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Abstract: In this work, new Bäcklund transformations (BTs) for generalized Liouville equations were
obtained. Special cases of Liouville equations with exponential nonlinearity that have a multiplier that
depends on the independent variables and first-order derivatives from the function were considered.
Two- and three-dimensional cases were considered. The BTs construction is based on the method
proposed by Clairin. The solutions of the considered equations have been found using the BTs,
with a unified algorithm. In addition, the work develops the Clairin’s method for the system of two
third-order equations related to the integrable perturbation and complexification of the Korteweg-de
Vries (KdV) equation. Among the constructed BTs an analog of the Miura transformations was found.
The Miura transformations transfer the initial system to that of perturbed modified KdV (mKdV)
equations. It could be shown on this way that, considering the system as a link between the real and
imaginary parts of a complex function, it is possible to go to the complexified KdV (cKdV) and here
the analog of the Miura transformations transforms it into the complexification of the mKdV.

Keywords: Bäcklund transformation; Clairin’s method; generalized Liouville equation;
Miura transformation; Korteweg-de Vries equation

1. Introduction

Currently, nonlinear partial differential equations are widely used to describe the so-called “fine
processes”, such as propagation of nonlinear waves in dispersive media [1]. Due to the complexity of
different nonlinear equations, no common method of their solution exists. For the integrable systems,
efficient methods have been developed, such as the inverse scattering method [2,3], Hirota method [4],
Painlevé method [5], Bäcklund transformation [6], a method of mapping and deformation [3], nonlocal
symmetry method [7,8], etc.

In the classical works [2,6] the Bäcklund transformations (BTs) were considered for the couple of
differential second order partial differential equations and presented in form of a system of relations
and containing independent variables, functions of the said equations, and their first-order derivatives.
The BTs allow to obtain not only couples of equations but, if the solution of one of them is known,
obtain the solution of the other one.

BT plays an important role in the integrable systems because it reveals the inner relations between
different integrable properties, such as determination of the point symmetries [9,10], the presence of
the Hamiltonian structure [11–13].

Lots of research has recently been conducted in this area. For example, determining the
complementary symmetries and obtaining the Miura transformations for the hierarchy of the
Kadomtsev–Petviashvili (KP) equation and modified KP, including for the discrete analog [14,15];
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in [16] the new BTs relative to the residual symmetry of the (2 + 1)-dimensional Bogoyavlenskij
equation [17] have been investigated; construction of new auto Bäcklund transformations for the
Lagrange system and of Hеnon-Heiles system of equations in parabolic coordinates [18]; it has been
shown that the calibration conditions in the theory of the relativistic string, which allow using the
d’Alembert equation instead of the nonlinear Liouville equation, are direct consequences of the BT
relating the solutions of these equations [19].

In Reference [20] it is shown how pseudo constants of the Liouville-type equations can be
exploited as a tool for construction of the Bäcklund transformations. In Reference [21] it is proven
that contact-nonequivalent three-dimensional linearly degenerate second-order equations that are
Lax-integrable are related to each other by the corresponding Bäcklund transformations.

This work describes how new BTs for the Liouville generalized equations are obtained. The second
and third sections deal with the special cases of the Liouville equation with exponential nonlinearity
that have a multiplier that depends upon the independent variables and first-order derivatives from
the function, and the three-dimensional case. The BTs construction is based on the method proposed
by Clairin and has at such approach a clear geometric sense. The solutions of the considered equations
have been found using the BTs, with a unified algorithm.

The fourth section contains the development of Clairin’s method for the system of two third-order
equations related to the integrable perturbation and complexification of the KdV (cKdV) equation [22].
An essential point for these dynamic systems of equations is that the application of special conditions
to the differential forms may lead to different dynamic systems.

Among the constructed BTs an analog of the Miura transformations was found in Section five.
The Miura transformations transfer the initial system to that of perturbed modified KdV (mKdV)
equations. In this way, we were able to show that when considering the system as a relation between
the real and imaginary parts of a complex function, we can pass to the cKdV, and the analog of the
Miura transformations transforms it into the complexification of mKdV.

2. Bäcklund Transformations for Special Cases of Liouville Equations

Theorem 1. Partial differential equation

zξη = f1(ξ) f2(η)ez (1)

and wave equation wξη = 0 are related by the Bäcklund transformation of the form:

∂w
∂ξ

= be
w+z

2

√
f1(ξ) f2(η) +

∂z
∂ξ

+
f ′1(ξ)

f1(ξ)
,
∂w
∂η

= −
1
b

e−
w−z

2

√
f1(ξ) f2(η) −

∂z
∂η
−

f ′2(η)

f2(η)
(2)

where b is an arbitrary parameter, f1(ξ), f2(η) are arbitrary functions of one variable, w(ξ, η) and z(ξ, η) are
functions of two variables.

The Proof uses the cross differentiation of the Equations (2) and then summing or finding the
difference of the resulting expression.

Corollary 1. If the wave equationwξη = 0 has the solution

w(ξ, η) = θ(η) + ϑ(ξ) (3)

then Equation (1) has the solution

z(ξ, η) = ϑ(ξ) − θ(η) − ln

∣∣∣ f2(η) f1(ξ)
∣∣∣( 1

2b

∫
e−θ(η)dη+

b
2

∫
eϑ(ξ)dξ

)2 (4)
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where ϑ(ξ), θ(η) are arbitrary functions.

Proof of Corollary 1. Substitute solution (3) into transformations (2), and get the system of equations
for the function z(ξ, η)

∂ϑ
∂ξ

= be
θ(η)+ϑ(ξ)+z

2

√
f1(ξ) f2(η) +

∂z
∂ξ

+
f ′1(ξ)

f1(ξ)
,
∂θ
∂η

= −
1
b

e−
θ(η)+ϑ(ξ)−z

2

√
f1(ξ) f2(η) −

∂z
∂η
−

f ′2(η)

f2(η)
. (5)

Seek for the solution of the system in form z(ξ, η) = 2 lnϕ(ξ, η), then (5) takes the form of two
Bernoulli equations. Their solutions have the forms

ϕ1 =
1√

f1(ξ)

2e
1
2ϑ(ξ)

be
θ(η)

2
√

f2(η)
∫

eϑ(ξ)dξ+ψ1(η)
,ϕ2 =

1√
f2(η)

2e−
1
2θ(η)

b−1e−
ϑ(ξ)

2
√

f1(ξ)
∫

e−θ(η)dη+ψ2(ξ)
(6)

where ψ1(η), ψ2(ξ) are arbitrary functions.
Compare the resulting solutions (6) and determine the condition at which they coincide,

then functions ψ2(ξ) and ψ1(η) must be predetermined as follows

ψ1(η) =
1
b

e
θ(η)

2

√
f2(η)

∫
e−θ(η)dη,ψ2(ξ) = be

−ϑ(ξ)
2

√
f1(ξ)

∫
eϑ(ξ)dξ (7)

obtaining the solution of system (5) in the form

ϕ(ξ, η) = 2e
ϑ(ξ)−θ(η)

2 ( f1(ξ) f2(η))
−

1
2

(
1
b

∫
e−θ(η)dη+ b

∫
eϑ(ξ)dξ

)−1

and the solution of Equation (1) in the form (4).
Clairin has proposed a method of Bäcklund transformations construction for the hyperbolical

form of nonlinear equations. This procedure will be applied to the equation

z̃ξη = ẽz
(
B1z̃ξ + B2z̃η

)
, B1, B2 − const (8)

where z̃(ξ, η) is a function of two variables, and the Bäcklund transformation will be constructed. �

Theorem 2. Bäcklund transformations of the form:

wξξ = − 1
2 B2ẽzwξ + wξ ∂̃z

∂ξ ,

wξη = 1
2 B1ẽzwξ +

wξ
2
∂̃z
∂η ,

(9)

relate the two equations, (8), and
B2(w2)ξη + 4B1w2

ξ = 0 (10)

where B1, B2 are arbitrary constants, and w(ξ, η), z(ξ, η) are functions of two variables.

The Proof is similar to that of Theorem 1.

Corollary 2. If Equation (10) has the solution

w = 2B1η− B2ξ, (11)

then Equation (8) has the solution

z̃ = − ln
∣∣∣∣∣C + B1η−

B2

2
ξ

∣∣∣∣∣, C− const. (12)
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Proof of Corollary 2. Use the found transformations (9) and substitute the known solution (11), the
system takes the form

B2
∂̃z
∂η

= −2B1
∂̃z
∂ξ

, 0 = B1ẽz +
∂̃z
∂η

, (13)

where, from the first linear partial differential equation, find the relation between the independent
variables ξ, η, and, from the second equation of the system (13) determine the form of the function
z̃ = − ln|C + 0.5t|, t = 2B1η− B2ξ, C− const. The result is the solution of Equation (8) in the form (12).
�

Corollary 3. If Equation (10) has the solution

w = e
λ

2B2
η− λ

2B1
ξ, λ− const, (14)

then Equation (8) has the solution

z̃ =
λ(2B1η− B2ξ)

2B1B2
− ln

∣∣∣∣∣∣1 + B1B2Ce
λ(2B1η−B2ξ)

2B1B2

∣∣∣∣∣∣+ ln|Cλ|, C− const. (15)

The Proof is similar to that of Corollary 2.

Corollary 4. If Equation (8) has the solution z̃ = B1η− B2ξ, then Equation (10) has the solution

w(ξ, η) = −
2

B2
exp

(1
2

eB1η−B2ξ −
B1

2
η
)
. (16)

Proof of Corollary 4. Use the Bäcklund transformations (9) and substitute the available solution
z̃ = B1η− B2ξ, and get the system of equations, that can be integrated by the relevant variables

ln wξ = 1
2 eB1η−B2ξ − B2ξ+ψ1(η),

ln wξ = 1
2 eB1η−B2ξ + B1

2 η+ψ2(ξ),
(17)

where ψ1(η), ψ2(ξ) are the integration constants. Complete the definition of functions ψ1(η) and
ψ2(ξ), so that the resulting values of the right parts of system (17) coincide. This is possible if
ψ1(η) = 0, 5B1η, ψ2(ξ) = −B2ξ. As a result, the value

wξ = exp
(1

2
eB1η−B2ξ − B2ξ+

B1

2
η
)

is determined. Integration by variable ξ yields

w(ξ, η) = φ(η) −
2

B2
e

1
2 eB1η−B2ξ−

B1
2 η,

where φ(η) is an arbitrary function. For a greater certainty of φ(η), substitute the found function into
Equation (10). The equality will be fulfilled identically if

2φ′(η) + B1φ(η)eB1η−B2ξ + B1φ(η) = 0.

The obtained equation depends upon variable ξ, which must not happen, hence, assume φ(η) = 0,
then the desired function has the form (16). �
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3. Bäcklund Transformations for Three-Dimensional Liouville Equation

Theorem 3. Nonlinear partial differential equation

vηξ +
c
γ2 ev

(
3γvη + vζ + γvξ

)
= 0 (18)

is linked to the nonlinear equation
ϕη

[
γϕξ + ϕζ + 3γϕη

]
= ϕξη, (19)

by the Bäcklund transformations of the form:

γϕξ + 3γϕη + ϕζ = γvξ,

γ
[
ϕηη + ϕ2

η

]
+ cev

[
c
γ ev + vη

]
= −2cevϕη,

γ
[
ϕξη + ϕξϕη

]
+ ϕζη + ϕζϕη − γvξϕη − c

γ ev[3cev
− γvξ − vζ] = 6cevϕη,

(20)

wherec,γ are arbitrary constants, and ϕ(ξ, η, ζ), v(ξ, η, ζ) are functions of three variables ξ, η, ζ.

Proof of Theorem 3. Shows that system (20) leads to Equation (18). For this differentiate the first
equality of relation (20) by variable η

γϕξη + 3γϕηη + ϕζη = γvξη (21)

and determine from the second and third equalities the second order derivatives ϕξη, ϕηη, ϕζη, then,
having substituted their values into (21), gives[

γvξ − 3γϕη − γϕξ −ϕζ
]
ϕη −

c
γ

ev
(
γvξ + vζ + 3γvη

)
= γvξη. (22)

By reason of the first equality of system (20), the coefficient at function ϕη becomes zero and there
remains the equality that relates the only function v(ξ, η, ζ):

− sev
(
γvξ + vζ + 3γvη

)
= γ2vξη.

Then, try to get rid of function v(ξ, η, ζ) in the initial system of transformations (20). In the second
equation of the system separate the combination of functions ϕη + cγ−1ev, so that the equality takes
the form (

ϕη +
c
γ

ev
)
η

+

(
c
γ

ev + ϕη

)2

= 0. (23)

In the third equation of system (20), substitute the value γvξ from the first equality (20), then,
after having grouped the elements together(

c
γ

ev + ϕη

)
ξ

− 3
(

c
γ

ev + ϕη

)2

+
1
γ

(
c
γ

ev + ϕη

)
ζ

= 0. (24)

Having separated the total derivatives, rewrite the first and third equations as(
∂
∂ξ + 3 ∂

∂η +
1
γ
∂
∂ζ

)
ϕ = vξ,(

∂
∂ξ + 3 ∂

∂η +
1
γ
∂
∂ζ

)(
c
γ ev + ϕη

)
= 0.

(25)
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Obviously if cγ−1ev + ϕη = C, C , 0 is assumed, such form is not a solution of Equation (23),
hence, the two situations are possible:

1. C = 0, 2. cev + γϕη = z(ξ, η, ζ) (26)

z(ξ, η, ζ) is some function. The simplest is that if C = 0 is assumed, then, for function v,
get v = ln(−cγ−1ϕη). As a result of the substitution, the first equality transforms into the nonlinear
form (19). �

Corollary 5. If nonlinear partial differential Equation (18) has the solution

v(ξ, η, ζ) = cγ−1η+ f (ξ− γζ) − 3cζ (27)

where f (ξ− γζ) is an arbitrary function of the combined variable ξ− γζ, then Equation (19) has the solution in
the form

ϕ(ξ, η, ζ) =
aξ+ γbζ

a + b
f ′(ξ− γζ) − exp

(
c
γ
η+ f (ξ− γζ) − 3cζ

)
+ r(ξ− γζ), (28)

where ϕ(ξ, η, ζ), v(ξ, η, ζ) are functions of three variables ξ, η, ζ, r(ξ, η, ζ) is an arbitrary function, a, b, c are
arbitrary constants.

Proof of Corollary 5. Use Bäcklund transformations (20). Perform this substitution of function v(ξ, η, ζ)
(27) into (20); obviously, the last two equations of the system will be fulfilled identically if

ϕη = −
c
γ

exp
(

c
γ
η+ f (ξ− γζ) − 3cζ

)
. (29)

Having integrated the last equality get the sought for a function of the form

ϕ(ξ, η, ζ) = q(ξ, ζ) − exp
(

c
γ
η+ f (ξ− γζ) − 3cζ

)
(30)

where q(ξ, ζ) is an arbitrary function. For greater certainty, use the remaining first equality of the
system (20), then

qξ(ξ, ζ) + γ−1qζ(ξ, ζ) = f ′(ξ− γζ). (31)

As in the resulting linear Equation (31), one of the first integrals coincides with the form of the
argument of the function of the right part, write the solution in the form

q(ξ, ζ) = g(ξ, ζ) f ′(ξ− γζ) (32)

with the unknown function g(ξ, ζ), which is obtained from the linear equation obtained after substitution
into (31),

g(ξ, ζ) =
1

a + b
(aξ+ γbζ) + r1(ξ− γζ) (33)

which is determined with accuracy to the summand of the form r1(ξ−γζ), a, b are arbitrary parameters
simultaneously not equal to zero. Now put together the resulting values of the functions (30), (32),
and (33); this yields the sought for solution (28). �

Corollary 6. Equations (18) and (19) have a solution in the form

F = F1(3γζ− η) + F2(ξ− γζ) (34)

where F1, F2 are arbitrary functions.
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Get back to the above rationale and consider the second case (26). It may be shown that
Equation (18) relates to a more complex equation. For this, make in (23) change 2 in (26)

γzη + z2 = 0. (35)

It can be seen that this equality may be integrated

z(ξ, η, ζ) =
γ

η+ψ(ξ, ζ)
(36)

whereψ(ξ, ζ) is an arbitrary function. Substitute the found function into the last equality (25), this yields
the equation for the function ψ(ξ, ζ)

[η+ψ(ξ, ζ)]−2[γψξ(ξ, ζ) + 3γ+ψζ(ξ, ζ)] = 0. (37)

The common solution (37) will be written in the form F(ξ − γζ, 3γζ + ψ) = 0, where F is
an arbitrary function. Consider the partial solution in the form of a linear relation in relation to the
second combined variable

ψ(ξ, ζ) = f (ξ− γζ) − 3γζ (38)

with an arbitrary form of the function f . Hence, (36) takes the form

z(ξ, η, ζ) =
γ

η+ f (ξ− γζ) − 3γζ
. (39)

From (26), find the function v(ξ, η, ζ)

v(ξ, η, ζ) = ln

∣∣∣∣∣∣γc
(

1
η+ f (ξ− γζ) − 3γζ

−ϕη

)∣∣∣∣∣∣ (40)

then the first equality of system (25) takes the form

γϕξη +
γ f ′(ξ− γζ)

[η+ f (ξ− γζ) − 3γζ]2
=

(
ϕη −

1
η+ f (ξ− γζ) − 3γζ

)[
γϕξ + ϕζ + 3γϕη

]
. (41)

Theorem 4. Nonlinear partial differential Equation (18) relates to the class of nonlinear Equations (41) by
Bäcklund transformations (20), where f (ξ− γζ) is an arbitrary function of the combined variable ξ− γζ.

The solution of Equation (41) may be obtained having assumed

ϕη =
1

η+ f (ξ− γζ) − 3γζ

then
ϕ = ln

∣∣∣η+ f (ξ− γζ) − 3γζ
∣∣∣+ q(ξ, ζ) (42)

where q(ξ, ζ) is an arbitrary function.

Corollary 7. Function (42), where f (ξ− γζ) and q(ξ, ζ) are arbitrary functions, is a solution of Equation (41).

Use the fact that, according to theorem 2, Equation (18) and family of Equations (41) are related
by Bäcklund transformations (20), and see how the trivial solution v(ξ, η, ζ)= C − const of the first
equation may serve to construct a solution for the family (41).
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Corollary 8. Family of nonlinear partial differential Equations (41) has the solution

ϕ(ξ, η, ζ) = ln
∣∣∣3γζ− η+ f (ξ− γζ)

∣∣∣+ acγ−1(3γζ− η) + f2(ξ− γζ) (43)

where f2(ξ− γζ) is an arbitrary function of the combined variable ξ− γζ, a is an arbitrary constant.

Proof of Corollary 8. Substitute function v(ξ, η, ζ)= C− const to system (20), then the first equality of
system (20) yields

ϕ(ξ, η, ζ) = F(3γζ− η, ξ− γζ) (44)

with an arbitrary function F. Denote the first component derivative as F′
(1)

and the second component
derivative as F′

(2)
. Substitute (44) into the remaining two equations of the system (20) (for compaction:

eC = a > 0)

γ
[
F′′
(1)(1)

+ (F′
(1)

)2
]
+ a2 c2

γ = 2caF′
(1)

,

−F′′
(1)(2)

− F′
(2)

F′
(1)
− 3F′′

(1)(1)
+ F′′

(1)(2)
− [3F′

(1)
− F′

(2)
]F′

(1)
− 3a2 c2

γ2 = − 1
γ6caF′

(1)
.

It is easily seen that both equalities reduce to the single equation γ
[
F′′
(1)(1)

+ (F′
(1)

)2
]
+ a2c2γ−1 =

2caF′
(1)

, whose solution has the form F = ln
∣∣∣3γζ− η+ f1(ξ− γζ)

∣∣∣ + acγ−1(3γζ − η) + f2(ξ − γζ),
and f2(ξ− γζ) plays the role of the integration constant.

As the resulting solution must comply with a whole class of equalities (41) differing from each
other by the function f (ξ − γζ), the arbitrary functions f1(ξ − γζ), f2(ξ − γζ) relate to the defined
function f (ξ− γζ). The check leads to the necessity to assume f1(ξ− γζ) = − f (ξ− γζ), then solution
(41) has the form (43). �

4. Bäcklund Transformations for System of Two Third-Order Equations

We will develop the ideas of Clairin [5] and try to construct differential relations that transform
the defined system of two equations on the function u(x, t), w(x, t) of the form

ut + uxxx − 12µwwx − 6uux = 0, wt − 2wxxx + 6uwx = 0 (45)

into a certain unknown system on the function f (x, t), r(x, t) of the same order.
As the initial system describes the relation of two functions of two variables x, t, to define the

transition from one system to another one, it is necessary to define two couples characterizing the
differential transformations from the independent variables x and t. Assuming that the considered
system (45) is of third-order for variable x, and of first-order for variable t, and to construct (45) the
cross differentiation is used, the differential relationships of the first order should be defined from
variable t, and those of the second order should be defined from variable x:

∂2r
∂x2 = F1(u, w, f , r, ux, wx, fx, rx), ∂r

∂t = H1(u, w, f , r, ux, wx, fx, rx),

∂2 f
∂x2 = F2(u, w, f , r, ux, wx, fx, rx),

∂ f
∂t = H2(u, w, f , r, ux, wx, fx, rx).

(46)

To define the explicit form of transformation, functions F1, F2, and H1, H2 must be found.
The condition of integrability (equality of mixed second order derivatives) requires functions (46) to
comply with the relationship

∂3r
∂x2∂t

=
∂3r
∂t∂x2 ,

∂3 f
∂x2∂t

=
∂3 f
∂t∂x2 (47)
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where all the functions u, w, f , r, ux, wx, fx, rx depend upon the variables x, t. Taking into account (46),

∂3r
∂x2∂t =

∂F1
∂u ut +

∂F1
∂w wt +

∂F1
∂ f ft + . . .+ ∂F1

∂rx
rxt,

∂3r
∂t∂x2 = ∂

∂u

(
∂H1
∂u ux +

∂H1
∂w wx + . . .+ ∂H1

∂rx
rxx

)
ux + . . .+ ∂

∂rx

(
∂H1
∂u ux +

∂H1
∂w wx + . . .+ ∂H1

∂rx
rxx

)
rxx,

(48)

similarly for functions f . Equaling the right parts of the obtained equalities, and using (46) to exclude
rt, ft, rxx, fxx, rxt, fxt, finally get the condition of consistency, which must lead to system (45).

System (45) has the exponential nonlinearity of the first order (ut, uxxx, wt, wxxx) and second order
(wwx, uux, wxu), while each summand in (48) is a product of two or three co-multipliers. To make
the condition of consistency (47) yield the considered system (45) and without terms of higher than
second power it is necessary to assume that functions F j, H j, j = 1, 2 are of linear structure in relation
to variables u, ux, w, wx:

F j = F j1( f , r, fx, rx)u + F j2( f , r, fx, rx)ux+

+F j3( f , r, fx, rx)w + F j4( f , r, fx, rx)wx + F j5( f , r, fx, rx),

H j = H j1( f , r, fx, rx)u + H j2( f , r, fx, rx)ux+

+H j3( f , r, fx, rx)w + H j4( f , r, fx, rx)wx + H j5( f , r, fx, rx).

(49)

When composing the condition of consistency (48) at differentiation F j by variable t, summands
occur with the co-multipliers uxt, wxt that are absent from the initial system (45) and cannot be replaced
or compensated, hence, it is necessary to set the coefficients

F j2( f , r, fx, rx) = 0, F j4( f , r, fx, rx) = 0. (50)

As a result, the condition of consistency (47) takes the form

∂F j1
∂t u + F j1ut +

∂F j3
∂t w + F j3wt +

∂F j5
∂t =

∂2H j1

∂x2 u + 2
∂H j1
∂x ux + H j1uxx +

∂2H j2

∂x2 ux + 2
∂H j2
∂x uxx+

+H j2uxxx +
∂2H j3

∂x2 w + 2
∂H j3
∂x wx + H j3wxx +

∂2H j4

∂x2 wx + 2
∂H j4
∂x wxx + H j4wxxx +

∂2H j5

∂x2 ,
(51)

where
∂F jk
∂t =

∂F jk
∂ f H2 +

∂F jk
∂r H1 +

∂F jk
∂ fx

H2x +
∂F jk
∂rx

H1x,

∂H jk
∂x =

∂H jk
∂ f fx +

∂H jk
∂r rx +

∂H jk
∂ fx

F2 +
∂H jk
∂rx

F1,

∂2H jk

∂x2 =
∂H jk
∂ f F2 +

∂H jk
∂r F1 +

∂H jk
∂ fx

F2x +
∂H jk
∂rx

F1x +
∂2H jk

∂ f 2 f 2
x +

∂2H jk

∂r2 r2
x +

∂2H jk

∂ f 2
x

F2
2+

+
∂2H jk

∂r2
x

F2
1 + 2

(
∂2H jk
∂ f∂r fxrx +

∂2H jk
∂ f∂ fx

fxF2 +
∂2H jk
∂ f∂rx

fxF1 +
∂2H jk
∂r∂rx

rxF1 +
∂2H jk
∂r∂ fx

rxF2 +
∂2H jk
∂ fx∂rx

F2F1

)
.

(52)

Functions u(x, t), w(x, t) are known, while the form of system (51) is determined by the equalities
(45). The terms with multipliers ut, wt, uxxx, wxxx cannot occur during substitutions F j, H j, j = 1, 2
and their first order derivatives F jx, H jx (only second-order derivatives from x may occur), hence,
comparing the coefficients for the couple ut, uxxx and wt, wxxx in formulas (45) it is necessary to assume

F j1 = −H j2, 2F j3 = H j4. (53)

Taking into account (53), equality (51) takes the form(
∂F j1
∂t −

∂2H j1

∂x2

)
u + F j1(ut + uxxx) +

(
∂F j3
∂t −

∂2H j3

∂x2

)
w + F j3(wt − 2wxxx) +

∂F j5
∂t −

∂2H j5

∂x2 =

=
(
2
∂H j1
∂x −

∂2F j1

∂x2

)
ux +

(
H j1 − 2

∂F j1
∂x

)
uxx + 2

(
∂H j3
∂x +

∂2F j3

∂x2

)
wx +

(
H j3 + 4

∂F j3
∂x

)
wxx.

(54)
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System (45) has no terms not containing uxx or wxx. Hence, differentiate (54) by variable uxx

(correspondingly, by wxx), and obtain the relation that must be fulfilled identically(
∂F j1
∂ fx

F21 +
∂F j1
∂rx

F11

)
u +

(
∂F j3
∂ fx

F21 +
∂F j3
∂rx

F11

)
w +

∂F j5
∂ fx

F21 +
∂F j5
∂rx

F11 + H j1 =

= 2
(
∂F j1
∂ f fx +

∂F j1
∂r rx +

∂F j1
∂ fx

F2 +
∂F j1
∂rx

F1

)
,

(55)

similarly for wxx: (
∂F j1
∂ fx

F23 +
∂F j1
∂rx

F13

)
u +

(
∂F j3
∂ fx

F23 +
∂F j3
∂rx

F13

)
w +

∂F j5
∂ fx

F23 +
∂F j5
∂rx

F13 =

= 1
2 H j3 + 2

(
∂F j3
∂ f fx +

∂F j3
∂r rx +

∂F j3
∂ fx

F2 +
∂F j3
∂rx

F1

)
.

(56)

As the equalities have functions u, w and do not have similar summands, the coefficients at these
functions must return to zero, hence, (55), (56) separate into system j = 1, 2:

∂F j1
∂ fx

F21 +
∂F j1
∂rx

F11 = 0,
∂F j3
∂ fx

F21 +
∂F j3
∂rx

F11 = 2
∂F j1
∂ fx

F23 + 2
∂F j1
∂rx

F13,

∂F j5
∂ fx

F21 +
∂F j5
∂rx

F11 + H j1 = 2
(
∂F j1
∂ f fx +

∂F j1
∂r rx +

∂F j1
∂ fx

F25 +
∂F j1
∂rx

F15

)
,

∂F j1
∂ fx

F23 +
∂F j1
∂rx

F13 = 2
∂F j3
∂ fx

F21 + 2
∂F j3
∂rx

F11,
∂F j3
∂ fx

F23 +
∂F j3
∂rx

F13 = 0,

∂F j5
∂ fx

F23 +
∂F j5
∂rx

F13 = 1
2 H j3 + 2

(
∂F j3
∂ f fx +

∂F j3
∂r rx +

∂F j3
∂ fx

F25 +
∂F j3
∂rx

F15

)
.

To make the first, second, fourth, and fifth equalities be fulfilled identically, assume F j1,
F j3 independent of functions fx, rx. Note that here the simplest variant is selected. Other relations
between functions F j1, F j3 are possible as well. The introduced assumptions are not final and may be
changed when constructing transformations in the event when, at the next steps, incompatible systems
or terms that cannot be eliminated occur. The third and sixth equalities yield

H j1 = 2
(
∂F j1

∂ f
fx +

∂F j1

∂r
rx

)
−
∂F j5

∂ fx
F21 −

∂F j5

∂rx
F11, (57)

H j3 = 2
∂F j5

∂ fx
F23 + 2

∂F j5

∂rx
F13 − 4

(
∂F j3

∂ f
fx +

∂F j3

∂r
rx

)
. (58)

As a result of the performed analysis, functions (4.5) were transformed into the form

F j = F j1( f , r)u + F j3( f , r)w + F j5( f , r, fx, rx),

H j =
(
2
[
∂F j1
∂ f fx +

∂F j1
∂r rx

]
−
∂F j5
∂ fx

F21 −
∂F j5
∂rx

F11

)
u− F j1( f , r)ux + 2F j3( f , r)wx+

+
(
2
∂F j5
∂ fx

F23 + 2
∂F j5
∂rx

F13 − 4
[
∂F j3
∂ f fx +

∂F j3
∂r rx

])
w + H j5( f , r, fx, rx).

(59)

Continue examining equality (54). See with what coefficient the term with the multiplier uux,
point (1) (point (2): wwx, point (3): uwx), enters the condition of consistency (54); for this, differentiate
(54) twice, first by variable u (by w in (2), and by u in (3)), then by variable ux (in (2), (3) by
variable wx). During the manipulations, interrelated equations are obtained, hence, describe their
construction separately.

1. After differentiation of (54) in relation to multiplier uux, the following summands remain

∂3F j1

∂t∂ux∂u
u +

∂2F j1

∂t∂ux
−
∂3H j1

∂x2∂ux
+

∂3F j3

∂t∂ux∂u
w +

∂3F j5

∂t∂ux∂u
− 2

∂2H j1

∂x∂u
+
∂3F j1

∂x2∂u
, (60)
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where, taking into account (59), derivatives are transformed into a simpler form

∂2H jk
∂x∂u =

∂2H jk
∂x∂ux

=
∂H jk
∂ fx

F21 +
∂H jk
∂rx

F11,
∂3F jk
∂t∂ux∂u = 0,

∂3F jk

∂x2∂u = −
∂2F jk
∂t∂ux

=
∂F jk
∂ f F21 +

∂F jk
∂r F11, j = 1, 2, k = 1, 3.

(61)

As a result of the performed differentiation of the condition of consistency get the coefficient (60),
that will be at the multiplier uux. As such term occurs in system (45), the expression (60) must
not be identically equal to zero but must be proportional to the coefficient F j1, with which the
terms ut + uxxx enter. The coefficient of proportionality conforms to the coefficient of term uux in
system (45) and equals −6. As a result, after substitution (57), expression (60) yields equation2

∂F j1

∂ f
−
∂2F j5

∂ f 2
x

F21 − 2
∂2F j5

∂rx∂ fx
F11

F21 +

2
∂F j1

∂r
−
∂2F j5

∂r2
x

F11

F11 = 2F j1. (62)

2. Perform similar actions in relation to the term wwx. In relationship (54) the following
summands remain

∂3F j1

∂t∂wx∂w
u +

∂2F j3

∂t∂wx
−
∂3H j3

∂x2∂wx
+

∂3F j3

∂t∂wx∂w
w +

∂3F j5

∂t∂wx∂w
− 2

∂2H j3

∂x∂w
− 2

∂3F j3

∂x2∂w
. (63)

where, taking into account (59), derivatives are transformed into a simpler form

∂2H jk
∂x∂w =

∂3H jk

∂x2∂wx
=

∂H jk
∂ fx

F23 +
∂H jk
∂rx

F13,
∂3F jk

∂t∂wx∂w = 0,

∂2F jk
∂t∂wx

= 2
∂3F jk

∂x2∂w = 2
∂F jk
∂ f F23 + 2

∂F jk
∂r F13, j = 1, 2, k = 1, 3.

(64)

Expression (63) must not be identically equal to zero but must be proportional to F j1 with the
coefficient of proportionality corresponding to the term wwx in system (45) and equal to −12µ.
As a result, after substitution (58), expression (63) yields equation∂2F j5

∂ f 2
x

F23 + 2
∂2F j5

∂rx∂ fx
F13 − 2

∂F j3

∂ f

F23 +

∂2F j5

∂r2
x

F13 − 2
∂F j3

∂r

F13 = 2µF j1. (65)

3. After differentiation (54) with multiplier uwx the following non-zero summands remain

∂3F j1

∂t∂wx∂u
u +

∂2F j1

∂t∂wx
−
∂3H j1

∂x2∂wx
+

∂3F j3

∂t∂wx∂u
w +

∂3F j5

∂t∂wx∂u
− 2

∂2H j3

∂x∂u
− 2

∂2F j3

∂x2∂u
. (66)

Specifying the form of the derivatives using the earlier found form (53), rewrite the remaining
coefficients (66) and equate 6F j3

2
∂F j1
∂ f F23 + 2

∂F j1
∂r F13 −

∂H j1
∂ fx

F23 −
∂H j1
∂rx

F13 − 2
∂H j3
∂ fx

F21−

−2
∂H j3
∂rx

F11 − 2
∂F j3
∂ f F21 − 2

∂F j3
∂r F11 = 6F j3,

(67)

or, after substitution of the earlier found functions (57), (58):

2
∂F j3

∂ f
F21 + 2

∂F j3

∂r
F11 −

∂2F j5

∂ f 2
x

F21 +
∂2F j5

∂rx∂ fx
F11

F23 −

 ∂2F j5

∂ fx∂rx
F21 +

∂2F j5

∂r2
x

F11

F13 = 2F j3. (68)



Axioms 2019, 8, 45 12 of 18

Now it is necessary to solve the system of six quasilinear partial second order differential equations
(62), (65), (68), j = 1, 2

2
(
∂F j1
∂ f F21 +

∂F j1
∂r F11

)
−

(
F21

∂
∂ fx

+ F11
∂
∂rx

)2
F j5 = 2F j1,(

F23
∂
∂ fx

+ F13
∂
∂rx

)2
F j5 − 2

(
∂F j3
∂ f F23 +

∂F j3
∂r F13

)
= 2µF j1,

2
(
∂F j3
∂ f F21 +

∂F j3
∂r F11

)
−

(
F23

∂
∂ fx

+ F13
∂
∂rx

)(
F21

∂
∂ fx

+ F11
∂
∂rx

)
F j5 = 2F j3.

(69)

In the resulting system (69) the summands F j1 f F21 +F j1rF11, F j3 f F23 +F j3rF13, and F j3 f F21 +F j3rF11

have occurred that depend only upon variables f , r, and operators of second order differentiation
by variables fx, rx, for which the dependence upon variables f , r is parametric. Obviously,
the system decomposes into two subsystems determining the dependence upon variables fx, rx:(

F21
∂
∂ fx

+ F11
∂
∂rx

)2
F j5 = 0,

(
F23

∂
∂ fx

+ F13
∂
∂rx

)2
F j5 = 0,(

F23
∂
∂ fx

+ F13
∂
∂rx

)(
F21

∂
∂ fx

+ F11
∂
∂rx

)
F j5 = 0,

(70)

and the dependence upon variables f , r:

∂F j1

∂ f
F21 +

∂F j1

∂r
F11 = F j1,

∂F j3

∂ f
F23 +

∂F j3

∂r
F13 = −µF j1,

∂F j3

∂ f
F21 +

∂F j3

∂r
F11 = F j3. (71)

It can be seen that both systems (70), (71) are over-determined, hence, we will not search for their
solutions here (they may exist; this variant has not been examined). The second possibility is
when the action of the second order differential operators on function F j5 yields the expression,
dependent only upon variables f , r. This is possible if F j5 has quadratic dependence upon
variables fx, rx; write it in the form:

F j5 = s j1( f , r) f 2
x + s j2( f , r) fxrx + s j3( f , r)r2

x + s j4( f , r) fx + s j5( f , r)rx + s j6( f , r). (72)

In this case, system (69) takes the form:

F21
∂F j1
∂ f + F11

∂F j1
∂r − s j1F2

21 − F21F11s j2 − s j3F2
11 = F j1,

s j1F2
23 + F23F13s j2 + s j3F2

13 − F23
∂F j3
∂ f − F13

∂F j3
∂r = µF j1,

2
(
F21

∂F j3
∂ f + F11

∂F j3
∂r

)
− F23[2s j1F21 + F11s j2] − F13[F21s j2 + 2s j3F11] = 2F j3.

(73)

The first equation yields the system, relating two functions F11, F21. Select the simplest solutions
(such an approach is justified because the Bäcklund transformations must, if possible, be of
simple form)

F21 = 0, F11 = a− const (74)

then, it must be additionally assumed

s23 = 0, s13 = −a−1. (75)
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Taking into account (74), (75), the remaining equalities take the form

s11F2
23 + s12F23F13 −

1
a F2

13 −

(
F23

∂
∂ f + F13

∂
∂r

)
F13 = µa, 2a∂F13

∂r = as12F23,

s21F2
23 + s22F23F13 −

(
F23

∂
∂ f + F13

∂
∂r

)
F23 = 0, ∂F23

∂r = 2+as22
2a F23.

(76)

Select, if possible, simpler solutions; for this suppose that F13, F23 depend upon f and do not
depend upon r, then

s12 = 0, s22 = −2a−1
− const. (77)

Only two first-order differential equations remain

s11F2
23 −

1
a

F2
13 − F23

∂F13

∂ f
= µa, s21F2

23 −
2
a

F23F13 − F23
∂F23

∂ f
= 0 (78)

whose solutions may be varied. Let

F13 = 0, s11 = µae−2 f , s21 = 1 e f = F23. (79)

As a result, formulas (59) are transformed into the form

F1 = au + aµe−2 f f 2
x −

1
a r2

x + S1, F2 = e f w + f 2
x −

2
a fxrx + S2,

H1 = (2rx − as15)u− aux + 2
(
2aµe− f fx + e f s14

)
w + H15( f , r, fx, rx),

H2 = [2 fx − as25]u + 2e f
(
s24 −

2
a rx

)
w + 2e f wx + H25( f , r, fx, rx),

(80)

where, for compactness of entry

S1 = s14( f , r) fx + s15( f , r)rx + s16( f , r),

S2 = s24( f , r) fx + s25( f , r)rx + s26( f , r).

Return to the condition of consistency (54)

a(ut + uxxx) +
∂F15
∂t −

∂2H15
∂x2 =

∂2(H11u+H13w)

∂x2 ,

e f (wt − 2wxxx) +
∂F25
∂t −

∂2H25
∂x2 =

∂2(H21u+H23w)

∂x2 + e f
[
4 fxwxx + 2

(
f 2
x + F2

)
wx −H2w

]
,

(81)

and find the dependence upon u2 (1) (w2, step (2), uw, step (3)); for this differentiate by u2 (1) (by
variable w2 at step (2), and by variable uw at step (3)). By reason of the only linear dependence
F j, H j, H jkx in relation to function u (52), the condition (81) will, after differentiation by u2 taking
the form

∂2F j5

∂t∂(u2)
−

∂3H j5

∂x2∂(u2)
=

∂

∂(u2)

∂2H j1

∂x2 u

+ ∂3H j3

∂x2∂(u2)
w, j = 1, 2, (82)

that yields
∂2H15

∂r2
x

=
∂s15

∂r
,

∂2H25

∂r2
x

=
∂s25

∂r
. (83)
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4. Perform the second step of the algorithm. According to (52), and, taking into account the linear
character of F j, H j, H jkx in relation to function w, (81) will, after differentiation, take the form:

∂2F15
∂t∂(w2)

−
∂3H15

∂x2∂(w2)
= ∂

∂(w2)

(
∂2H13
∂x2 w

)
+ ∂3H11

∂x2∂(w2)
u,

∂2F25
∂t∂(w2)

−
∂3H25

∂x2∂(w2)
= ∂

∂(w2)

(
∂2H23
∂x2 w

)
+ ∂3H21

∂x2∂(w2)
u− e f H23.

(84)

After transformations, the relationship (83) takes the form

4aµs15 − e2 f ∂
2H15

∂ f 2
x

= 2e2 f
(
s14 +

∂s14

∂ f

)
+ 4aµs24, 4aµs25 − e2 f ∂

2H25

∂ f 2
x

= −
4
a

e2 f s14. (85)

5. The condition of consistency (81) for the values j = 1, 2 yields the system:

∂2F15
∂t∂(uw)

−
∂3H15

∂x2∂(uw)
= ∂

∂(uw)

(
∂2H11
∂x2 u +

∂2H13
∂x2 w

)
,

∂2F25
∂t∂(uw)

−
∂3H25

∂x2∂(uw)
= ∂

∂(uw)

(
∂2H21
∂x2 u + ∂2H23

∂x2 w
)
− e f H21.

(86)

Using the earlier found form of coefficients and their dependence upon variables rx, r, fx, f ,
obtain from (85) two new differential equations:

2a ∂
2H15
∂ fx∂rx

− a∂s15
∂ f + 4s14 + 2a∂s14

∂r + 4a2µe−2 f s25 = 0,

2a ∂
2H25
∂ fx∂rx

+ 4s24 − a∂s25
∂ f + as25 + 2a∂s24

∂r − 4s15 = 0.
(87)

Equalities (83), (85), (87) do not contain in explicit form the variables fx, rx; this allows to suppose
that functions H j5 = 0, s jk = 0, j = 1, 2, k = 4, 5, 6. Perform a check having returned to
equalities (4.37), where

∂F15

∂t
= −2aµe−2 f f 2

x H2 + 2aµe−2 f fxH2x −
2
a

rxH1x,
∂F25

∂t
= 2

(
fx −

1
a

rx

)
H2x −

2
a

fxH1x,

∂H11

∂x
= 2F1,

∂H13

∂x
= 4aµe− f

(
F2 − f 2

x

)
,

∂H21

∂x
= 2F2,

∂H23

∂x
= −

4
a

e f (rx fx + F1),

∂2H11
∂x2 = 2F1x, ∂2H13

∂x2 = 4aµe− f
(
F2x + f 3

x − 3 fxF2
)
, ∂2H21

∂x2 = 2F2x,

∂2H23
∂x2 = − 4

a e f
(
rxF2 + F1x + rx f 2

x + 2 fxF1
)
, ∂F23

∂t = e f H2, ∂2F23
∂x2 = e f F2 + e f f 2

x ,

after substitution

a(ut + uxxx) = 6auxu + 12aµwxw, wt − 2wxxx = −6wxu.

It can be seen that equalities coincide, hence, a Bäcklund transformation of the form (80),
where s jk = 0, H j5 = 0, j = 1, 2, k = 4, 5, 6 has been found.

Theorem 5. Nonlinear systems of partial differential equations (45) and

rt = 2a−2r3
x − rxxx + 6µe−2 f fx

(
a fxx − a f 2

x + fxrx
)
,

ft = 6a−1 fx
(
rxx − a−1r2

x − a fxx
)
+ 2 f 3

x [1− µe−2 f ] + 2 fxxx,
(88)
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are interrelated by the Bäcklund transformations of the form:

rxx = au + aµe−2 f f 2
x − a−1r2

x, fxx = e f w + f 2
x − 2a−1 fxrx,

rt = 2rxu− aux + 4aµe− f fxw, ft = 2 fxu− 4a−1e f rxw + 2e f wx,
(89)

where u(x, t), w(x, t), f (x, t), r(x, t) differentiable functions of two independent variables, a , 0, µ are
arbitrary non-zero parameters.

Another form of transformation may be obtained, as well. For this, return in the procedure of
examination, to the moment that determines the form, i.e., to system (78). Such an approach has been
implemented in Reference [17].

5. Analog of Miura Transformations

We demonstrate how the results obtained in the previous section can be used. Use the earlier
obtained Bäcklund transformation (89) and substitute the functions f (x, t), r(x, t) by the functions
g(x, t), v(x, t): (

e− f (x,t)
)
x
= g(x, t), rx(x, t) = v(x, t), (90)

To perform the complete substitution with the new functions, the second couple of equalities (89)
must be previously differentiated by variable x. The substitution yields the following relation

vx = au + aµg2
− a−1v2, gx = −2a−1gv−w,

vt =
∂
∂x (2vu− 4aµgw− aux), gt = 2 ∂

∂x

(
gu + 2

a vw−wx
)
.

(91)

The first line yields the explicit form of functions u(x, t), w(x, t) via the two other functions:

u = a−1vx + a−2v2
− µg2, w = −2a−1gv− gx. (92)

Supposing that g(x, t) = v(x, t), the resulting relation has terms similar to the known Miura
transformation (q = v2

− ivx) [22], which determines the conformity between the KdV equation and
the modified KdV equation, hence, (92) may be considered a certain analog of this transformation.

Substitute (92) into the equalities of the second line (91), and get the system of two equations

vt =
(
2a−2v3

− vxx + 6µg2v + 6aµggx
)
x
, gt = 2

[
3a−2g

(
avx − v2

)
− µg3 + gxx

]
x
, (93)

each of which is a perturbation of modified KdV equation.

Theorem 6. Systems of partial differential Equations (45) and (93) are related by transformations (92).

Proof of Theorem 6. Substitute (92) into (90). Transform the first equation and separate the total
derivatives

ut + uxxx − 12µwwx − 6uux = 1
a
∂
∂x

[
vt + vxxx − 6 1

a2 v2vx
]
−

6
aµ

∂2

∂x2

[
g2v + aggx

]
+

+ 2
a2 v

[
vt +

(
vxx −

2
a2 v3
− 6µg2v− 6aµggx

)
x

]
+ 2µg

[
2
(
gxx − µg3 + 3

a2 g{avx − v2
}

)
x
− gt

]
.

In the resulting equality, the linear operator (a−1∂x + 2a−2v) may be removed:

ut + uxxx − 12µwwx − 6uux =
(

1
a
∂
∂x + 2

a2 v
)[

vt +
(
vxx −

2
a2 v3
− 6µg2v− 6aµggx

)
x

]
+

+2µg
[
2
(
gxx − µg3 + 3

a2 g{avx − v2
}

)
x
− gt

]
.

(94)
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Do the same with the second equality of system (45) and factor out the operator (∂x + 2a−1v).

wt − 2wxxx + 6uwx =
(

2
a v + ∂

∂x

)[
2
(
gxx − µg3 + 3

a gvx −
3
a2 gv2

)
x
− gt

]
+

+ 2
a g

([
2
a2 v3
− vxx + 6µvg2 + 6aµggx

]
x
− vt

)
.

(95)

If functions u(x, t), w(x, t) are solutions of system (45) and u(x, t) , 0, w(x, t) , 0, then, at g(x, t) ,
0, v(x, t) , 0, it follows from (94) and (95) that functions g(x, t), v(x, t) are solutions of system (93). �

Corollary 9. Complexification of Korteweg-de Vries equation

qt = 3(q− q)qx + 6qxq− 0, 5(3q− q)xxx, (96)

and
st =

[
s
(
3s2
− s2

)
+ 3(s− s)sx + 0, 5(s− 3s)xx

]
x
, (97)

are related by transformation
q = sx + s2, (98)

where q(x, t), s(x, t) are complex functions of independent variables x, t.

The pattern of proof fully coincides with the proof of the theorem above, where u(x, t) = Req(x, t),
w(x, t) = Ims(x, t), v(x, t) = Res(x, t), g(x, t) = Ims(x, t), is supposed to contain parameters a = 1,
µ = 1.

Assuming in equality (97) that s(x, t) is a real function, get a routinely modified KdV equation st =

6s2sx − sxxx, hence, (97) may be considered as a modification of the KdV equation complexification [22].
In the classic case, the resulting transformations can be used to build exact solutions. Let us show

that the found relation (91) of the two systems (45) and (93) allows us to do this. We take, as the
solution of system (45), the following trivial functions

w(x, t) = 0, u(x, t) = β− const. (99)

Using (91) and integrating, we obtain the solution of system (93) in the form of traveling waves:

g(x, t) =
[√

C2
1 +

µ
β ch

(
C2 − 2

√
βx− 4β

√
βt

)
−C1

]−1
,

v(x, t) = −a
√

C2
1 +

µ
β sh

(
C2 − 2

√
βx− 4β

√
βt

)[√
C2

1 +
µ
β ch

(
C2 − 2

√
βx− 4β

√
βt

)
−C1

]−1
,

where C1 and C2 are the arbitrary integration constants. At C1 = 0 we obtain classical solutions:

g(x, t) =

√
β

µ
ch −1

(
C2 − 2

√
βx− 4β

√
βt

)
, v(x, t) = −ath

(
C2 − 2

√
βx− 4β

√
βt

)
.

6. Conclusions

1. In this work, new Bäcklund transformations (BTs) have been obtained for the particular cases
of Liouville equations with the exponential nonlinearity that has a multiplier dependent upon
independent variables and first-order derivatives from the function.

2. BT for three-dimensional Liouville equation has been constructed.
3. A solution of coupled pairs of equations using BT has been found.
4. Clairin’s method for the system of two third-order partial differential equations has

been generalized and algorithm for construction of BTs for these dynamic systems has
been demonstrated.



Axioms 2019, 8, 45 17 of 18

5. Non-uniqueness of differential relations has been shown because the application of special
conditions to differential forms leads to different dynamic systems.

6. Analog of Miura transformations that relates the initial system to the system of perturbed modified
KdV equations has been determined.

7. Natural transition of KdV to mKdV using Miura transformations has been received from the
relation of cKdV and complexification of mKdV with an analog of Miura transformations,
supposing that the function is real.
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