
axioms

Article

PIP-Space Valued Reproducing Pairs of
Measurable Functions

Jean-Pierre Antoine 1,*,† and Camillo Trapani 2,†

1 Institut de Recherche en Mathématique et Physique, Université catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium

2 Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo, Italy;
camillo.trapani@unipa.it

* Correspondence: jean-pierre.antoine@uclouvain.be
† These authors contributed equally to this work.

Received: 16 January 2019; Accepted: 18 April 2019; Published: 30 April 2019
����������
�������

Abstract: We analyze the notion of reproducing pairs of weakly measurable functions, a
generalization of continuous frames. The aim is to represent elements of an abstract space Y as
superpositions of weakly measurable functions belonging to a space Z := Z(X, µ), where (X, µ) is a
measure space. Three cases are envisaged, with increasing generality: (i) Y and Z are both Hilbert
spaces; (ii) Y is a Hilbert space, but Z is a PIP-space; (iii) Y and Z are both PIP-spaces. It is shown, in
particular, that the requirement that a pair of measurable functions be reproducing strongly constrains
the structure of the initial space Y. Examples are presented for each case.
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1. Introduction

Representing functions in terms of simple ones, with a small number of them, if possible, is
a standard problem in analysis, in particular in signal and image processing, where transmission
imposes severe constraints. Signals are usually taken as square integrable functions on some manifold,
hence they constitute a Hilbert space.

More precisely, given a separable Hilbert spaceH, one wishes to represent an arbitrary element
f ∈ H by a superposition of simpler, basic elements Ψ = (ψk), k ∈ Γ, with Γ a countable index set:

f = ∑
k∈Γ

ckψk, . (1)

One usually requires that the sum converges adequately (e.g., in norm and unconditionally) and
that the coefficients ck are unique (if possible) and easy to compute. There are many possibilities for
obtaining that result, the simplest ones being that Ψ be an orthonormal basis or a Riesz basis.

These two notions indeed solve the problem, but they are very rigid and lead usually to slowly
converging infinite expansions. Thus frames were introduced for ensuring a better flexibility, originally
in 1952 by Duffin and Schaeffer [1] in the context of nonharmonic analysis. The notion was revived
by Daubechies, Grossmann and Meyer [2] in the context of wavelet theory and then became a very
popular topic, in particular in Gabor and wavelet analysis [3–6]. The reason is that a good frame in
a Hilbert space (that is, a frame where the ratio of the frame bounds is close to 1) is almost as good
as an orthonormal basis for expanding arbitrary elements (albeit non-uniquely) and is often easier to
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construct and has in many cases additional structural properties. Let us first recall that a sequence
Ψ = (ψk) is a discrete frame for a Hilbert spaceH if there exist constants 0 < m ≤ M < ∞ (the frame
bounds) such that

m ‖ f ‖2 ≤ ∑
k∈Γ
|〈 f |ψk〉|2 ≤ M ‖ f ‖2 , ∀ f ∈ H. (2)

The frame bounds are usually denoted by A and B in the literature, but this conflicts with the notation
for operators. Here we follow our monograph [7].

As a matter of fact, most frames considered in applications are discrete, for instance in signal
or image processing [4]. Yet continuous frames offer interesting mathematical problems. They have
been introduced originally by Ali, Gazeau and one of us [8,9] and also, independently, by Kaiser [10].
Since then, many papers dealt with various aspects of the concept, see for instance [11–14].

However, there are situations where it is impossible to satisfy both frame bounds at the same
time. Indeed, the two bounds are independent: A sequence that verifies the upper bound may not
have a lower bound and a sequence that verifies the lower bound may be unbounded. To give a
(simple) example, take an orthonormal basis (ek, k ∈ N). Then the sequence ( 1

k ek) satisfies the upper
bound, but has no lower bound, whereas the sequence (kek) satisfies the lower bound, but not the
upper one. Therefore, several generalizations of frames have been introduced. Semi-frames [15,16], for
example, are obtained when functions only satisfy one of the two frame bounds. Thus one speaks of
upper or lower semi-frames. It turns out that a large portion of frame theory can be extended to this
larger framework.

More recently, a new generalization of frames was introduced by Balazs and Speckbacher [17],
called reproducing pairs. Here, given a measure space (X, µ), one considers a pair of weakly
measurable functions (ψ, φ), instead of a single mapping, and one studies the correlation between
the two (a precise definition is given below). This definition also includes the original definition of a
continuous frame [8,9] to which it reduces when ψ = φ. The choice of the mappings ψ and φ gives
more freedom, but it leads to the problem of characterizing the range of the analysis operators, which
in general may not be contained in L2(X, dµ), as in the frame case. Therefore, it is natural to extend
the theory to the case where the weakly measurable functions take their values in a partial inner
product space (PIP-space) [7]. Actually we will go further and consider a more general construction.
Namely we want to represent elements of an abstract space f ∈ Y by weakly measurable functions
(Cψ f )(x) := 〈 f |ψx〉, belonging to a space Z(X, µ), in such a way that the (formal) inner product

〈Cψ f |Cφg〉 =
∫

X
(Cψ f )(x)(Cφg)(x)dµ(x) (3)

is well defined. The interesting point is that the construction extends naturally from the simple case
of a frame to the more general case just outlined, and this is the rationale behind the present paper.
Nevertheless, since the techniques needed in this general case are very similar to those used in
the previous ones, we have sketched them in these simpler cases first, in order to make the paper
self-contained. Further information may be found in the original papers or in the review paper [18]
that we follow closely.

The paper is organized as follows. In Section 2, we review the notions of frames, semi-frames
and reproducing pairs and we recall their salient properties. In Section 3, we consider the case where
Y and Z are both Hilbert spaces, which corresponds to genuine frames. In particular we construct
and analyze the so-called coefficient spaces Wψ(X, µ), Wφ(X, µ), which are Hilbert spaces in conjugate
duality when (ψ, φ) is a reproducing pair. In Section 4, motivated by the relation (3), we take for target
space a PIP-space VJ ∼ {Vp(X, µ), p ∈ J}, in particular a lattice of Hilbert or Banach spaces (LHS/LBS).
In Section 5, we go one step further and take for the initial space another PIP-space YU ∼ {Yu, u ∈ U}.
In particular, we see how the requirement of having a reproducing pair affects the structure of the
initial space Y. Finally, we conclude by an Appendix A, in which we recall the main definitions and
notations about PIP-spaces (LHS/LBS) and operators on them.
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2. Preliminaries

Before proceeding, we list our definitions and conventions. We work in a (separable) Hilbert space
H, with the inner product 〈·|·〉 linear in the first factor. If A is an operator onH, we denote its domain
by D(A), its range by Ran (A) and its kernel by Ker (A). The set of all invertible bounded operators
on H with bounded inverse is denoted GL(H). We will consider throughout weakly measurable
functions ψ : X → H, i.e., 〈 f |ψx〉 is µ-measurable for every f ∈ H. Here (X, µ) is a locally compact,
σ-compact space with a Radon measure µ.

The weakly measurable function ψ is called continuous frame if there exist constants m > 0 and
M < ∞ (the frame bounds) such that

m ‖ f ‖2 ≤
∫

X
|〈 f |ψx〉|2 dµ(x) ≤ M ‖ f ‖2 , ∀ f ∈ H. (4)

Remark 1. The geometry of the Hilbert space imposes a number of constraints that severely limit the existence of
continuous families acting as bases or frames. Apart from the case of a separable Hilbert space where orthonormal
or Riesz bases cannot be uncountable, there are more general situations where, for instance, Riesz bases cannot be
continuous, but they are necessarily discrete, in a certain sense [19–22]. Nevertheless, this result is essentially
of theoretical nature and does not affect the interest for continuous frames in applications. On the other hand,
continuous frames do really exist in more general frameworks (rigged Hilbert space, PIP-space) as shown
in [23–25] and in the present paper. This fact constitutes a further motivation for going beyond Hilbert spaces.

Given the continuous frame ψ, we define the analysis operator Cψ : H → L2(X, dµ) as

(Cψ f )(x) = 〈 f |ψx〉, f ∈ H, (5)

and the corresponding synthesis operator C∗ψ : L2(X, dµ)→ H as

C∗ψξ =
∫

X
ξ(x)ψx dµ(x), for ξ ∈ L2(X, dµ), (6)

the integral being understood in the weak sense. Clearly both operators are bounded. We set
Sψ := C∗ψCψ, i.e.,

〈 f |Sψ f 〉 =
∫

X
|〈 f |ψx〉|2 dµ(x). (7)

Thus the so-called frame or resolution operator Sψ is self-adjoint, invertible, bounded with bounded
inverse S−1

ψ , that is, Sψ ∈ GL(H).
In particular, if X is a discrete set with µ being a counting measure, we recover the standard

definition (2) of a (discrete) frame [1,3,4].
The weakly measurable function ψ is said to be µ-total if 〈g|ψx〉 = 0, µ-a.e., implies g = 0, that is,

Ker Cφ = {0}. Following [15,16], we will say that a family Ψ = {ψx} is an upper (resp. lower) semi-frame,
if it is µ-total inH and satisfies the upper (resp. lower) frame inequality. For the sake of completeness,
we recall the definitions. A weakly measurable function ψ is an upper semi-frame if there exists M < ∞
such that

0 <
∫

X
|〈 f |ψx〉|2 dµ(x) ≤ M ‖ f ‖2 , ∀ f ∈ H, f 6= 0. (8)

Note that an upper semi-frame is also called a (total) Bessel mapping in the literature [13].
On the other hand, a measurable function φ is called a lower semi-frame if it satisfies the lower

frame condition, that is, there exists a constant m > 0 such that

m ‖ f ‖2 ≤
∫

X
|〈 f |φx〉|2 dµ(x), ∀ f ∈ H. (9)

Clearly, (9) implies that the function φ is µ-total inH.
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If ψ is a measurable function, the operator Cψ, formally defined as for frames, takes values in
the space of measurable functions on (X, µ) and the adjoint C∗ψ is, in general, meaningless. Cψ has a
natural domain in Hilbert space, namely,

D(Cψ) = { f ∈ H : Cψ f ∈ L2(X, dµ)}

but this domain, in general, is not dense and nothing guarantees that it does not reduce to {0}.
If the measurable function ψ is an upper semi-frame, the definition implies that RanCψ is contained

in L2(X, dµ). If a measurable function φ is a lower semi-frame, Cφ is injective and has closed range.
In the lower case, the definition of the frame operator Sφ must be changed, since Cφ need not be

densely defined, so that C∗φ may not exist. Instead, following [15] (Section 2) one defines the synthesis
operator as

DφF =
∫

X
F(x) φx dµ(x), (10)

on the domain of all elements F ∈ L2(X, dµ) for which the integral in (10) converges weakly inH, and
then Sφ := DφCφ. With this definition, it is shown in [15] (Section 2) that Sφ is unbounded and S−1

φ

is bounded.
All these objects are studied in detail in our previous papers [15,16]. In particular, it is shown

there that a natural notion of duality exists, namely, two weakly measurable functions ψ, φ are dual to
each other (the relation is symmetric) if one has

〈 f |g〉 =
∫

X
〈 f |ψx〉〈φx|g〉 dµ(x), ∀ f , g ∈ H.

A new generalization of frames was introduced recently by Balazs and Speckbacher [17], namely,
reproducing pairs. Given a measure space (X, µ), one considers a couple of weakly measurable
functions (ψ, φ), instead of a single mapping. The advantage is that no further conditions are imposed
on these functions, which results in an increased flexibility.

More precisely, the couple of weakly measurable functions (ψ, φ) is called a reproducing pair [17,26]
if (i) the sesquilinear form

Ωψ,φ( f , g) =
∫

X
〈 f |ψx〉〈φx|g〉dµ(x) (11)

is well-defined and bounded on H×H, that is, |Ωψ,φ( f , g)| ≤ c ‖ f ‖ ‖g‖, for some c > 0 and every
f , g ∈ H; and (ii) the corresponding bounded (resolution) operator Sψ,φ belongs to GL(H).

Under these hypotheses, one has

Sψ,φ f =
∫

X
〈 f |ψx〉φx dµ(x), ∀ f ∈ H, (12)

the integral on the r.h.s. being defined in weak sense. If ψ = φ, we recover the notion of continuous
frame, as introduced in [8,9], so that we have indeed a genuine generalization of the latter.

Notice that, if ψ 6= φ, the frame operator Sψ,φ is in general neither positive, nor self-adjoint, since
S∗ψ,φ = Sφ,ψ. However, if (ψ, φ) is a reproducing pair, then (ψ, S−1

ψ,φφ) is also a reproducing pair, for

which the corresponding frame operator is the identity, that is, ψ and S−1
ψ,φφ are in duality. Thus, there

is no restriction of generality to assume that Sφ,ψ = I [17]. The only thing that can happen is to replace
some norms by equivalent ones.

3. The Case Y = H and Z = L2(X, µ), Both Hilbert Spaces

As mentioned in Section 1, we begin with the case where the initial space Y = H and the target
space Z = L2(X, µ) are both Hilbert spaces, which is characteristic of a reproducing pair as originally
defined [17].
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Given a weakly measurable function φ, let us denote by Kφ(X, µ) the space of all measurable
functions ξ : X → C such that the integral

∫
X ξ(x)〈φx|g〉dµ(x) exists for every g ∈ H and defines a

bounded conjugate linear functional onH, i.e., ∃ c > 0 such that∣∣∣∣∫X
ξ(x)〈φx|g〉dµ(x)

∣∣∣∣ ≤ c ‖g‖ , ∀ g ∈ H. (13)

Clearly, if (ψ, φ) is a reproducing pair, all functions ξ(x) = 〈 f |ψx〉 = (Cψ f )(x) belong to Kφ(X, µ).
By the Riesz lemma, we can define a linear map Tφ : Kφ(X, µ)→ H, which we call the synthesis

operator, by the weak relation

〈Tφξ|g〉 =
∫

X
ξ(x)〈φx|g〉dµ(x), ∀ ξ ∈ Kφ(X, µ), g ∈ H. (14)

Next, we define the vector space

Wφ(X, µ) = Kφ(X, µ)/Ker Tφ (15)

and equip it with the norm

∥∥ξφ

∥∥
φ

:= sup
‖g‖≤1

∣∣∣∣∫X
ξ(x)〈φx|g〉dµ(x)

∣∣∣∣ = sup
‖g‖≤1

∣∣〈Tφξ|g〉
∣∣ , (16)

where we have put ξφ = ξ + Ker Tφ for ξ ∈ Kφ(X, µ). Clearly, Wφ(X, µ) is a normed space, called
the coefficient space of φ. However, the norm ‖·‖φ derives from an inner product. First, the map

T̂φ : Wφ(X, µ)→ H, T̂φξφ := Tφξ is an isometry of Wφ(X, µ) intoH. Next, one defines on Wφ(X, µ) an
inner product by setting

〈ξφ|ηφ〉(φ) := 〈T̂φξφ|T̂φηφ〉, ξφ, ηφ∈Wφ(X, µ).

Finally, the norm defined by 〈·|·〉(φ) coincides with the norm ‖ · ‖φ defined in (16), since one has indeed

∥∥ξφ

∥∥
(φ)

=
∥∥∥T̂φξφ

∥∥∥ =
∥∥Tφξ

∥∥ = sup
‖g‖≤1

∣∣〈Tφξ|g〉
∣∣ = ∥∥ξφ

∥∥
φ

.

Thus Wφ(X, µ) is a pre-Hilbert space with inner product 〈ξφ|ηφ〉φ = 〈Tφξ|Tφη〉.
We denote by Wφ(X, µ)∗ the Hilbert dual space of Wφ(X, µ), that is, the set of continuous linear

functionals on Wφ(X, µ). The structure of this dual will be elucidated below. The (dual) norm ‖ · ‖φ∗ of
Wφ(X, µ)∗ is defined, as usual, by

‖F‖φ∗ = sup
‖ξφ‖φ≤1

|F(ξφ)|. (17)

Now we define a conjugate linear map Ĉφ : H →Wφ(X, µ)∗ by

(Ĉφ f )(ξφ) :=
∫

X
ξ(x)〈φx| f 〉dµ(x), f ∈ H. (18)

Notice that this map Ĉφ is conjugate linear, so it should not be confused with the linear map Cψ

introduced in (5).
Of course, (18) means that (Ĉφ f )(ξφ) = 〈Tφξ| f 〉 = 〈T̂φξφ| f 〉, for every f ∈ H. Thus Ĉφ = T̂∗φ , the

adjoint map of T̂φ. By (13) it follows that Ĉφ is continuous . This implies that

H = [Ran T̂φ]˜⊕Ker Ĉφ, (19)

where the first summand denotes the closure of Ran T̂φ. Hence Ĉ∗φ = T̂∗∗φ = T̂φ, if Wφ(X, µ) is complete.
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By modifying in an obvious way the definition given in Section 2, we say that φ is µ-total if
Ker Ĉφ = {0}.

A first preliminary result reads as follows.

Proposition 1. If (ψ, φ) is a reproducing pair, then Ran T̂φ = H.

For the proof, notice that, since Sψ,φ ∈ GL(H), for every h ∈ H, there exists a unique f ∈ H such
that Sψ,φ f = h. By (12), we can conclude that

〈h|g〉 =
∫

X
〈 f |ψx〉〈φx|g〉dµ(x), ∀ g ∈ H,

that is, h = T̂φ[Cψ f ]φ ∈ Ran T̂φ. Notice that, if (ψ, φ) is a reproducing pair, both functions are necessarily
µ-total, which already implies that Ran T̂φ is dense inH, by (19).

For future use, we note that, if (ψ, φ) is a reproducing pair, then we have the relation [26]
(Theorem 3.12).

Kφ(X, µ) = RanCψ ⊕Ker Tφ. (20)

The crucial step for characterizing the elements of Wφ(X, µ)∗ is the following result.

Theorem 1. If (ψ, φ) is a reproducing pair, then every bounded linear functional F on Wφ(X, µ), i.e., F ∈
Wφ(X, µ)∗, can be represented as

F(ξφ) =
∫

X
ξ(x)η(x)dµ(x), ∀ ξφ ∈Wφ(X, µ), (21)

with η ∈ Kψ(X, µ). The residue class ηψ ∈Wψ(X, µ) is uniquely determined.

Proof. We proceed in several steps. First, if F is a continuous linear functional on Wφ(X, µ), then there
exists a unique g ∈ H, such that

F(ξφ) =
∫

X
ξ(x)〈φx|g〉dµ(x), ∀ ξ ∈ Kφ(X, µ). (22)

Indeed, given F ∈Wφ(X, µ)∗, there exists c > 0 such that

|F(ξφ)| ≤ c
∥∥ξφ

∥∥
φ
= c

∥∥Tφξ
∥∥ , ∀ ξ ∈ Kφ(X, µ).

Let F̃ be the continuous functional onH defined by

F̃(Tφξ) := F(ξφ), ξ ∈ Kφ(X, µ).

The functional F̃ is well-defined. Indeed, if Tφξ = Tφξ ′, then ξ − ξ ′ ∈ Ker Tφ. Hence, ξφ = ξ ′φ and
F(ξφ) = F(ξ ′φ). Thus there exists a unique g ∈ H such that

F̃(Tφξ) = 〈T̂φξφ|g〉 =
∫

X
ξ(x)〈φx|g〉dµ(x)

and ‖g‖ = ‖F̃‖. In conclusion, (22) holds true and ‖F‖φ∗ = ‖g‖, where ‖·‖φ∗ is the dual norm defined
in (17).

Conversely, every g ∈ H obviously defines a continuous linear functional F by (22) since |F(ξφ)| ≤
‖g‖

∥∥ξφ

∥∥
φ

for every ξφ ∈Wφ(X, µ).
Finally, since η(x) := 〈g|φx〉 ∈ Kψ(X, µ), we have the representation (21). Uniqueness is

immediate.
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Remark 2. Several of the previous statements hold true without the assumption that (ψ, φ) is a reproducing
pair, see [26] (Section 3) for details.

The lesson of Theorem 1 is that the map

Λ : F ∈Wφ(X, µ)∗ 7→ ηψ ∈Wψ(X, µ) (23)

is well-defined and conjugate linear. On the other hand, Λ(F) = Λ(F′) implies easily F = F′. Therefore
Wφ(X, µ)∗ can be identified with a closed subspace of Wψ(X, µ) := {ξψ : ξ ∈ Kψ(X, µ)}, where the
overbar denotes the complex conjugate.

Actually, there is more: if (ψ, φ) is a reproducing pair, Wφ(X, µ)∗ and Wψ(X, µ) can be identified.
The proof relies on two technical lemmas which can be found in [26] (Lemmas 3.10 and 3.11). These
imply that the map Λ defined in (23) is surjective. Hence, Wφ(X, µ)∗ 'Wψ(X, µ), where ' denotes a
bounded isomorphism and the norm ‖·‖ψ is the dual norm of ‖·‖φ. Finally, for every η ∈ Wψ(X, µ),
there exists g ∈ H such that η(x) = 〈φx|g〉. In conclusion, one obtains the main result of [26], namely:

Theorem 2. If (ψ, φ) is a reproducing pair, the spaces Wφ(X, µ) and Wψ(X, µ) are both Hilbert spaces,
conjugate dual of each other with respect to the sesquilinear form

〈ξ|η〉 :=
∫

X
ξ(x)η(x)dµ(x), (24)

which coincides with the inner product of L2(X, µ) whenever the latter makes sense.

This is true, in particular, for φ = ψ, since then ψ is a continuous frame and Wψ(X, µ) is a closed
subspace of L2(X, µ).

In addition, the converse of Theorem 2 holds if φ and ψ are both µ-total: in that case, (ψ, φ) is a
reproducing pair if and only if Wφ(X, µ) and Wψ(X, µ) are Hilbert spaces, conjugate dual of each other
with respect to the sesquilinear form (24).

In fact, there is more. In a recent paper [22], it is shown that Wφ(X, µ) (and thus also Wψ(X, µ), by
symmetry), is a reproducing kernel Hilbert space (RKHS) [27]. In order to see this, take an orthonormal
basis {ei, i ∈ I} in H. Then the family {εi, i ∈ I}, defined by Tφεi = ei, ∀ ∈ I, forms an orthonormal
family in Kφ(X, µ), since one has 〈εi|εk〉φ = 〈Tφεi|Tφεk〉 = 〈ei|ek〉 = δik. Thus {εi, i ∈ I} forms an
orthonormal basis in

Hφ
K := span{εi : i ∈ I}‖·‖φ .

By [22] (Theorem 23), it follows that Hφ
K is a reproducing kernel Hilbert space and one has

(compare (20))
Hφ

K 'Wφ(X, µ) ' (RanCψ, ‖·‖φ).

Finally, the reproducing kernel ofHφ
K is given by

Kφ(x, y) = 〈S−1
φ,ψψx|S−1

φ,ψψy〉. (25)

Actually, the kernelRψ,φ(x, y) := 〈S−1
ψ,φφy|ψx〉 is also reproducing, but for the inner product of L2(X, µ),

whereas (25) is reproducing for the inner product 〈·|·〉φ and is therefore the correct reproducing kernel
ofHφ

K.

4. The Case Y = H, a Hilbert Space, and Z = V , a PIP-Space

Clearly, the inner product (24) need not always be defined, it is a partial inner product on the
space of measurable functions on (X, µ). This obviously suggests to take for the target space Z(X, µ)
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a PIP-space V ∼ {Vp(X, µ)} around L2(X, µ), as we have proposed in [23], that we mostly follow in
this section. As for the relevant notions about PIP-spaces, we have collected them in the Appendix A.

4.1. The Case Where Z Is a Rigged Hilbert Space

The simplest example of a PIP-space is a rigged Hilbert space (RHS). Let indeed D[t] ⊂ H ⊂
D×[t×] be a RHS with D[t] reflexive (hence t and t× coincide with the respective Mackey topologies).
Given the measure space (X, µ), we denote by 〈·, ·〉 the sesquilinear form expressing the duality
between D and D×. This form replaces the inner product 〈·|·〉 used so far. As usual, we suppose that
this sesquilinear form extends the inner product of D (andH). This allows to build the triplet above.

Let x ∈ X 7→ ψx, x ∈ X 7→ φx be weakly measurable functions from X into D×. Instead of (11),
we consider the sesquilinear form

ΩDψ,φ( f , g) =
∫

X
〈 f , ψx〉〈φx, g〉dµ(x), f , g ∈ D, (26)

and we assume that it is jointly continuous on D ×D. Writing

〈Sψ,φ f , g〉 :=
∫

X
〈 f , ψx〉〈φx, g〉dµ(x), ∀ f , g ∈ D, (27)

we see that the operator Sψ,φ belongs to L(D,D×), the space of all continuous linear maps from D
into D×.

At this point, we have a choice. A first possibility is to require that the sesquilinear form ΩD

be well-defined and bounded on D × D in the topology of H. Then ΩDψ,φ extends to a bounded
sesquilinear form on H×H and the discussion of Section 3 may be essentially repeated verbatim.
Thus this choice gives almost nothing new.

Another possibility is to assume that the form ΩD is jointly continuous on D ×D, with no other
regularity requirement. In that case, the vector space Kφ(X, µ) must be defined differently, taking
into account the (locally convex) topology of D and D×. Instead of (13), we require that the integral∫

X ξ(x)〈φx, g〉dµ(x) exists for every g ∈ D and defines a continuous conjugate linear functional on D.
As before, we define (weakly) a linear map Tφ : Kφ(X, µ)→ D× by the following relation

〈Tφξ, g〉 =
∫

X
ξ(x)〈φx, g〉dµ(x), ∀ ξ ∈ Kφ(X, µ), g ∈ D. (28)

Next, we define again the vector space Wφ(X, µ) = Kφ(X, µ)/Ker Tφ. In order to introduce a topology
on Wφ(X, µ), we consider a bounded subsetM of D[t] and we define the seminorm

p̂M(ξφ) := sup
g∈M

∣∣〈Tφξ, g〉
∣∣ . (29)

This means, we are defining the topology of Wφ(X, µ) by means of the strong dual topology t× of D×
which we recall is defined by the seminorms

‖F‖M = sup
g∈M

|〈F|g〉|, F ∈ D×,

whereM runs over the family of bounded subsets of D[t]. Thus Wφ(X, µ) is a locally convex space.
As said above, the reflexivity of D entails that t× is equal to the Mackey topology τ(D×,D).

Next we consider the dual Wφ(X, µ)∗ of the space Wφ(X, µ), that is, the set of continuous linear
functionals on Wφ(X, µ). As topology on Wφ(X, µ)∗, we take the strong dual topology. This being
done, almost all the results of Section 3 may be deduced. In particular, Theorem 1 remains true, under
the form.
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Theorem 3. Under the condition (26), every continuous linear functional F on Wφ(X, µ), i.e., F ∈Wφ(X, µ)∗,
can be represented as

F(ξφ) =
∫

X
ξ(x)η(x)dµ(x), ∀ ξφ ∈Wφ(X, µ), (30)

with η ∈ Kψ(X, µ). The residue class ηψ ∈Wψ(X, µ) is uniquely determined.

As in the previous case, one may prove again that Wφ(X, µ)∗ can be identified with a closed
subspace of Wψ(X, µ) := {ξψ : ξ ∈ Kψ(X, µ)}, but we cannot go further. Indeed the previous results
rely heavily on Hilbert space methods, which are not available here.

4.2. The Case Where Z Is a LHS/LBS

The next choice is to take for Z a genuine PIP-space, while keeping for the initial space Y a Hilbert
spaceH. For simplicity, we restrict ourselves to a lattice of Banach spaces (LBS) or a lattice of Hilbert
spaces (LHS) [7], which is amply sufficient for applications. For instance, {Lp[0, 1], 1 < p < ∞}, the
lattice generated by {Lp(R), 1 < p < ∞} or a lattice of weighted L2 spaces.

Let VJ = {Vp(X, µ), p ∈ J} be a LBS or a LHS of µ-measurable functions with the property

ξ ∈ Vp, η ∈ Vp =⇒ ξ η ∈ L1(X, µ) and
∣∣∣∣∫X

ξ(x)η(x)dµ(x)
∣∣∣∣ ≤ ‖ξ‖p ‖η‖p. (31)

Thus the central Hilbert space is Vo := L2(X, µ) and the spaces Vp := Vp(X, µ), Vp := Vp(X, µ) are
dual of each other with respect to the L2 inner product. The partial inner product, which extends the
inner product of L2(X, µ), is denoted again by 〈·|·〉. As usual we put V = ∑p∈J Vp and V# =

⋂
p∈J Vp.

According to the general theory of PIP-spaces [7], the vector space V is the algebraic inductive limit of
the Vp’s (see the Appendix A.1). Thus f ∈ V means that f ∈ Vp for some p ∈ J.

Let ψ, φ be weakly measurable functions from X into H. In the case of Section 3, if (ψ, φ) is a
reproducing pair, the frame operator may be written as

〈Sψ,φ f |g〉 =
∫

X
〈 f |ψx〉〈φx|g〉dµ(x) =

∫
X

Cψ f (x) Cφg(x)dµ(x), (32)

which is well defined for all f , g ∈ H. But now the inner product is only partial, and this motivates
the next assumption. In view of (31), (32), and the definition of V, we assume that the following
condition holds:

(p) ∃ p ∈ J such that Cψ f = 〈 f |ψ·〉 ∈ Vp and Cφg = 〈g|φ·〉 ∈ Vp, ∀ f , g ∈ H.

We recall that Vp is the conjugate dual of Vp. In this case, then

Ωψ,φ( f , g) :=
∫

X
〈 f |ψx〉〈φx|g〉dµ(x), f , g ∈ H,

defines a sesquilinear form onH×H and one has

|Ωψ,φ( f , g)| ≤
∥∥Cψ f

∥∥
p

∥∥Cφg
∥∥

p , ∀ f , g ∈ H. (33)

If Ωψ,φ is bounded as a form onH×H (this is not automatic), there exists a bounded operator Sψ,φ in
H such that

〈Sψ,φ f |g〉 =
∫

X
〈 f |ψx〉〈φx|g〉dµ(x), ∀ f , g ∈ H. (34)

Then (ψ, φ) is a reproducing pair if Sψ,φ ∈ GL(H).
In the sequel, we will often need the map Cψ : H → Vr to be continuous. In general, however, we

have to assume it explicitly, unless the space Vr satisfies additional conditions.
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If Cψ : H → Vr is continuous, then C∗ψ : Vr → H exists and it is continuous too. By definition, if
ξ ∈ Vr,

〈Cψ f |ξ〉 =
∫

X
〈 f |ψx〉ξ(x)dµ(x), ∀ f ∈ H. (35)

Thus,
C∗ψξ =

∫
X

ψxξ(x)dµ(x).

Of course, what we have said about Cψ holds in the very same way for Cφ. Assume now that
for some p ∈ J, Cψ : H → Vp and Cφ : H → Vp continuously. Then, C∗φ : Vp → H so that C∗φCψ is a
well-defined bounded operator inH, given by

C∗φCψ f =
∫

X
〈 f |ψx〉φx dµ(x) = Sψ,φ f , ∀ f ∈ H,

the last equality following also from (34). Of course, this does not yet imply that Sψ,φ ∈ GL(H), thus
we do not know whether (ψ, φ) is a reproducing pair.

Let us now return to the pre-Hilbert space Kφ(X, µ). First, the defining relation (13) must be
written as ∣∣∣∣∫X

ξ(x)(Cφg)(x)dµ(x)
∣∣∣∣ ≤ c ‖g‖ , ∀ ξ ∈ Kφ(X, µ), g ∈ H. (36)

Since Cφ : H → Vp, the integral is well defined for all ξ ∈ Vp. This means, the inner product on the
l.h.s. is again the partial inner product of V. . Hence, we may rewrite (36) as

|〈ξ|Cφg〉| ≤ c ‖g‖ , ∀ g ∈ H, ξ ∈ Vp.

Next, by (31), one has, for ξ ∈ Vp, g ∈ H,

|〈ξ|Cφg〉| ≤ ‖ξ‖p
∥∥Cφg

∥∥
p ≤ c ‖ξ‖p ‖g‖ ,

where the last inequality follows from the assumption of continuity of Cφ. Hence indeed ξ ∈ Kφ(X, µ),
so that Vp ⊂ Kφ(X, µ).

As for the adjoint operator, we have C∗φ : Vp → H. Then we may write, for ξ ∈ Vp, g ∈ H,
〈ξ|Cφg〉 = 〈Tφξ|g〉, thus C∗φ is the restriction from Kφ(X, µ) to Vp of the operator Tφ : Kφ → H given
in (14), which reads now as

〈Tφξ|g〉 =
∫

X
ξ(x)〈φx|g〉dµ(x), ∀ ξ ∈ Vp, g ∈ H. (37)

Thus C∗φ = Tφ�Vp.
Next, the construction proceeds as in Section 3. The space Wφ(X, µ) = Kφ(X, µ)/Ker Tφ, with the

norm
∥∥ξφ

∥∥
φ
=
∥∥Tφξ

∥∥, is a pre-Hilbert space. Then Theorem 2 remains true, namely,

Theorem 4. If (ψ, φ) is a reproducing pair, the spaces Wφ(X, µ) and Wψ(X, µ) are both Hilbert spaces,
conjugate dual of each other with respect to the sesquilinear form (24), namely,

〈ξ|η〉µ :=
∫

X
ξ(x)η(x)dµ(x),

which coincides with the inner product of L2(X, µ) whenever the latter makes sense.

More precisely, we may state
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Proposition 2. Let (ψ, φ) be a reproducing pair. Then, if Cψ : H → Vp and Cφ : H → Vp continuously,
one has

Vp/Ker Tψ = Wψ(X, µ) 'Wφ(X, µ)∗ and Vp/Ker Tφ = Wφ(X, µ) 'Wψ(X, µ)∗. (38)

In these relations, the equality sign means an isomorphism of vector spaces, whereas ' denotes an isomorphism
of Hilbert spaces.

Since Wψ(X, µ) and Wφ(X, µ) are both Hilbert spaces, the relations (38) suggest to take for Vp, Vp
Hilbert spaces as well, that is, take for V a LHS. The simplest case is then a Hilbert chain, for instance,
the scale (A2) {Hk, k ∈ Z} built on the powers of a self-adjoint operator A > I .

Choose a reproducing pair (ψ, φ). Without loss of generality, we suppose that ψ, φ are dual to
each other, that is, Sψ,φ = I. We assume that ψ is an upper semi-frame and φ is a lower semi-frame,
dual to each other. It follows that Cψ(H) ⊂ L2(X, µ). By Condition (p), there is an index k ≥ 1 such
that Cψ : H → Hk and Cφ : H → Hk continuously, so that we may identify Vp ≡ Hk and Vp ≡ Hk.
Then, according to Proposition 2, we have Wψ(X, µ) = Hk/Ker Tψ and Wφ(X, µ) = Hk/Ker Tφ, as
vector spaces. Concrete examples will be given in Section 6.

5. The Case Where Y and Z Are Both PIP-Spaces

In the previous sections, we have taken for the initial space Y a single abstract Hilbert spaceH.
Now we will go one step further and take instead an abstract LBS or a LHS Y ∼ {Yu, u ∈ U}, with
Yo = H, while keeping for Z the space VJ ∼ {Vp(X, µ), p ∈ J}, a LBS or a LHS of complex measurable
functions over the usual measure space (X, µ), with Vo(X, µ) = L2(X, µ).

Let ψ, φ be two weakly measurable functions on X, with values in Y. In the present context,
weak measurability means that, for any u, v ∈ U such that ψ ∈ Yu and φ ∈ Yv, the complex functions
x ∈ X 7→ 〈 f |ψx〉 and x ∈ X 7→ 〈g|φx〉 are µ-measurable for every f ∈ Yu, g ∈ Yv.

Define two analysis operators Cψ, Cφ ∈ Op(Y) as follows :

(Cψ f )(x) = 〈 f |ψx〉, f ∈ Yu, ψx ∈ Yu, (Cφg)(x) = 〈g|φx〉, g ∈ Yv, φx ∈ Yv,

where the inner product is the partial inner product of Y.

Definition 1. Given (u, v) such that ψ ∈ Yu and φ ∈ Yv, assume there exists p ∈ J such that

Cψ f ∈ Vp(X, µ), ∀ f ∈ Yu, and Cφg ∈ Vp(X, µ), ∀ g ∈ Yv,

with Cψ : Yu → Vp(X, µ) and Cφ : Yv → Vp(X, µ) continuous, so that C∗ψ : Vp(X, µ) → Yu and C∗φ :
Vp(X, µ)→ Yv are continuous also. In that case, we say that (u, v) is an admissible couple for (ψ, φ).

Given an admissible couple (u, v) for (ψ, φ), the sesquilinear form

Ωψ,φ( f , g) =
∫

X
〈 f |ψx〉〈φx|g〉dµ =

∫
X
(Cψ f )(x)(Cφg)(x)dµ (39)

is well-defined on Yu ×Yv and we have

|Ωψ,φ( f , g)| ≤ ‖Cψ f ‖p‖Cφg‖p ≤ c′‖ f ‖u‖g‖v, ∀ f ∈ Yu, g ∈ Yv. (40)

Then there exists a continuous operator Sψ,φ : Yu → Yv such that

Ωψ,φ( f , g) = 〈Sψ,φ f |g〉, ∀ f ∈ Yu, g ∈ Yv.
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More precisely, in the PIP-space operator language (see the Appendix A), Sψ,φ has a (necessarily
continuous) representative [Sψ,φ]v u : Yu → Yv. It is easily checked that Sψ,φ = C∗φCψ. The operator Sψ,φ

is called the frame operator associated to the pair (ψ, φ).
The map Sψ,φ has an adjoint S∗ψ,φ : Yv → Yu defined by

〈S∗ψ,φg| f 〉 = 〈Sψ,φ f |g〉, f ∈ Yu, g ∈ Yv.

An easy computation shows that

〈S∗ψ,φg| f 〉 =
∫

X
〈g|φx〉〈ψx| f 〉dµ, f ∈ Yu, g ∈ Yv.

Hence, S∗ψ,φ = Sφ,ψ.

5.1. Construction of Coefficient Spaces

Fix an admissible couple (u, v) for (ψ, φ). Denote by Kφ the space of all measurable functions
ξ : X → C such that the integral

Fφ(g) :=
∫

X
ξ(x)〈φx|g〉dµ

exists for every g ∈ Yv and defines a continuous conjugate linear functional on Yv. That is, there exists
c > 0 such that ∣∣∣∣∫X

ξ(x)〈φx|g〉dµ(x)
∣∣∣∣ ≤ c ‖g‖v , ∀ g ∈ Yv. (41)

As in the previous cases, we refer to Kφ as the coefficient space of φ. The space Kψ is defined in a
similar way.

Since the sesquilinear form Ωψ,φ is bounded, by (40), it is clear that all functions ξ(x) = 〈 f |ψx〉
belong to Kφ since, by assumption, ∫

X
〈 f |ψx〉〈φx|g〉dµ(x)

exists and is bounded.
Then, following the familiar pattern, we can define a linear map Tφ : Kφ → Yv, which we call

again the synthesis operator by the following relation

〈Tφξ|g〉 =
∫

X
ξ(x)〈φx|g〉dµ, ξ ∈ Kφ, g ∈ Yv. (42)

Set Wφ = Kφ/Ker Tφ and ξφ := ξ + Ker Tφ. By definition, φ is called µ-independent whenever
Ker Tφ = {0}; in that case, of course, Wφ = Kφ.

The space Wφ can be made into a normed space by defining

‖ξφ‖φ = ‖Tφξ‖v , ξ ∈ Kφ , (43)

which implies that the operator T̂φ : Wφ → Yv defined by T̂φξφ := Tφξ is continuous, injective and
an isometry.

Proposition 3. The space Wφ is a Banach space if, and only if, Ran Tφ is a closed subspace of Yv.

Proof. Suppose that Ran Tφ is closed and let {(ξn)φ} be a Cauchy sequence in Wφ[‖ · ‖φ]. Then, by
definition {Tφξn} is a Cauchy sequence in Yv; hence it converges to h ∈ Yv. Since Ran Tφ is closed,
h = Tφξ for some ξ ∈ Kφ. It is clear that if ξ ′ ∈ Kφ is another function such that h = Tφξ ′, then
Tφ(ξ − ξ ′) = 0 and then ξφ = ξ ′φ. Moreover

‖(ξn)φ − ξφ‖φ = ‖Tφξn − Tφξ‖v = ‖Tφξn − h‖v → 0.
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This proves that Wφ is complete. Conversely, suppose that Wφ is a Banach space and let h =

limn→∞ Tφξn, ξn ∈ Kφ. Then

‖(ξn)φ − (ξm)φ‖φ = ‖Tφξn − Tφξm‖v → 0.

Hence there exists ξ ∈ Kφ such that ‖(ξn)φ − ξφ‖ → 0. This in turn implies that ‖Tφξn − Tφξ‖ → 0
and, therefore h = Tφξ. We conclude that Ran Tφ is closed.

Thus, if Wφ is complete, it has a closed image and its inverse is also continuous (but not necessarily
everywhere defined).

Note that, if Y is a LHS, the norm ‖·‖φ is Hilbertian, so that Kφ[|| · ||φ] is a pre-Hilbert space (same
argument as in Section 3).

The same result applies to Wψ, which is also a pre-Hilbert space in the LHS case, i.e., T̂ψ : Wψ → Yu

is an isometry.
It is shown in [23] (Theorem 3.4), that a linear functional F on Wφ[‖ · ‖φ] is continuous if, and only

if, there exists g ∈ Yv such that

F(ξφ) =
∫

X
ξ(x)〈φx|g〉dµ, ∀ ξ ∈ Kφ ,

Then, taking into account the relations (39) and (40) and the fact that 〈φx|g〉 ∈ Kψ, we see that every
F ∈Wφ(X, µ)∗ can be represented as

F(ξφ) =
∫

X
ξ(x)η(x)dµ(x), ∀ ξφ ∈Wφ(X, µ), (44)

with η ∈ Kψ(X, µ). Hence, the dual space W∗φ of Wφ, with respect to the sesquilinear form given by the
L2 inner product, can be identified with a space Eφ of measurable functions containing all functions
{〈g|φx〉, g ∈ Yv}.

5.2. Compatible Pairs

Fix an admissible couple (u, v) for (ψ, φ). As seen above, the sesquilinear form

Ωψ,φ( f , g) =
∫

X
〈 f |ψx〉〈φx|g〉dµ =

∫
X
(Cψ f )(x)(Cφg)(x)dµ

is well defined and bounded on Yu × Yv. With a proof similar to that of [23] (Theorem 3.6) or that
of Section 4, one shows that the dual W∗φ can be identified with a closed subspace of Wψ, the space
of conjugates of elements of Wψ. On the other hand, it was proved in [26] that, for a reproducing pair
of H-valued weakly measurable functions (ψ, φ), the spaces Wφ and Wψ are both Hilbert spaces in
conjugate duality to each other (see Theorem 2).

In the same vein as in Section 3, in particular Theorem 2, we define a new concept, generalizing to
the present situation what has been done in [25].

Definition 2. Let (u, v) be an admissible couple for (ψ, φ). We say that ψ, φ are compatible if W∗φ is
topologically isomorphic to Wψ and W×ψ , the conjugate dual of Wψ, is topologically isomorphic to Wφ. Thus we
identify the dual W∗φ with Wψ and the conjugate dual W×ψ with Wφ.

This definition implies that the spaces Wφ and Wψ are reflexive spaces enjoying the duality
properties mentioned above, which we write shortly as W∗φ ≈Wψ and W×ψ ≈Wφ. Then we have

W∗ψ ≈W×ψ ≈Wφ and W×φ ≈W∗ψ ≈Wψ.

This proves that (φ, ψ) is a compatible pair if and only if (ψ, φ) is a compatible pair.
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In what follows, for simplicity, we will consider pairs (ψ, φ) with ψ, φ both µ-independent. In this
case Wψ = Kψ, Wφ = Kφ. Hence we will use the notation Kψ, Kφ for these spaces.

As a matter of fact, compatible pairs and reproducing pairs are closely related, as shown in the
following result.

Theorem 5. Let (u, v) be an admissible couple for (ψ, φ), with ψ, φ both µ-independent and µ-total. Consider
the following statements :

(i) (ψ, φ) is a compatible pair;

(ii) The operator Sψ,φ : Yu → Yv is bounded with bounded inverse, that is, (ψ, φ) is a reproducing pair.

Then, if Kφ is complete, (i) implies (ii). On the other hand, (ii) always implies (i). Thus, if Kφ is complete, the
two statements are equivalent.

Proof. Since ψ, φ are µ-independent, T̂φ = Tφ.
(i)⇒ (ii): If (u, v) is an admissible couple for (ψ, φ) the operator Sψ,φ is continuous from Yu into Yv.

It is injective, since φ is µ-independent and ψ is µ-total. Next we show that it is also surjective. We first
prove that Ran Tφ is dense in Yv. Suppose that g ∈ Yv is such that 〈Tφξ|g〉 = 0 for every ξ ∈ Kφ. Thus,

〈Tφξ|g〉 =
∫

X
ξ(x)〈φx|g〉dµ = 0, ∀ ξ ∈ Kφ.

In particular this is true if we take ξ(x) = 〈 f |ψx〉, with f ∈ Yu. The µ-independence of ψ implies that
〈φx|g〉 = 0 for almost every x ∈ X. Hence g = 0, because φ is µ-total.

By Proposition 3, Ran Tφ is closed in Yv. Hence, Ran Tφ = Yv. Therefore, for every Φ ∈ Yv there
exists a unique ξ ∈ Kφ such that Tφξ = Φ. This implies that:

〈Φ|g〉 =
∫

X
ξ(x)〈φx|g〉dµ, ∀ g ∈ Yv.

By the definition of compatible pairs, the conjugate linear functional Fξ on Kψ defined by:

Fξ(η) =
∫

X
ξ(x)η(x)dµ, η ∈ Kψ.

is continuous. Then, as discussed at the end of Section 5.1, there exists a unique f ∈ Yu such that

Fξ(η) =
∫

X
〈 f |ψx〉η(x)dµ, η ∈ Kψ.

Hence, in particular

Fξ(〈g|φx〉) =
∫

X
〈 f |ψx〉〈φx|g〉dµ, ∀ g ∈ Yv.

In conclusion,
〈Φ|g〉 =

∫
X
〈 f |ψx〉〈φx|g〉dµ, ∀ g ∈ Yv.

This implies that Φ = Sψ,φ f . Hence S−1
ψ,φ is bounded, by the inverse mapping theorem.

(ii)⇒ (i): Let H ∈ K∗φ, the dual of Kφ; then, as discussed at the end of Section 5.1 there exists
g ∈ Yv such that:

H(ξ) = Hg(ξ) =
∫

X
ξ(x)〈φx|g〉dµ, ∀ ξ ∈ Kφ.

We show that g is unique. Suppose that there exists another g′ satisfying the same condition. Then it
follows that: ∫

X
ξ(x)〈φx|g− g′〉dµ = 0, ∀ ξ ∈ Kφ.
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In particular, this is true for ξ(x) = 〈 f |ψx〉, for every f ∈ Yu. Thus:∫
X
〈 f |ψx〉〈φx|g− g′〉dµ = 0, ∀ ξ ∈ Kφ.

Hence, 〈Sψ,φ f |g− g′〉 = 0, for every f ∈ Yu. However, since Sψ,φYu = Yv, we conclude that
〈G|g− g′〉 = 0, for every G ∈ Yv and this, in turn, implies that g = g′. Therefore, we can define a
map Ξ : H ∈ K∗φ 7→ g ∈ Yv, where g is the unique element of Yv such that H = Hg. This map is an
isomorphism of vector spaces. Indeed, it is clearly injective. On the other hand, if g ∈ Yv, the functional

H(ξ) = Hg(ξ) =
∫

X
ξ(x)〈φx|g〉dµ, ξ ∈ Kφ,

is in K∗φ and satisfies Ξ(Hg) = g. It is clear that the function η(x) = 〈g|φx〉 is an element of Kψ. Assume
that there exists another function η′ ∈ Kψ such that

H(ξ) =
∫

X
ξ(x)η′(x)dµ, ξ ∈ Kφ.

This implies that: ∫
X

ξ(x)(η(x)− η′(x))dµ = 0, ∀ ξ ∈ Kφ.

Take ξ(x) = 〈 f |ψx〉, f ∈ Yu, then η − η′ ∈ Ker Tψ. Hence η = η′. Then we can define a linear map:

Θ : H ∈ K∗φ 7→ η ∈ Kψ, (45)

where K∗φ denote the dual space of Kφ. The map Θ is clearly injective. As we have seen T×φ g = φg ∈ Kψ,
for every g ∈ Yv, where φg(x) = 〈g|φx〉. Indeed, Tφ : Kφ → Yv. Hence T∗φ : Yv → K∗φ, thus
T×φ : Yv → K×φ ≈ Kψ. Now we put Cφ,ψg = T×φ g. Hence Cφ,ψ is a conjugate linear map of Yv into Kψ.
We want to prove that RanCφ,ψ coincides with Kψ.

First we have

‖g‖v = ‖S−1
φ,ψSφ,ψg‖v ≤ c ‖Sφ,ψg‖u = c sup

‖h‖u≤1
|〈Sφ,ψg|h〉|

= c sup
‖h‖u≤1

∣∣∣∣∫X
〈g|φx〉〈ψx|h〉dµ

∣∣∣∣ = c ‖Tψφg‖u = c‖φg‖ψ,

This inequality implies that RanCφ,ψ is closed in Kψ.
Next, we prove that RanCφ,ψ is also dense in Kψ. If it was not so, there would be a nonzero

continuous linear functional F on Kψ such that F(〈 f |φx〉) = 0 for every f ∈ D. Hence, there would
exist g 6= 0 such that:

F(ξ) =
∫

X
ξ(x)〈ψx|g〉dµ, ∀ ξ ∈ Kψ,

and therefore
F(φ f ) =

∫
X
〈 f |φx〉〈ψx|g〉dµ, ∀ f ∈ Yv.

This implies that 〈Sφ,ψ f |g〉 = 0 for all f ∈ Yv. However, since Sφ,ψYv = Yu, this yields a contradiction.
Let us now consider the map Θ defined in (45). An immediate consequence of the equality RanCφ,ψ =

Kψ is that Θ is surjective. This implies that the conjugate dual of Kφ can be identified with Kψ, the
space of conjugates of elements of Kψ.
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5.3. The General Case

Take again an admissible couple (u, v) for (ψ, φ), assuming both φ, ψ to be µ-independent and
µ-total, for simplicity. We know from Section 5.2 that the dual K∗φ can be identified with a closed
subspace of Kψ, the space of conjugates of elements of Kφ. In addition, K∗φ is complete as a dual.

Assume first that (ψ, φ) is a compatible pair. Then we have K∗φ = Kψ and K∗ψ = Kφ. Notice that
both spaces Kψ and Kφ are Banach spaces in general, but they are Hilbert spaces in the case of a LHS
since then the norm (43) is Hilbertian [26]. Now Tψ : Kψ → Yu and Tφ : Kφ → Yv are continuous and
bijective, hence the inverse maps T−1

ψ : Yu → Kψ and T−1
φ : Yv → Kφ are also continuous by the inverse

mapping theorem. Thus Tψ and Tφ are isomorphisms. In addition, they are isometries, by (43). Thus
Kψ et Yu are isometric and so are the respective duals K∗ψ and Yv and the same for Kφ ∼ Yv. Since
K∗φ = Kψ (as spaces of measurable functions), we can say that Yv and Yu have equal norms, hence we
have v = u. Thus this is a necessary condition for (ψ, φ) to be a compatible pair for the admissible
couple (u, v).

If the condition v = u is satisfied, it follows that the frame operator Sψ,φ maps Yv onto itself
continuously and has a bounded inverse, since the representative [Sψ,φ]vv is invertible, which means
that Sψ,φ is an invertible PIP-space operator [28] (see Appendix A.2).

More generally, given an admissible couple (u, v) for (ψ, φ), we may ask under which conditions
the latter is a compatible pair, which is the same thing as a reproducing pair, according to Theorem 5.
First, we need v = u, that is, there must exist p ∈ J such that Cψ : Yu → Vp(X) and Cφ : Yu → Vp(X)

continuously. In that case, since [Sψ,φ]vv exists, so are the representatives [Sψ,φ]v”v′ : Yv′ → Yv”, where
v′ ≤ v, v” ≥ v. The required condition is then that one of these representatives [Sψ,φ]v”v′ be invertible.
This replaces the condition Sψ,φ ∈ GL(H) used for reproducing pairs [23,26].

5.4. Comparison with the Case Y = H

As we said in Section 3, the case treated in [23] (Section 4) amounts to take for the initial space Y a
single Hilbert spaceH. We will adapt here the results of that paper to the new situation, described in
Definition 1.

Let us suppose that the spaces Vr have the following property:

(k) If ξn → ξ in Vr, then, for every compact subset K ⊂ X, there exists a subsequence {ξK
n } of {ξn}

which converges to ξ almost everywhere in K.

The property (k) is satisfied by Lp-spaces [29] (Theorem 3.12), but presumably not in general.
It is satisfied, however, if one has a continuous embedding of a given Banach space of measurable
functions into L1

loc, which applies, for example, to all the Banach function spaces in the sense of
Luxemburg-Zaanen [30]. Notice that Condition (k) concerns only the target space Z, it is independent
of the initial space Y.

Let (u, v) be an admissible couple for (ψ, φ). Instead of Cψ : H → V, we have that ψx ∈ Yu, ∀ x ∈
X, and Cψ : Yu → Vp(X). Let Vr be an arbitrary element of VJ (an assaying subspace [7], which is a
Banach space or a Hilbert space). Following [23] (Section 4), we define

Dr,u(Cψ) = { f ∈ Yu : Cψ f ∈ Vr}, r ∈ J.

In particular, Dr,u(Cψ) = Yu means Cψ(Yu) ⊂ Vr. According to Definition 1, this condition is satisfied
for r = p, but not necessarily otherwise.

Then we have the following results, corresponding to Proposition 4.2 and Corollaries 4.3 and 4.4
of [23].
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Proposition 4. Assume that (k) holds for Vr. Then :

(i) Cψ : Dr,u(Cψ)→ Vr is a closed linear map.

(ii) If for some r ∈ J, Cψ(Yu) ⊂ Vr, then Cψ : Yu → Vr is continuous.

(iii) If Cψ(Yu) ⊂ Vp and Cφ(Yv) ⊂ Vp, the form Ω is bounded on Yu × Yv, that is, |Ωψ,φ( f , g)| ≤
c ‖ f ‖u ‖g‖v.

Proof. The proof of (i) follows verbatim that of [23] (Proposition 4.2), simply replacing H by Yu.
The same is true for (ii) and (iii) with the two corollaries.

By definition, Cψ : Yu → Vp is continuous. If r 6= p and condition (k) holds, Cψ(Yu) ⊂ Vr implies
that Cψ : Yu → Vr is continuous. If r 6= p and we do not know whether the condition holds, we will
have to assume explicitly that Cψ : Yu → Vr is continuous.

Suppose now that for some r ∈ J, the maps Cψ : Yu → Vr and Cφ : Yv → Vr are continuous
(automatic for r = p). Then, C∗φ : Vr → Yu, so that Sψ,φ := C∗φCψ is a well-defined bounded operator
from Yu to Yv. Of course, this does not yet imply that [Sψ,φ]v u, or any other representative, has a
bounded inverse. Hence we do not know whether (ψ, φ) is a reproducing pair, even if we impose the
necessary condition v = u.

6. Examples

In this section, we present concrete examples that illustrate all three types of reproducing pairs
described in the previous sections.

6.1. A Purely Hilbertian Reproducing Pair

Several discrete examples may be found in [26] (Section 6.1). Here, however, we restrict ourselves
to continuous examples, which are more interesting.

If φ ∈ L2(R, dx), consider the continuous wavelet system φb,a(x) = a−1/2φ(a−1(x − b)), b ∈
R, a > 0. Let ψ, φ ∈ L2(R, dx) and suppose they satisfy the following cross-admissibility condition:

cψ,φ :=
∫
R
|ψ̂(ω)φ̂(ω)| dω

|ω| < ∞, (46)

As shown in [6] (Theorem 10.1), this condition implies the well-known orthogonality relations of the
corresponding wavelet transform. Thus, (ψ, φ) is a reproducing pair for L2(R, dx) with Sψ,φ = cψ,φ I.
For ψ = φ, the cross-admissibility condition (46) reduces to the classical admissibility condition

cφ :=
∫
R
|φ̂(ω)|2 dω

|ω| < ∞. (47)

Considering the obvious inequalities

|cψ,φ| ≤
∫
R
|ψ̂(ω)φ̂(ω)| dω

|ω| ≤ c1/2
φ c1/2

ψ ,

we see that condition (46) is automatically satisfied whenever φ and ψ are both admissible, so that
indeed (ψ, φ) is a reproducing pair.

However, nonadmissible wavelets may also generate reproducing pairs, as shown by the following
trivial example. Take the Gaussian window φ(x) = e−πx2

, then cφ = ∞ which implies that φ is
not a continuous wavelet frame. However, if one defines ψ ∈ L2(R, dx) in the Fourier domain
via ψ̂(ω) = |ω|φ̂(ω), it follows that 0 < cψ,φ = ‖φ‖2

2 < ∞. Thus (ψ, φ) is a reproducing pair.
This example clearly shows the increasing flexibility obtained when replacing continuous frames by
reproducing pairs.
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6.2. A Reproducing Pair with a PIP-Space Target

As discussed after Proposition 2, we take for V a LHS, more precisely the scale (A2) built on the
powers of the self-adjoint operator A > 1. Thus, according to the discussion at the end of Section 4.2,
there is an index k ≥ 1 such that Cψ : H → Hk and Cφ : H → Hk continuously, where we have

Hk ⊂ Ho = L2(X, µ) ⊂ Hk. (48)

Actually one may give an explicit example, using a Sobolev-type scale [23] (Section 5). Let HK
be a reproducing kernel Hilbert space (RKHS) of (nice) functions on the measure space (X, µK),
with kernel function kx, x ∈ X, that is, f (x) = 〈 f |kx〉K, ∀ f ∈ HK (we could also take another
measure space (Z, µK)) [27]. The corresponding reproducing kernel is K(x, y) = ky(x) = 〈ky|kx〉K.
Choose a weight function m(x) > 1, the analog of the weight (1 + |x|2) considered in the Sobolev
case (see Appendix A.1). Define the Hilbert scale Hr, r ∈ Z, determined by the multiplication
operator A f (x) = m(x) f (x), ∀x ∈ X. Then, for some n ≥ 1, define the measurable functions
ψx = kxm−n(x), φx = kxmn(x), so that Cψ : HK → Hn, Cφ : HK → Hn continuously, and ψ, φ are
dual of each other. One has indeed 〈φx|g〉K = 〈kxmn(x)|g〉K = 〈kx|g mn(x)〉K = g(x)mn(x) ∈ Hn and
〈ψx|g〉K = g(x)m−n(x) ∈ Hn, which implies duality. Thus (ψ, φ) is a reproducing pair with Sψ,φ = I,
where ψ is an upper semi-frame and φ a lower semi-frame.

In this case, one can compute the operators Tψ, Tφ explicitly. For all ξ ∈ Hn, g ∈ HK, the
definition (37) reads as

〈Tφξ|g〉K =
∫

X
ξ(x)〈φx|g〉K dµ(x),=

∫
X

ξ(x) g(x)mn(x)dµ,

that is, (Tφξ)(x) = ξ(x)mn(x) or Tφξ = ξ mn. However, since the weight m(x) > 1 is invertible,
g mn runs over the whole of Hn whenever g runs over HK. Hence ξ ∈ Ker Tφ ⊂ Hn means that
〈Tφξ|g〉K = 0, ∀g ∈ HK, which implies ξ = 0, since the duality between Hn and Hn is separating.
The same reasoning yields Ker Tψ = {0}. Therefore Wφ(X, µ) = Kφ(X, µ) = Hn and Wψ(X, µ) =

Kψ(X, µ) = Hn.
Similar examples concerning spaces of sequences may be found in [23] (Section 5.2), possibly

more general, in the sense that the space VJ is no longer a Hilbert scale, but a genuine LHS.

6.3. A Reproducing Pair with Two PIP-Spaces

An easy example may be derived from the previous one. For the target space VJ , we keep the
same Hilbert scale (A2) built on the powers of the self-adjoint operator A > 1. For the initial space Y,
we take a similar Hilbert scale (A2), but aroundHK, instead of L2(X, µ). Thus for each l ≥ 1, we have

Hl ⊂ H0 ≡ HK ⊂ Hl .

Hence, f ∈ Hl means that
∫

X | f (x)|2m2l(x) dµK(x) < ∞.
Given two positive integers l, n, we take for analyzing functions ψx = kxm−(l+n)(x), φx =

kxm(l+n)(x), where kx is again the reproducing function ofHK. Then we have:

• ψx ∈ Hl and φx ∈ Hl ; for instance,

‖ψx‖2
l =

∫
X
|ψx|2 m2l(x)dµK(x) =

∫
X
|kx|2 m−2n(x)dµK(x)

<
∫

X
|kx|2 dµK(x) < ∞, since m(x) > 1.

• ∀ f ∈ Hl , Cψ f = 〈 f |ψx〉K = f m−(l+n) ∈ Hn .
• ∀g ∈ Hl , Cφg = 〈g|φx〉K = g m(l+n) ∈ Hn .
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In conclusion, as for the previous example, (ψ, φ) is a reproducing pair with Sψ,φ = I, where ψ is
an upper semi-frame and φ a lower semi-frame.

Here too, one can compute the operators Tψ, Tφ explicitly. For all ξ ∈ Hn, g ∈ Hl , the definition
(37) reads as

〈Tφξ|g〉K =
∫

X
ξ(x)〈φx|g〉K dµK(x) =

∫
X

ξ(x) g(x)m(l+n) dµK(x),

that is, (Tφξ)(x) = ξ(x)m(l+n)(x) or Tφξ = ξ m(l+n). Similarly Tψξ = ξ m−(l+n).
As compared with the general scheme of Definition 1, we have taken Yu ≡ Hl , Yv ≡ Hl , Vp ≡

Hn, Vp ≡ Hn. This means, in particular, that the condition v = u is satisfied, as expected for a
reproducing pair.
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Appendix A. Lattices of Banach or Hilbert Spaces and Operators on Them

Appendix A.1. Lattices of Banach or Hilbert Spaces

For the convenience of the reader, we summarize in this Appendix the basic facts concerning
PIP-spaces and operators on them. However, we will restrict the discussion to the simpler case of
a lattice of Banach spaces (LBS) or Hilbert spaces (LHS). Further information may be found in our
monograph [7] or the review paper [18].

Let thus I = {Vp, p ∈ I} be a family of Hilbert spaces or reflexive Banach spaces, partially
ordered by inclusion. Then I generates an involutive lattice J , indexed by J, through the operations
(p, q, r ∈ I):

. involution: Vr ↔ Vr = V×r , the conjugate dual of Vr

. infimum: Vp∧q := Vp ∧Vq = Vp ∩Vq

. supremum: Vp∨q := Vp ∨Vq = Vp + Vq.

It turns out that both Vp∧q and Vp∨q are Hilbert spaces, resp. reflexive Banach spaces, under
appropriate norms (the so-called projective, resp. inductive norms). Clearly the index set J is also an
involutive lattice, isomorphic to J by the correspondence r ↔ Vr.

Assume that the following conditions are satisfied:

(i) I contains a unique self-dual, Hilbert subspace Vo = Vo.
(ii) for every Vr ∈ I , the norm ‖ · ‖r on Vr = V×r is the conjugate of the norm ‖ · ‖r on Vr.

Then the PIP-space VJ ∼ {Vq, q ∈ J} is called a LBS, resp. a LHS. Notice that J = {Vp, p ∈ J}
denotes a family of spaces, whereas VJ ∼ {Vq, q ∈ J} denotes the associated PIP-space.

In addition to the family J = {Vr, r ∈ J}, it is convenient to consider the two vector spaces V
and V# defined as

V = ∑
q∈I

Vq, V# =
⋂
q∈I

Vq. (A1)

These two spaces themselves usually do not belong to J . According to the general theory of
PIP-spaces [7], V is the algebraic inductive limit of the Vp’s and V# is the projective limit of the Vp’s.

We say that two vectors f , g ∈ V are compatible (This notion is the basis of the theory of
PIP-spaces [7], it should not be confused with that of Definition 2 !) if there exists r ∈ J such that f ∈
Vr, g ∈ Vr . Then a partial inner product on V is a Hermitian form 〈·|·〉 defined exactly on compatible
pairs of vectors. In particular, the partial inner product 〈·|·〉 coincides with the inner product of Vo

on the latter. A partial inner product space (PIP-space) is a vector space V equipped with a partial inner
product. Clearly LBSs and LHSs are particular cases of PIP-spaces.
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From now on, we will assume that our PIP-space (V, 〈·|·〉) is nondegenerate, that is, 〈 f |g〉 = 0 for
all f ∈ V# implies g = 0. As a consequence, (V#, V) and every couple (Vr, Vr), r ∈ J, are a dual pair in
the sense of topological vector spaces [31]. In particular, the original norm topology on Vr coincides
with its Mackey topology τ(Vr, Vr), so that indeed its conjugate dual is (Vr)× = Vr, ∀ r ∈ J. Then,
r < s implies Vr ⊂ Vs, and the embedding operator Esr : Vr → Vs is continuous and has dense range.
In particular, V# is dense in every Vr. Throughout we also assume the partial inner product to be
positive definite, 〈 f | f 〉 > 0 whenever f 6= 0.

A standard, albeit trivial, example is that of a Rigged Hilbert space (RHS) Φ ⊂ H ⊂ Φ# (it is
trivial because the lattice I contains only three elements).

Familiar concrete examples of PIP-spaces are sequence spaces, with V = ω, the space of all
complex sequences x = (xn), and spaces of locally integrable functions with V = L1

loc(R, dx), the
space of Lebesgue measurable functions, integrable over compact subsets.

Among LBSs, the simplest example is that of a chain of reflexive Banach spaces. The prototype is
the chain I = {Lp := Lp([0, 1]; dx), 1 < p < ∞} of Lebesgue spaces over the interval [0, 1].

As for a LHS, the simplest example is the Hilbert scale generated by a self-adjoint operator
A > I in a Hilbert space Ho. Let Hn be D(An), the domain of An, equipped with the graph norm
‖ f ‖n = ‖An f ‖, f ∈ D(An), for n ∈ N or n ∈ R+, andHn := H−n = H×n (conjugate dual):

D∞(A) :=
⋂
n
Hn ⊂ . . . ⊂ H2 ⊂ H1 ⊂ H0 ⊂ H1 ⊂ H2 . . . ⊂ D∞(A) :=

⋃
n
Hn. (A2)

Note that here the index n may be integer or real, the link between the two cases being established
by the spectral theorem for self-adjoint operators. Here again the inner product of H0 extends to
each pairHn,H−n, but on D∞(A) it yields only a partial inner product. For standard examples, take
H0 = L2(R, dx) and the following operators:

. (Ap f )(x) = (1 + x2)1/2 f (x) yields the Fourier transform of the Sobolev spaces Hs(R), s ∈ Z.

. (Am f )(x) = (1− d2

dx2 )
1/2 f (x) yields the Sobolev spaces Hs(R), s ∈ Z.

. (Aosc f )(x) = (1 + x2 − d2

dx2 ) f (x) yields the harmonic oscillator representation of the Schwartz
space S(R) of smooth functions of fast decay and its conjugate dual S×(R), the space of of
tempered distributions.

Appendix A.2. Operators on LBSs and LHSs

Let VJ be an LHS or an LBS. Then an operator on VJ is a map A from a subset D(A) ⊂ V into V,
such that

(i) D(A) =
⋃

q∈d(A) Vq, where d(A) is a nonempty subset of J;

(ii) For every q ∈ d(A), there exists p ∈ J such that the restriction of A to Vq is a continuous linear
map into Vp (we denote this restriction by Apq);

(iii) A has no proper extension satisfying (i) and (ii).

We denote by Op(VJ , ) the set of all operators on VJ . The continuous linear operator Apq : Vq → Vp is
called a representative of A. The properties of A are conveniently described by the set j(A) of all pairs
(q, p) ∈ J × J such that A maps Vq continuously into Vp Thus the operator A may be identified with
the collection of its representatives,

A ' {Apq : Vq → Vp : (q, p) ∈ j(A)}. (A3)

It is important to notice that an operator is uniquely determined by any of its representatives, in virtue
of Property (iii): there are no extensions for PIP-space operators.
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If Apq is a representative of the operator A, then so are Apq′ = ApqEqq′ , for any q′ < q, where Eqq′

is a representative of the unit operator, and also Ap′q = Ep′p Apq, for any p′ > p. Operators between an
LHS/LBS YK into another one VJ are defined in the same way. They are denoted as Op(YK, VJ).

Although an operator may be identified with a separately continous sesquilinear form on V#×V#,
or a conjugate linear continuous map V# into V, it is more useful to keep also the algebraic operations on
operators, namely:

(i) Adjoint: every A ∈ Op(VJ) has a unique adjoint A× ∈ OpVJ), defined by

〈A×y|x〉 = 〈y|Ax〉, for x ∈ Vq, y ∈ Vp and Apq exists. (A4)

that is, (A×)qp = (Apq)∗, where (Apq)∗ : Vp → Vq is the adjoint map of Apq. Furthermore, one
has A×× = A, for every A ∈ Op(VJ): no extension is allowed, by the maximality condition (iii)
of the definition.

(ii) Partial multiplication: Let A, B ∈ Op(VJ). The product BA is defined if and only if there is a
continuous factorization through some Vr:

Vq
A→ Vr

B→ Vp, i.e., (BA)pq = Bpr Arq. (A5)

Several classes of operators are of particular interest, for instance:

(i) Symmetric operators, defined as those operators satisfying the relation A× = A, since these are
the ones that may generate self-adjoint operators in the central Hilbert space [7] (Section 3.3).

(ii) Invertible operators: A is invertible if it has at least one invertible representative; in that case, A has
a unique inverse operator A−1 ∈ Op(VJ) [28].
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