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Abstract: In this paper, we provide a formal proof of the existence of a polynomial solution
of fixed degree for a second-order divided-difference equation of the hypergeometric type on
non-uniform lattices, generalizing therefore previous work proving existence of the polynomial
solution for second-order differential, difference or q-difference equation of hypergeometric type.
This is achieved by studying the properties of the mean operator and the divided-difference
operator as well as by defining explicitly, the right and the “left” inverse for the second operator.
The method constructed to provide this formal proof is likely to play an important role in the
characterization of orthogonal polynomials on non-uniform lattices and might also be used to
provide hypergeometric representation (when it does exist) of the second solution—non polynomial
solution—of a second-order divided-difference equation of hypergeometric type.

Keywords: second-order differential/difference/q-difference equation of hypergeometric type;
non-uniform lattices; divided-difference equations; polynomial solution

1. Introduction

Classical orthogonal polynomials of a continuous variable (Pn) are known to satisfy a second-order
differential equation of hypergeometric type

σ(x) y′′(x) + τ(x) y′(x) + λ y(x) = 0, (1)

where σ is a polynomial of degree at most 2, τ is a first degree polynomial and λ is a constant with
respect to x.

In [1,2], it is shown that Equation (1) has a polynomial solution of exactly n degree for a specific
given constant λ = λn. This is achieved mainly by showing that :

- the nth derivative y(n) of any solution y of (1) satisfies an equation of the same type
(hypergeometric aspect), that is, an equation of the form

σ(x) y′′(x) + τn(x) y′(x) + λn y(x) = 0, (2)
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where τn is a first degree polynomial and λn is a constant given by

τn(x) = τ + n σ′(x), λn = λ + n τ′ +
n(n− 1)

2
σ′′. (3)

- Any solution of (2) can be written as the nth derivative of a solution of (1), provided that
λj 6= 0, j = 1...n− 1.

The fact that the constant solution of (2) when λn = 0 is the nth derivative of a solution of (1)
leads to the existence of a polynomial solution of (1), of exactly n degree, when

λ = λn = −n τ′ − n(n− 1)
2

σ′′.

This result proves not only the existence of a polynomial solution for Equation (1) but also
allows for establishing the Rodrigues formula expressing the polynomial solution in the term of the
nth derivative:

Pn(x) =
Bn

ρ(x)
[σn(x) ρ(x)](n) ,

where Bn is a constant and ρ is the weight function satisfying the Pearson equation

(σ(x) ρ(x))′ = τ(x) ρ(x).

It is worth mentioning that Hermite, Laguerre, Jacobi and Bessel polynomials are the polynomial
eigenfunctions of the second-order linear differential operation given in (1).

Using the same approach, similar results have been established in [3] (See also [4]) for the classical
orthogonal polynomials of a discrete variable satisfying instead a second-order difference equation of
hypergeometric type

σ(x)∆∇y(x) + τ(x)∆y(x) + λn y(x) = 0, (4)

where ∆ and ∇ are the forward and the backward operators defined by

∆ f (s) = f (s + 1)− f (s), ∇ f (s) = f (s)− f (s− 1).

Furthermore, it should be noticed that Charlier, Krawtchuk, Meixner and Hahn polynomials are
the polynomial eigenfunctions of the second-order linear difference operation given in (4).

The same result can be established in the same way to for the classical orthogonal polynomials
of a q-discrete variable satisfying a second-order q-difference equation of hypergeometric type [5]
(See also [6,7])

σ(x) D2
qy(x) + τ(x) Dqy(x) + λn y(x) = 0, (5)

where Dq is the Hahn operator [8] defined by

Dq( f (x)) =
f (qx)− f (x)
(q− 1) x

, x 6= 0, Dq f (0) := f ′(0),

provided that f ′(0) exists. Orthogonal polynomials which are eigenfunctions of the second-order
q-difference operator given defined by (5) are [5]: Big q-Jacobi, Big q-Laguerre, Little q-Jacobi,
Little q-Laguerre (Wall), q-Laguerre, Alternative q-Charlier, Al-Salam–Carlitz I, Al-Salam–Carlitz II,
Stieltjes–Wigert, Discrete q–Hermite I, Discrete q–Hermite II, q-Hahn, q-Meixner, Quantum
q-Krawtchouk, q-Krawtchouk, Affine q-Krawtchouk, the q-Charlier and the q-Charlier II polynomials.
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Classical orthogonal polynomials on non-uniform lattices (including but not limited to
Askey–Wilson polynomials, Racah and q-Racah polynomials), are known to satisfy a second-order
divided-difference equation of the form [9,10] (see also [11])

φ(x(s))
∆

∆x(s− 1
2 )

[
∇y(x(s))
∇x(s)

]
+

ψ(x(s))
2

[
∆y(x(s))

∆x(s)
+
∇y(x(s))
∇x(s)

]
+ λn y(x(s)) = 0, (6)

where ψ and φ are polynomials of degree 1 and at most 2, respectively; λn is a constant depending on
n and on the leading coefficients of φ and ψ. The lattice x(s) is defined by [9,10]

x(s) =

{
c1 q−s + c2 qs + c3 if q 6= 1,
c4 s2 + c5 s + c6 if q = 1,

(7)

is known as non-uniform lattice and fulfills various important properties.
Equation (6) can be transformed into equation [12]

φ(x(s))D2
xy(x(s)) + ψ(x(s))SxDxy(x(s)) + λny(x(s)) = 0, (8)

called divided-difference equation of the hypergeometric type by means of the two companion
operators Dx (called divided-difference operator) and Sx (called mean operator) defined as [9,10,12,13]

Dx f (x(s)) =
f (x(s + 1

2 ))− f (x(s− 1
2 ))

x(s + 1
2 )− x(s− 1

2 )
, Sx f (x(s)) =

f (x(s + 1
2 )) + f (x(s− 1

2 ))

2
. (9)

Using appropriate bases, computer algebra software has been used to solve divided-difference
Equation (8) for specific families of classical orthogonal polynomials on a non-uniform lattice. For some
special values of the parameter for the specific case of Askey–Wilson polynomials, non-polynomial
solution has been recovered together with the polynomial one [14] (see page 15, Equations (62) and (63)).
In addition, the operators Dx and Sx have played a decisive role not only for establishing the functional
approach of the characterization theorem of classical orthogonal polynomials on non-uniform lattices,
but also for providing algorithmic solution to linear homogeneous divided-difference equations with
polynomial coefficients, allowing to solve explicitly [13] the first-order divided-difference equations
satisfied by the basic exponential function

Dxy(x(s)) =
2wq

1
4

1− q
y(x(s)),

and the second-order divided-difference equation satisfied by the basic trigonometric functions

D2
xy(x(s)) = −

(
2wq

1
4

1− q

)2

y(x(s)),

where w is a given constant.
The aim of this work is:

1. redto define the right and the “left” inverses of the operator Dx;
2. to provide a formal proof of the existence of a polynomial solution of a preassigned degree of the

divided-difference equation of hypergeometric type (8), extending and generalising therefore—by
means of specialisation and limiting situations on the lattice x(s)—similar results obtained for
second-order differential, difference or q-difference equation of hypergeometric type.
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2. Preliminary Results: Known and New Properties

Since the main result of this paper is based on the operators Dx and Sx which are defined by using
the lattice x(s), we will provide in this section some known and basic properties of x(s), Dx and Sx. We
will also derive new properties such as the right and the “left” inverses of the operator Dx, required in
the next section.

2.1. Known Properties of the Lattice x(s)

Taking into account the notation

xµ(s) = x(s +
µ

2
),

the non-uniform lattice x(s) defined by Equation (7) satisfies

x(s + k)− x(s) = γk∇ xk+1(s), (10)
x(s + k) + x(s)

2
= αk xk(s) + βk, (11)

for k = 0, 1, . . . , with
α0 = 1, α1 = α, β0 = 0, β1 = β, γ0 = 0, γ1 = 1, (12)

where the sequences (αk), (βk), (γk) satisfy the following relations:

αk+1 − 2 α αk + αk−1 = 0,

βk+1 − 2 βk + βk−1 = 2 β αk, (13)

γk+1 − γk−1 = 2 αk,

and are given explicitly by [9,10]

αn = 1, βn = β n2, γn = n, for α = 1, (14)

and

αn =
q

n
2 + q−

n
2

2
, βn =

β(1− αn)

1− α
, γn =

q
n
2 − q−

n
2

q
1
2 − q−

1
2

, for α =
q

1
2 + q−

1
2

2
. (15)

2.2. Known Properties of the Operators Dx and Sx

The operators Sx and Dx fulfil the so-called Product rules I [13,14]:

Dx ( f (x(s))g(x(s))) = Sx f (x(s))Dxg(x(s)) +Dx f (x(s)) Sxg(x(s)), (16)

Sx ( f (x(s))g(x(s))) = U2(x(s))Dx f (x(s))Dxg(x(s)) + Sx f (x(s)) Sxg(x(s)), (17)

where U2 is a polynomial of degree 2

U2(x(s)) = (α2 − 1) x2(s) + 2 β (α + 1) x(s) + ηx, (18)

and ηx is a constant given by [14]

ηx =
x2(0) + x2(1)

4α2 − (2α2 − 1)
2α2 x(0) x(1)− β (α + 1)

α2 (x(0) + x(1)) +
β2 (α + 1)2

α2 . (19)

The operators Dx and Sx also satisfy the so-called Product Rules II [13,14]:

Dx Sx = α Sx Dx + U1(x(s))D2
x; S2

x = U1(x(s)) Sx Dx + α U2(x(s))D2
x + I, (20)
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where I is the identity operator I f (x) = f (x), and

U1(x(s)) = (α2 − 1) x(s) + β (α + 1).

2.3. An Appropriate Basis for the Operators Dx and Sx

Searching for a polynomial basis on which the action of the companion operators will give a
linear combination of at most two elements of the basis, Foupouagnigni et al. proved in [14] that the
polynomial Fn defined by

Fn(x(s)) = Fn(x(s), x(ε)), with Fn(x(s), x(ε)) =
n

∏
j=1

[
x(s)− xj(ε)

]
, (21)

where ε is the unique solution (provided that the lattice x(s) is quadratic or q-quadratic: i.e.,
the constants cj in (7) satisfy c1 c2 6= 0 or c4 6= 0) in the variable t of the equation x1(t) = x(t),
is the right basis for the operators Sx and Dx because it satisfies the following properties

DxFn(x(s)) = γn Fn−1(x(s)), (22)

SxFn(x(s)) = αn Fn(x(s)) +
γn

2
∇xn+1(zx)Fn−1(x(s)), (23)

where the constants αn and γn are given in (14) and (15).
After reviewing some properties of the operators Dx and Sx, we now state and prove the following

proposition providing the left and right inverse of the operator Dx, to be used in the next section to
complete the proof of the main theorem of this paper.

Proposition 1.
Let Fx be a linear operator defined on the basis (Fn)n by

Fx Fn =
Fn+1

γn+1
, n ≥ 0, Fx0 := 0. (24)

Then, Fx satisfies the following relations:

Dx Fx = I, Fx Dx = I− δx(ε), (25)

where I is the identity operator and δx(ε) is the Dirac delta distribution defined by

〈δx(ε), P〉 = P(x(ε)), ∀P,

with ε is defined in (21).

Proof. For all positive integer n, Fn defined by (21) is a polynomial of degree exactly n. (Fn) is therefore
a basis of C[x]. Letting f ∈ Cn[x], there exist f0, . . . , fn ∈ C[x] such that

f (x(s)) =
n

∑
j=0

f jFj(x(s)).

We have

〈δx(ε), f 〉 = f (x(ε)) =
n

∑
j=1

f jFj(x(ε)) + f0 = f0. (26)
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DxFx f (x(s)) =
n

∑
j=0

f jDxFxFj(x(s))

=
n

∑
j=0

f jDxFj+1(x(s))
γj+1

=
n

∑
j=0

f jFj(x(s)) = f (x(s)).

Hence, the first part of Relation (24) holds. Using (26), we have

FxDx f (x(s)) + 〈δε, f 〉 = FxDx f (x(s)) + f0

=
n

∑
j=0

f jFxDxFj(x(s)) + f0

=
n

∑
j=1

f jγjFxFj−1(x(s)) + f0

=
n

∑
j=1

f jFj(x(s)) + f0

= f (x(s)).

The second part of (25) is therefore satisfied.

3. Existence of the Polynomial Solution of the Divided-Difference Equation of the
Hypergeometric Type

Having stated and proved required properties of the operators Dx and Sx, we will now state and
prove the main theorem of this paper.

Theorem 1. Let n be a nonnegative integer, ψ and φ be two polynomials of degree 1 and at most 2, respectively,
such that

∀ k ∈ N, ηk := φ2 γk + ψ1 αk 6= 0. (27)

Then, the divided-difference equation

φ(x(s))D2
xy(x(s)) + ψ(x(s)) SxDxy(x(s)) + λn,0 y(x(s)) = 0, (28)

with
λn,0 = −γn (φ2 γn−1 + ψ1 αn−1) = −γnηn−1, (29)

where ψ1 and φ2 are leading coefficients of polynomials ψ and φ respectively, has a polynomial solution of exactly
n degree.

The proof of Theorem 1 will be organized as follows: we split the proof in five lemmas which we
first state, prove, and then put these lemmas together in combination with Proposition 1 to deduce the
proof of this theorem.

Lemma 1.
If the function y0 is a solution of (28), then the function y1 = Dx y0 satisfies

φ[1](x(s))D2
xy(x(s)) + ψ[1](x(s)) SxDxy(x(s)) + λn,1 y(x(s)) = 0, (30)
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where 
φ[1](x(s)) = Sxφ(x(s)) + α U2(x(s))Dxψ + U1(x(s)) Sxψ(x(s)),
ψ[1](x(s)) = Dxφ(x(s)) + U1(x(s))Dxψ + α Sxψ(x(s)),
λn,1 = λn,0 +Dxψ.

(31)

Proof. Assume that y0 satisfies (28). Applying the operator Dx to (28) in which y is replaced by y0 and
using the product rule I in (16) and (17), we obtain

Dxφ(x(s)) SxD2
xy0(x(s)) + Sxφ(x(s))D3

xy0(x(s)) +Dxψ(x(s)) S2
xDxy0(x(s))

+Sxψ(x(s))DxSxDxy0(x(s)) + λn,0 Dxy0(x(s)) = 0.

Using the product rules II in (20) to replace S2
x and DxSx in the previous equation, we have

φ[1](x(s))D3
xy0(x(s)) + ψ[1](x(s)) SxD2

xy0(x(s)) + λn,1 Dxy0(x(s)) = 0,

where φ[1](x(s)), ψ[1](x(s)) and λn,1 are defined by (31). Therefore, y1 = Dx y0 is a solution of
Equation (30).

Lemma 2.
If the function y0 is a solution of (28), then the function yk = Dk

x y0 is a solution of the equation

φ[k](x(s))D2
xy(x(s)) + ψ[k](x(s)) SxDxy(x(s)) + λn,k y(x(s)) = 0, (32)

where the polynomials φ[k], ψ[k] and the constant λn,k satisfy
φ[k+1](x(s)) = Sxφ[k](x(s)) + α U2(x(s))Dxψ[k] + U1(x(s)) Sxψ[k](x(s)),
ψ[k+1](x(s)) = Dxφ[k](x(s)) + U1(x(s))Dxψ[k] + α Sxψ[k](x(s)),
λn,k+1 = λn,k +Dxψ[k],

(33)

with the following initial values: φ[0] := φ, ψ[0] := ψ.

Proof. Lemma 1 assures the validity of the result for k = 1.
Let k be a positive integer. Assume that yk is solution of Equation (32). Applying the operator Dx

to (32) in which y is replaced by yk and using the Product Rules I, we obtain

Dxφ[k](x(s)) SxD2
xyk(x(s)) + Sxφ[k](x(s))D3

xyk(x(s)) +Dxψ[k](x(s)) S2
xDxyk(x(s))

+Sxψ[k](x(s))DxSxDxyk(x(s)) + λn,k Dxyk(x(s)) = 0.

Using the products rule II to replace S2
x and DxSx in the previous equation, we have

φ[k+1](x(s))D3
xyk(x(s)) + ψ[k+1](x(s)) SxD2

xyk(x(s)) + λn,k+1 Dxyk(x(s)) = 0,

where φ[k+1](x(s)), ψ[k+1](x(s)) and λn,k+1 are defined by (33). Thus, yk+1 = Dx yk satisfies

φ[k+1](x(s))D2
xyk+1(x(s)) + ψ[k+1](x(s)) SxDxyk+1(x(s)) + λn,k+1 yk+1(x(s)) = 0.

Lemma 3.
If a given function y1 satisfies (30) with λn,0 6= 0, then there exists a function y0 satisfying (28) such that

y1 = Dxy0. (34)
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Proof. Let y1 be a solution of (30) with λn,0 6= 0. If there would exist a solution v0 of (28) such that
y1 = Dx v0, then from (28) we can express v0 as:

v0(x(s)) = − 1
λn,0

[φ(x(s))Dxy1(x(s)) + ψ(x(s)) Sxy1(x(s))] . (35)

Now, it remains to verify that the function v0 defined in terms of y1 by (35) satisfies Equation (28) with

Dxv0 = y1. (36)

By applying Dx to (35) and using product rules I, II and the fact that y1 is solution of (30), we get

−λn,0 Dxv0(x(s)) = Dx [φ(x(s))Dxy1(x(s)) + ψ(x(s)) Sxy1(x(s))]

= φ[1](x(s))D2
xy1(x(s)) + ψ[1](x(s)) SxDxy1(x(s)) + (λn,1 − λn,0) y1(x(s))

= −λn,0 y1(x(s)).

Therefore, Dxv0 = y1 since λn,0 6= 0.
We prove that v0 is solution of (28) by replacing y1 in the Equation (35) by Dxv0.

Lemma 4.
For any positive integer n, the coefficients λn,k defined by relation (33) satisfy

λn,k = λn,0 − λk,0, 0 ≤ k ≤ n, (37)

λn,k 6= 0, for 0 ≤ k ≤ n− 1, and (n, k) 6= (0, 0), (38)

where
λn,0 = −γn(φ2γn−1 + ψ1αn−1).

Proof. If we denote by φ[k](x(s)) = φ
[k]
2 F2(x(s)) + φ

[k]
1 F1(x(s)) + φ

[k]
0 and ψ[k](x(s)) = ψ

[k]
1 F1(x(s)) +

ψ
[k]
0 , then from (33), we have the following system of recurrence equation

φ
[k+1]
2 = α2 φ

[k]
2 + α γ1(α

2 − 1)ψ
[k]
1 + α1 (α

2 − 1)ψ
[k]
1 ,

ψ
[k+1]
1 = γ2 φ

[k]
2 + (α2 − 1) γ1 ψ

[k]
1 + α α1 ψ

[k]
1 ,

λn,k+1 = λn,k + ψ
[k]
1 .

Using relations
α2 = 2 α2 − 1, γ2 = 2 α,

derived from Equations (12) and (13), the previous system of equations becomes
φ
[k+1]
2 = (2 α2 − 1) φ

[k]
2 + 2 α (α2 − 1)ψ

[k]
1 ,

ψ
[k+1]
1 = 2 α φ

[k]
2 + (2 α2 − 1)ψ

[k]
1 ,

λn,k+1 = λn,k + ψ
[k]
1 .

Solving this system of recurrence equations with the initial values φ
[0]
2 = φ2, ψ

[0]
1 = ψ1, we obtain for

the q-quadratic lattice

λn,k =
(qk − qn)

(q− 1)2qkqn

[
√

q(qkqn − q)φ2 +
1
2
(q− 1)(q + qkqn)ψ1

]
. (39)

Using the definition of λn,0 which of course coincides with the one of λn,k for k = 0, we derive (37)
from (39).
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Solving the following the equation
λn,k = 0,

in terms of the unknown k keeping in mind (27), gives a unique solution k = n. Thus, relation
(38) is satisfied. It can easily be proved in the same way that relation (38) is satisfied for the
quadratic lattice.

Lemma 5.
Let n be a fixed positive integer and let k be an integer such that 0 ≤ k ≤ n. Then, if yk is a solution of
Equation (32), then there exists y0 solution of Equation (28) such that

yk = Dk
x y0.

Proof. Let k be a nonnegative integer with k ≤ n. Assume that yk satisfies (32). Then, we obtain that
there exists a function yk−1 solution of the equation obtained by replacing k in (32) by k− 1, namely,

φ[k−1](x(s))D2
xy(x(s)) + ψ[k−1](x(s)) SxDxy(x(s)) + λn,k−1 y(x(s)) = 0, (40)

such that
yk = Dx yk−1.

This is achieved using the fact that λn,k−1 6= 0 thanks to Lemma 4, and also using Lemma 3 but with
the functions y0 and y1 replaced, respectively, by the functions yk−1 and yk while Equation (28) is
replaced by Equation (40). In addition, Equation (30) is replaced by the Equation (32).

The proof is completed by repeating the same process for yk−1, yk−2, . . . , y1 and using
Lemmas 3 and 4.

Proof of Theorem 1. Since, for k = n, λn,k = λn,n = 0 thanks to (37), Equation (32) admits a constant
solution, namely F0(x(s)) = 1. We therefore deduce from Lemma 5 that there exists a function v0

solution of (28) such that
F0(x(s)) = Dn

x v0(x(s)). (41)

Next, we apply the operator Fx on both members of the previous equation and deduce by applying
the second relation of Equation (25) of Proposition 1 that

Fx F0(x(s)) = FxDx Dn−1
x v0(x(s)) = Dn−1

x v0(x(s))−Dn−1
x v0(x(s)) |s=ε .

Hence,
Dn−1

x v0(x(s)) = Fx F0(x(s)) + Cn−1 F0(x(s)),

where Cn−1 = Dn−1
x v0(x(s)) |s=ε .

By applying again the operator Fx on both members of the previous equation and using the
second relation of Equation (25), we get

Dn−2
x v0(x(s)) = F2

x F0(x(s)) + Cn−1 Fx F0(x(s)) + Cn−2 F0(x(s)),

where Cn−2 = Dn−2
x v0(x(s)) |s=ε . Repeating the same process, we express v0 as

v0(x(s)) = Fn
x F0(x(s)) +

n−1

∑
j=0

Cj F
j
x F0(x(s)) =

Fn(x(s))
n
∏
l=1

γl

+
n−1

∑
j=0

Cj F
j
x F0(x(s)),

where Cj = Dj
xv0(x(s)) |s=ε . Therefore, v0(x(s)) is a polynomial of degree exactly n in x(s).
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4. Conclusions and Perspectives

In this work, we have derived the right and the “left” inverse of the operator Dx and used the
properties of the inverse operators, as well as those of the operators Dx and Sx, to provide a formal
proof that the divided-difference equation of hypergeometric type (28) has a polynomial solution of
degree exactly n.

The novelty of our work is the formal proof of the existence of this polynomial solution, confirming
therefore the fact that, in [14], by solving divided-difference (8) on a case by case basis and using most
appropriate polynomial basis for each case, we have obtained for each family of classical orthogonal
polynomials on non-uniform lattice, a hypergeometric or q-hypergeometric solution which happens to
be a polynomial because of the form of one of the upper parameters obtained in the hypergeometric
(or q-hypergeometric) representation of the obtained solution.

Finding hypergeometric representation of the non polynomial solution of (8) is not obvious
and this was obtained unexpectedly for the Askey–Wilson polynomials when the parameters fulfill
b = a q

1
2 , d = a q

1
2 [14] (see page 15, Equations (62) and (63)). The method developed here might help to

understand when and why such a hypergeometric representation exists for non-polynomial solutions.
As an additional potential application of our paper, the right and the “left” inverse of the operator

Dx are likely to play important role in the study of the properties of orthogonal polynomials on the
non-uniform latices, and on the search of the solutions of divided-difference equations on non-uniform
lattices, as well as on the hypergeometric representation (when they exist) of the second-solution—non
polynomial solution—of Equation (28).
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