Y), X + 2Y]

Cn(X, Y) = 1
n!

(
dn

dλn

(
e−λn−1Cn−1(X,Y) . . . e−λ3C3(X,Y)e−λ2C2(X,Y) e−λYe−λXeλ(X+Y)

)) ∣∣∣∣
λ→0

(n ≥ 3)

Ĉn(X, Y) = (−1)n+1Cn(X, Y) (n ≥ 2) .

(23)

Introducing the auxiliary operators

Â := λ∂2
x , B̂ := κx̂ , λ := i

2 βvt , κ := iαvt , (24)

we find the commutation relations[
Â, B̂

]
= 2κλ∂x , [Â, [Â, B̂]] = 0 , [B̂, [Â, B̂]] = −2κ2λ , (25)
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with all higher nested commutators vanishing. Thus invoking the “left-oriented” form of the formula
(setting X = Â, Y = B̂ and λ = 1) and using the commutation relations Equation (25), we obtain

eÂ+B̂ = e
1
3! ([Â,[Â,B̂]]+2[B̂,[Â,B̂]])e

1
2 [Â,B̂]eB̂eÂ

(∗)
= e−

2
3 κ2λeκλ∂x eκx̂eλ∂2

x

= e−
2
3 κ2λeκ(x̂+κλ)eκλ∂x eλ∂2

x

= e
1
3 κ2λeκx̂eκλ∂x eλ∂2

x

(26)

Here, in the step marked (∗), we have taken advantage of the Crofton-Glaisher identity [17]
(see also [11,18] Equation (I.3.17)), whereby for a formal power series f (x) and for an integer-valued
parameter m ≥ 1,

eλ∂m
x f (x̂) = f

(
x̂ + mλ∂m−1

x

)
eλ∂m

x (27)

Note that we provide this identity in “operational form”, i.e., by using the formal multiplication
operator x̂, this expression is also valid when part of larger expressions.

Coincidentally, this identity also permits us to compute the action of the operational expression
computed in Equation (26) on an initial condition Ψ(x, 0) = ϕ(x), resulting in

e
1
3 κ2λeκx̂eκλ∂x eλ∂2

x ϕ(x) = e
1
3 κ2λeκx̂ ϕ(x̂ + κλ + 2λ∂x)1 . (28)

Here and throughout this paper, in expressions such as ϕ(x̂+ κλ+ 2λ∂x)1, the occurrence of the symbol
“1” entails that the expression is to be evaluated by expanding ϕ(x̂ + κλ + 2λ∂x) into normal-ordered
form (i.e., into a series in the normal-ordered monomials x̂r∂s

x for r, s ≥ 0), followed by acting on 1
(which due to ∂s

x1 = 0 for s > 0 in effect amounts to dropping all terms of the expansion involving
non-zero powers of ∂x).

Combining this result with the explicit formula for the eigenfunctions le(x) as provided
in Equation (11), we thus finally arrive at the explicit solution for Ψ(x, t) evolving according to
the pseudo-evolution Equation (22) with initial condition Ψ(x, 0) = ϕ(x):

Ψ(x, t) = Î
(

ve
1
6 (ivt)3α2βe(ivt)αx̂ ϕ(x̂ + αβ

2 (ivt)2 + (ivt)β∂x)1
)

. (29)

Specializing for simplicity to the case ϕ(x) = 1, Equation (29) evaluates to

Ψ(x, t) = Î
(

ve(ivt)αx+ 1
6 (ivt)3α2β

)
. (30)

Coincidentally, the expression obtained in the last step has an interesting formal meaning: consider
the third order Hermite polynomials H(3)

n (x, y), which are defined as

H(3)
n (x, y) := ey∂3

x xn = n!
b n

3 c
∑
r=0

xn−3ryr

(n− 3r)! r!
, (31)

and whose exponential generating function (EGF) reads

H(3)(t; x, y) := ∑
n≥0

tn

n!
H(3)

n (x, y) = ey∂3
x etx = etx+t3y . (32)

One may in fact derive the explicit formula for this generating function directly via use of the
Crofton-Glaisher identity Equation (27) combined with the results of Equation (26).
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We thus recognize the occurrence of the above EGF as a term in Equation (30), which allows us to
express Ψ(x, t) in the alternative form

Ψ(x, t) = Î
(

v ∑
n≥0

(ivt)n

n!
H(3)

n

(
αx, α2β

6

))
= ∑

n≥0

(it)n

(n!)2 H(3)
n

(
αx, α2β

6

)
. (33)

The examples of this introductory section have shown that a judicious combination of our
suggested pseudo evolution operator (PEO) method with various elements from the theory of
generalized functions and umbral image type techniques results in a toolset that allows to deal
with non-standard forms of partial differential equations efficiently.

Before closing this section, it is worth commenting on the role played by the concepts associated
with the semi-group property (or, rather, lack thereof) of the Laguerre exponential. We follow the point
of view of [2], where these problems have been systematically investigated. As may be verified via an
explicit calculation, one finds that the Laguerre exponential does not satisfy the semi-group property
ex+y = exey (for x, y commuting variables) of the ordinary exponential function, whence

le(x + y) 6= le(x) le(y) , (34)

but rather satisfies

le(x) le(y) = ∑
r≥0

xr

(r!)2 ∑
s≥0

ys

(s!)2 = ∑
n≥0

1

(n!)2 (x⊕ly)
n . (35)

Here, the symbol ⊕l denotes the composition rule

(x⊕ly)
n :=

n

∑
s=0

(
n
s

)2
xn−sys , (36)

thus yielding the so-called “Laguerre Newton binomial”. According to the previous identities we may
redefine the semi-group property for the Laguerre exponential as

le(x)le(y) = le(x⊕ly) . (37)

The recently introduced reformulation [16] of the umbral calculus framework in terms of umbral
image type techniques permits to understand the calculations that lead to Equation (37) in a very direct
manner: taking advantage of the identity (see Appendix A for further details)

Î (uαvα) =
Γ(α)
Γ(α)

= 1 (α ∈ C \ {0,−1,−2, . . . }) , (38)

we may compute a “Laguerre Newton binomial” type result as follows:

le(x)le(y) = Î
(
v1v2ev1x+v2y)

= Î
(

uv1v2v3ev3(u(v1x+v2y))
)

= Î (uv1v2le(u(v1x + v2y))) .

(39)

We thus indeed find that

Î (uv1v2(u(v1x + v2y))n) =
n

∑
r=0

(
n
r

)
n!xryn−r

r!(n− r)!
= (x⊕ly)

n . (40)

This form of “umbral image reshaping” will prove particularly useful when considering more
complicated types of special functions in the sequel.
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3. Pseudo-Evolutive Problems and Matrix Calculus

In this section, we will demonstrate an extension of the previously introduced pseudo-evolution
equation techniques to a form of matrix calculus. The problem we wish to address is the search of a
solution for equations of the type

l∂t(x)Y(t) = M̂Y(t) , Y(0) = Y0 , (41)

with l∂t = ∂tt∂t the Laguerre-type time-derivative, and where M̂ and Y(t), Y0 denote an n× n matrix
and n-element column vectors, respectively. We specialize our discussion to the case of a non-singular
2× 2 matrix with eigenvalues λ±. Following the paradigm of the PEO method introduced in Section 2,
one may obtain a solution of Equation (41) in the form

Y(t) = Û(t)Y0 , Û(t) = le(M̂t) =
∞

∑
n=0

(M̂t)n

(n!)2 . (42)

By application of the Cayley-Hamilton theorem, we thus obtain

le(M̂t) =
1

λ+ − λ−

[
(λ+1̂− M̂)le(λ−t)− (λ−1̂− M̂)le(λ+t))

]
, (43)

where 1̂ denotes the 2× 2 unit matrix. Let us now consider for illustration a matrix with zero diagonal
entries and imaginary eigenvalues, namely

M̂ =

(
0 −α

β 0

)
. (44)

According to Equation (43), the corresponding PEO Û(t) can be reduced to the “pseudo rotation matrix”

le(M̂t) =

 lc(
√

αβt) −
√

α
β ls(

√
αβt)√

β
α ls(

√
αβt) lc(

√
αβt)

 , (45)

where lc(x) and ls(x) denote the Laguerre (co-)sine functions [14] defined as

lc(x) = le(ix) + le(−ix)
2

, ls(x) = le(ix)− le(−ix)
2i

(i2 = −1) . (46)

The relevant geometrical meaning differs from that of the ordinary circular functions and is
illustrated in Figure 1, where we have plotted ls(x) against lc(x) in the region of the first negative and
positive zeros of the Laguerre sine function (cf. Figure 2).
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Figure 1. Polar plot of the fundamental l-trigonometric relation.
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Figure 2. Plot of the ls(x) function.

The functions in Equation (46) can be recognized as Bessel type functions (in particular as Kelvin
ber, bei functions), and they satisfy the differential equations

l∂
2
t lc(ωt) = −ω2

lc(ωt) , l∂
2
t ls(ωt) = −ω2

ls(ωt) . (47)

We also note that the Laguerre derivative satisfies the identity

l∂
α
t = ∂α

t tα∂α
t (α ∈ R) . (48)

Our next example illustrates a possible generalization of the PEO methods in a different direction,
namely in the form of fractional evolutive problems such as

∂
µ
t Y(t) = M̂Y(t) +

t−µ

Γ(1− µ)
Y0 , Y(0) = Y0 (0 < µ < 1) . (49)

Following the paradigm of the PEO method, the first step in solving Equation (49) consists in
finding an eigenfunction of the fractional differential operator D̂t = ∂

µ
t . To this end, we recall the

definition of the so-called Mittag-Leffler function (ML-f) [19] Eα,β(x) (for α, β ∈ C),

Eα,β(x) = ∑
r≥0

xr

Γ(αr + β)
= Î

(
vβ

1− xvα

)
. (50)

Here, we have yet again taken advantage of the formal integral operator Î (. . . ) as introduced
in [16] (compare Equation (12)). An alternative useful expression for the ML-f Eα,β(x) may be obtained
via taking a suitable Laplace transform of Equation (50), whence

Eα,β(x) = Î
(

vβ
∫ ∞

0
e−s evα x ds

)
. (51)

For example, the alternative form Equation (51) for the ML-f allows to derive (via a suitable
umbral image reshaping) a multiplicative law in a straightforward fashion:

Eα,β(x)Eα,β(y) = Î
(
(v1v2)

β
∫ ∞

0
e−s evα

1 x+vα
2 y ds

)
= Î

(
vβ

3 (uv1v2)
β
∫ ∞

0
e−s evα

3(u
α(vα

1 x+vα
2 y)) ds

)
= Î

(
(uv1v2)

βEα,β(uα(vα
1 x + vα

2y))
)
≡ Eα,β(x⊕Eα,β y) .

(52)
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Here, in the second step we have introduced two additional formal integration variables u and v3

and took advantage of the identity Equation (38) in order to suitably “reshape” the umbral image type
expression without changing its evaluation result. This then permits use of the formal variable v3 in
order to realize the defining equation for the ML-f according to Equation (50), resulting in the ML-f at
modified argument depending on the remaining formal integration variables as presented in the third
step above. We thus conclude that the “Mittag-Leffler binomial” law should read

(x⊕Eα,β y)n = Î
(
(uv1v2)

β(uα(vα
1 x + vα

2y)n
)

=
n

∑
r=0

(
n
r

)
Î
(

uαn+βvαr+β
1 xrvα(n−r)+β

2 y(n−r)
)

=
n

∑
r=0

(
n
r

)
Γ(nα + β) xryn−r

Γ(αr + β)Γ(α(n− r) + β)
.

(53)

Back to the fractional pseudo evolution problem described in Equation (49), note that the
Mittag-Leffler function Eα,β(x) may be utilized to construct a “pseudo eigenfunction” of the fractional
time-derivative operator D̂t = ∂

µ
t as follows:

∂
µ
t D̂tEµ,1(M̂tµ) = M̂ Eµ,1(M̂tµ) +

t−µ

Γ(1− µ)
. (54)

Here, the last term in Equation (54) arises due to the action of the fractional derivative in the
sense of Riemann-Liouville onto the constant term 1 of Eα,β(M̂tµ), i.e., it is the contribution
∂

µ
t 1 = t−µ/Γ(1 − µ) (compare [2]). This permits us to determine the solution of the fractional

pseudo-evolution Equation (49) in closed form as

Y(t) = Eµ,1(M̂tµ)Y0 . (55)

As a final example of an interesting fractional pseudo evolution problem, which in a sense
combines the technique of the previous example with the one presented in the beginning of this
section, consider

∂
µ
t F(x, t) = αÔxF(x, t) +

t−µ

Γ(1− µ)
f (x) , F(x, 0) = f (x) (0 < µ < 1) . (56)

Following the previously presented strategy, we find an explicit solution of Equation (56)
in the form

F(x, t) = Eµ,1(αtµÔx) f (x) . (57)

Let us then specialize this result to the case of α = 1, and with a differential operator Ôx as
in Equation (22),

Ôx = −
(

α x + β
2 ∂2

x

)
.

Taking advantage of the form of the Mittag-Leffler function Eα,β(x) as presented in Equation (51),

Eµ,1(Ôx tµ) = Î
(

v
∫ ∞

0
e−s e(vt)µ Ôx ds

)
, (58)

and by performing an analysis based on the Zassenhaus Formula (23) and the Crofton-Glaisher
identity Equation (27), we obtain the general formula (for F(x, 0) = f (x)):

F(x, t) = Eµ,1(αtµÔx) f (x)

= Î
(

v
∫ ∞

0
e−s e−

1
6 α2β(vt)3µ

e−α(vt)µ x̂ f
(

x̂ + αβ
2 (vt)µ − β(vt)µ∂x

)
1
) (59)
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In particular, specializing further to the case F(x, 0) = f (x) = 1, the result of Equation (59)
may be evaluated by using the third-order Hermite polynomial exponential generating function
Formula (32), namely

F(x, t) = Eµ,1(αtµÔx) 1 = Î
(

v
∫ ∞

0
e−s e−α(vt)µx− 1

6 α2β(vt)3µ
)

= e−
α2β

6 ∂3
z Î
(

v
∫ ∞

0
e−s e(vt)µz

)
(z = −αx)

= e−
α2β

6 ∂3
z Eµ,1(ztµ) .

(60)

Here, the second step follows by invoking the generating function formula given in Equation (32),
while the third step is a consequence of Equation (51). Recalling both the definition of the third-order
Hermite polynomials H(3)

n (x, y) as given in Equation (31) and of the Mittag-Leffler function as given
in Equation (50), we may reformulate the above result in the more explicit form

F(x, t) = ∑
r≥0

tµr

Γ(µr + 1)
H(3)

r

(
−αx,− α2β

6

)
. (61)

4. Time-Ordering and Concluding Comments

In this section we touch upon on the problem of time-dependent pseudo-evolutive equations.
We will then take a cursory look at the possibility of extending our techniques as introduced thus far to
time-ordering problems, which as will become apparent is a nontrivial challenge even for the standard
Cauchy problems.

To illustrate the difficulties we are going to meet, we first consider the non-homogeneous first
order Laguerre differential equation

l∂tY(t) = f (t) , Y(0) = Y0 , (62)

where f (t) is a time-dependent function. The formal solution of this equation reads

Y(t) = l∂
−1
t [ f (t)] + Y0 = ∂−1

t t−1∂−1
t [ f (t)] + Y0 , (63)

with the second identity obtained using Equation (48). We may then rewrite Equation (63) into the form

Y(t) =
∫ t

0

dt1

t1

∫ t1

0
f (t2)dt2 + Y0 . (64)

The Laguerre integration can be carried out straightforwardly. For instance, if the integrand
function is expandable as a (summable) series f (t) = ∑n≥0

tn

n! an, we obtain

Y(t) = ∑
n≥0

an

n!(n + 1)2 tn+1 + Y0 , (65)

which is valid provided that we can exchange summation and integral sign, and given suitable
convergence properties.

The problem becomes more difficult if we consider the equation

l∂tY(t) = f (t)Y(t) , Y(0) = Y0 , (66)
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whose solution is obtained through a judicious application of the recipes we have discussed in the
previous sections. We may indeed use the corresponding equation for the ordinary derivative, namely

y(t) = y0e
∫ t

0 f (t′)dt′ , (67)

by replacing the exponential by its Laguerre counterpart, and the relevant argument by a suitable
integration of the function f (t). To better illustrate this technique, let us proceed by transforming
Equation (66) into an integral equation,

Y(t) = l∂
−1
t [ f (t)Y(t)] =

∫ t

0

dt1

t1

∫ t1

0
f (t2)Y(t2)dt2 + Y0 . (68)

We then eventually apply a Volterra-Neumann expansion, defined as

Y(t) = ∑
n≥0

Yn(t)

Y0(t) = Y0

Yn+1(t) =
∫ t

0

dt1

t1

∫ t1

0
f (t2)Yn(t2)dt2 .

(69)

It is worth noting that the inclusion of a non-homogeneous term l∂tY(t) = f (t)Y(t) + g(t) does
not introduce any further conceptual complication, but leads to additional inessential computational
details, whence we omit the discussion of this more general case for brevity.

We may verify the correctness of the procedure by considering the example with f (t) = −t in
Equation (66), resulting in the fractional differential equation

1
t

∂t t ∂t Y(t) = −Y(t) , Y(0) = Y0 . (70)

Noting that
1
t

∂t t ∂t = ∂
( t

2 )
2

(
t
2

)2
∂
( t

2 )
2 , (71)

we may conclude that the solution of Equation (70) with the initial condition Y(0) = 1 is just
the Bessel function

J0(t) = le
(
−
( t

2
)2
)

. (72)

We may then verify that the same result may be obtained by summing the series in Equation (69)
directly, noting that ∫ t

0

dt1

t1

∫ t1

0
t2dt2 =

(
t
2

)2
, (73)

which then entails that performing the Volterra-Neumann expansion Equation (69) indeed evaluates to

Y(t) = Î
(

ve−v ( t
2 )

2
)
= le

(
−
( t

2
)2
)

. (74)

An entirely analogous computation permits to derive the solution of Equation (66) with
f (t) = − tm and with initial condition Y(0) = Y0 = 1, which reads

Y(t) = le
(
− tm+1

(m + 1)2

)
. (75)

Unfortunately, the above procedures become considerably more complicated if f (t) is not just
a monic function such as f (t) = −tm as above. This is in fact a direct consequence of the lack of the
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semi-group property of the Laguerre exponential (see Equation (34)). If for instance f (t) = cos(t),
the solution of Equation (66) with initial condition Y(0) = Y0 = 1 indeed becomes rather intricate:

Y(t) = ∑
n≥0

Yn(t)

Yn(t) =
∞

∑
r=0

(−1)rt2r+n

(2r + n)2 nar (n ≥ 1) , Y0(t) = Y0 = 1

nar =
r

∑
k=0

n−1ak
(2k + n− 1)2[2(r− k)]!

(n ≥ 2) , 1ar =
1

(2r)!
.

(76)

Our formalism remains applicable when passing to the setting of fractional derivatives. Consider
for illustration the fractional evolution equation

∂α
t Y(t) = f (t)Y(t) + Y0

t−α

Γ(1− α)
, Y(0) = Y0 , (77)

which may be transformed into integral form via noting that according to the definition of the fractional
derivative in the sense of Riemann-Liouville, one finds that ∂α

t 1 = t−α/Γ(1− α), and thus

Y(t) = ∂−α
t [ f (t)Y(t)] + Y0 . (78)

The use of the Riemann-Liouville integral in order to evaluate the action of ∂−α
t yields [20]

Y(t) =
1

Γ(α)

∫ t

0
f (τ)Y(τ) (t− τ)α−1dτ + Y0 , (79)

and the coefficients Yn(t) of the Volterra-Neumann expansion Equation (69) consequently satisfy the
following recursion equation (with Y0(τ) = Y0 as before):

Yn+1(t) =
1

Γ(α)

∫ t

0
f (τ)Yn(τ) (t− τ)α−1dτ (n ≥ 0) . (80)

Specializing for illustration to the case of f (t) = −t and Y0 = 1, the expansion terms evaluate to

Yn(t) =
(
− tα+1

Γ(α)

)n [n−1

∏
k=0

B
(

k(α + 1) + 2, α
)]

, (81)

where B(x, y) denotes the Euler Beta function.
The notions we have developed so far are in fact a necessary prerequisite for the development of

the concepts associated with time-ordering. Let us thus pass to an illustrative first problem requiring
explicit time-ordering, in the form of the matrix equation

∂α
t Y(t) = M̂(t)Y(t) +

t−α

Γ(1− α)
Y0 , Y(0) = Y0 . (82)

Here, Y(t) and Y0 denote n-column vectors, while M̂(t) denotes a non-singular time-dependent
n × n matrix, which is in general assumed to be non-commuting with itself at different times
(i.e., [M̂(t), M̂(t′)] 6= 0 for t 6= t′). It is evident that also in this case the most appropriate treatment is a
series expansion, but ordering criteria such as those inherent in the well-known Dyson expansion are
necessary. We will therefore write the formal solution of Equation (82) as

Y(t) =
1

Γ(α)

∫ t

0
M̂(τ)Y(τ)(t− τ)α−1 dτ + Y0 . (83)
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The corresponding Volterra-Neumann series reads

Y(t) = Û(t)Y0 , (84)

with a matrix-valued evolution operator Û(t) defined as

Û(t) = 1̂ +
1

Γ(α)

∫ t

0
M̂(t1)(t− t1)

α−1 dt2

+
1

Γ(α)2

∫ t

0
M̂(t2)(t− t2)

α−1
[∫ t2

0
M̂(t1)(t− t1)

α−1dt1

]
dt2

+
1

Γ(α)3

∫ t

0
M̂(t3)(t− t3)

α−1
[∫ t3

0
M̂(t2)(t− t2)

α−1
[∫ t2

0
M̂(t1)(t− t1)

α−1dt1

]
dt2

]
dt3

+ . . .

(85)

The series in Equation (85) has been obtained by translating to the fractional integration setting
the usual expression given e.g., in [21]. The derivation of the corresponding Feynman-Dyson series
along with the associated diagrammatic interpretation will be discussed in a forthcoming investigation.

In this paper, we have demonstrated that the operator and time-ordering techniques familiar
from the setting of ordinary differential calculus may be exploited for analyzing fractional and for
Laguerre operators as well. The methods we have highlighted are based on a suitable interpretation of
operators and functions in umbral image form. The price to be paid is the demand for a certain level
of abstraction allowing the search of a common thread yielding the pathway to generalized ordered
formulae of Feynman-Dyson type.
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Appendix A. The Umbral Image Type Technique

For the readers’ convenience, we briefly recall the central definition of the umbral image type
technique as introduced in [16]:

Definition A1 (Definition 2 of [16]). Let A = {λ} ] U ] V ] X be an alphabet of formal variables, where ]
denotes the operation of disjoint union, and where {λ}, U , V and X are four (disjoint) alphabets of auxiliary
formal variables. We will typically employ notations such as X = {x, y, x1, x2, . . . }, where we make use of the
indexed variable notations in case of many variables for convenience. Let furthermore A• = A \ {λ}.

We define a formal integration operator Î via specifying first its domain dom(Î) as

dom(Î) := {S ∈ C[GC(A•)][[λ]] | for all Aα ∈ supp(S) : range(α|U ) ⊂ C \Z≤0} , (A1)

whence elements of dom(Î) are formal power series in λ with coefficients that are generalized polynomials over
the alphabet A• (where the extension to formal power series requires a suitable notion of summability, see below).
Here, the notation range(α|U ) ⊂ C \ Z≤0 entails that functions α : A• → C are required to not take zero or
negative integer values when evaluated on elements of U . Then for some monomial Aα ∈ dom(Î), which reads
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more explicitly (recall that by definition of C(A), we have that α(ui) 6= 0 and α(vj) 6= 0 for only finitely many
indices i and j)

Aα = uα(u1)
1 uα(u2)

2 . . . vα(v1)
1 vα(v2)

2 . . . ,

the action of Î on Aα is defined as

Î (Aα) :=

 ∏
ui∈U(α)

∫ ∞

0
dui

e−ui

ui

 ∏
vj∈V(α)

1
2πi

∫
γ

dvj evj

[Aα̃
]

U(α) := supp(α) ∩ U , V(α) := supp(α) ∩ V

α̃(a) :=

{
α(a) if a ∈ A \ V
−α(a) if a ∈ V .

(A2)

We extend Î by linearity to finite sums. For infinite sums, this requires an appropriate notion of convergence.

A series ∑i∈I ciAαi will be in dom(Î) (the domain of Î) if the family
(

ci Î(Aαi )
)

i∈I
is summable in the target

(in the sense of discrete summability or compact convergence for entire functions).

Intuitively, the above definition allows to define a type of transformation of formal power series
in which monomials in the auxiliary variable alphabet U = {u, u′, u1, u2, . . . } yield occurrences of
Gamma functions in the numerators (i.e., Î (uα) = Γ(α) for α ∈ C \ {0,−1,−2, . . . }), while monomials
in the formal variables of the alphabet V = {v, v′, v1, v2, . . . } yield occurrences of reciprocal Gamma
functions (i.e., Î

(
vβ
)
= 1/Γ(β) for β ∈ C). The only “rule” in translating an expressions involving

Gamma and reciprocal Gamma functions into the “umbral image form” via using the formal integration
operator Î is that if one wishes to express the product of two expressions via the operator, we have that

Î (S1) Î (S2) = Î (S1S2) (A3)

if and only if the support of the formal power series S1 and S2 is disjoint (i.e., if S1 and S2 do not share any
of the formal variables; cf. Lemma 1 of [16]). It is this “rule” that replaces a lot of more heuristic concepts
in the traditional umbral calculus literature. To provide a quick application example, we present the
following short list of expressions for illustration (where the exponents of the formal variables of the
alphabet U are constrained to only take complex values not equal to 0 or a negative integer):

Î (uα) = Γ(α) , Î
(

vβ
)
=

1
Γ(β)

Î
(
uα+nvα

)
=

Γ(α + n)
Γ(α)

= (α)n , Î
(

uβvβ+n
)
=

Γ(β)

Γ(β + n)
=

1
(β)n

(A4)

A more complex set of examples is provided by the following expression quoted from [16]
for the generalized hypergeometric functions, illustrating further the utility of the umbral image
type formalism:

pFq

[
~α
~β

; z
]
≡ pFq

(αi
)

1≤i≤p(
β j
)

1≤j≤q

; z

 := ∑
n≥0

zn

n!
(α1)n · · · (αp)n

(β1)n · · · (βq)n

= Î
((

p

∏
i=1

(uivi)
αi

)(
q

∏
j=1

(uj+pvj+p)
β j

)
ezu1···upvp+1···vp+q

)
.

(A5)
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Appendix B. An Alternative to the Zassenhaus Formula

In Section 2, we have exploited the Zassenhaus formula to derive the solution of Laguerre or
fractional Schrödinger equations, in which the operators appearing in the arguments of the respective
pseudo evolution operators may be reduced to exponentials of the type

eX̂+Ŷ = eX̂eŶe−
1
2 [X̂,Ŷ]e

1
3 [Ŷ,[X̂,Ŷ]]+ 1

6 [X̂,[X̂,Ŷ]] . (A6)

An alternative to the use of Equation (A6) is provided by the following Berry-type rule [22]

eX̂+Ŷ = e
m2
12 −

m
2 X̂

1
2 +X̂eŶ, (A7)

which is valid if
[X̂, Ŷ] = mX̂

1
2 . (A8)

To verify the correctness of Equation (A7), let us consider the following realization of the operators
X̂ and Ŷ:

X̂ = α∂2
x and Ŷ = βx̂ (A9)

By applying the identity Equation (A7), noting that here indeed [X̂, Ŷ] = mX̂
1
2 (with m = 2

√
αβ),

we obtain

eX̂+Ŷ = e
m2
12 −

m
2 X̂

1
2 +X̂eŶ

= e
1
3 αβ2−αβ∂x+α∂2

x eβx .
(A10)

This is thus consistent with the result calculated via the Zassenhaus-type Formula (A6). A detailed
proof of the Berry-type identity Equation (A7) independent of the Zassenhaus expansion may also be
found in [18,23].
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