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Abstract: Under some conditions, an asymptotic solution containing boundary functions was
constructed in a paper by Vasil’eva and Butuzov (Differ. Uravn. 1970, 6(4), 650–664 (in Russian);
English transl.: Differential Equations 1971, 6, 499–510) for an initial value problem for weakly
non-linear differential equations with a small parameter standing before the derivative, in the case of
a singular matrix A(t) standing in front of the unknown function. In the present paper, the orthogonal
projectors onto kerA(t) and kerA(t)′ (the prime denotes the transposition) are used for asymptotics
construction. This approach essentially simplifies understanding of the algorithm of asymptotics
construction.
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1. Introduction

The bibliography of publications devoted to singularly perturbed problems is very extensive.
Most of them deal with problems in which a degenerate equation, following from the original
one where a small parameter is equal to zero, is resolvable with respect to a fast component of an
unknown variable. If it is not so, then this more complicated case is known as critical [1], singular [2],
nonstandard [3], or as a case where the unperturbed (degenerate) system is situated on the spectrum [4].
Numerous applications of singularly perturbed systems in the critical case have been listed in [5].

Vasil’eva and Butuzov were the first to study initial value problems for singularly perturbed
differential and difference systems in the critical case. Asymptotic solutions of boundary value
problems for such systems have been obtained in [1,2,6]. Numerical methods for singularly perturbed
systems in the critical case have been researched in [7] for initial value problems, and in [8] for
boundary value problems.

An asymptotic solution containing boundary functions for the initial value problem of the weakly
non-linear differential equation in a real m-dimensional space X:

ε
dx
dt

= A(t)x + ε f (x, t, ε), t ∈ [0, T], (1)

x(0, ε) = x0, (2)

where x = x(t, ε) ∈ X and the matrix A(t) is singular, has been constructed in [4]. A discrete analogue
of problem (1)-(2) was also considered. The results from this paper are also presented in [1,9]. In these
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publications, the purpose of studying equations of the last form is also explained. Here and further
ε ≥ 0 means a small parameter, and the m×m matrix A(t) and the m-dimensional vector-function
f (x, t, ε) are sufficiently smooth with respect to their arguments.

In contrast [4], the projector approach will be used in this paper for constructing an asymptotic
solution of problem (1)-(2). It allows us to represent the algorithm of the boundary functions method
for constructing an asymptotic solution of initial-value singularly perturbed problems in the critical
case more clearly than in [4].

Note that the projector approach has been used in [10] for constructing the zero-order asymptotic
solution for a singularly perturbed linear-quadratic control problem in the critical case.

We will assume the same assumptions as in [4] that the matrix A(t) has for each t ∈ [0, T] m
eigenvalues λ1(t), λ2(t), ..., λm(t), and that they satisfy the conditions:

Assumption 1. λj(t) = 0 for j = 1, 2, ..., k, k < m.

Assumption 2. All k eigenvectors v1(t), v2(t), ..., vk(t) of the matrix A(t), corresponding to λj(t) = 0,
j = 1, 2, ..., k, are linearly independent.

Following [4], we will here use eigenvectors having the same smoothness as the matrix A(t).
The existence of such eigenvectors has been proved in [11].

Furthermore, some assumptions will be yet added.
The transposition will be denoted by the prime. By I, as usual, we mean the identity operator.

For the expansion of a function w(ε) into the series with respect to integer non-negative powers of ε

w(t, ε) = ∑
j≥0

εjwj(t), we introduce the notation [w(ε)]j = wj.

The paper is organized as follows. In Section 2, we present the standard decomposition of the
original system (1) into systems with respect to functions from the asymptotic solution, depending on t,
and with respect to so-called boundary functions, depending on the argument t/ε. In the next section,
we introduce orthogonal projectors of the space X onto kerA(t) and kerA(t)′. Based on these projectors,
the algorithm of constructing the zero-order asymptotic approximation of a solution of problem (1)-(2)
is given in Section 4, and the algorithm of constructing the n-th order asymptotic approximation, n ≥ 1,
is developed in Section 5. Tables 1 and 2 in these two sections show the sequence of actions for finding
asymptotics terms. In the sixth section, we present an example illustrating the projector approach for
constructing the first-order asymptotic approximation. The last section presents our conclusions.

2. Problem Decomposition

In view of [4], we will seek the asymptotic solution of problem (1)-(2) in the form:

x(t, ε) = x(t, ε) + Πx(τ, ε), (3)

where x(t, ε) = ∑j≥0 εjxj(t), Πx(τ, ε) = ∑j≥0 εjΠjx(τ), τ = t/ε. Functions Πjx(τ) will be found as
in [4] with the help of the additional condition

Πjx(τ)→ 0 as τ → +∞. (4)

Following tradition (see, for instance, [1], p. 8), a series ∑j≥0 εjxj(t) with terms depending on the
original argument t is called regular series, in contrast with boundary series ∑j≥0 εjΠjx(τ) consisting
of so-called boundary functions depending on the argument τ ≥ 0, which are essential only for
arguments in some vicinities of points where additional conditions are prescribed (in a vicinity of zero
in the considered case).

As usual in the theory of singular perturbations, the following representation will be used

f (x(t, ε) + Πx(τ, ε), t, ε) ≡ f + Π f ,
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where f = f (x(t, ε), t, ε) = ∑j≥0 εj f j(t) and Π f = f (x(ετ, ε) + Πx(τ, ε), ετ, ε) − f (x(ετ, ε), ετ, ε) =

∑j≥0 εjΠj f (τ).
Substituting expansion (3) into (1) and equating terms of the same order of ε separately depending

on t and τ, we obtain the following equations for the terms of series (3):

dxj−1(t)
dt

= A(t)xj(t) + f j−1(t), (5)

dΠjx(τ)
dτ

= A(0)Πjx(τ) + Πj−1 f (τ) + [(A(ετ)− A(0))Πx(τ, ε)]j, (6)

where j = 0, 1, ...,

[(A(ετ)− A(0))Πx(τ, ε)]j =
j−1

∑
k=0

1
(j− k)!

dj−k A
dtj−k (0)Πkx(τ).

In order to write equations (5) and (6) in the same forms for the cases j = 0 and j > 0, we suppose
that terms of expansions with negative indices are equal to zero.

Substituting expansion (3) into (2) and equating terms of the same order of ε, we obtain
the equalities:

x0(0) + Π0x(0) = x0, (7)

xj(0) + Πjx(0) = 0, j > 0. (8)

3. Space Decomposition

Further, we will use the decompositions of the space X in the orthogonal sums (see, for
instance, [12], p. 38)

X = kerA(t)⊕ imA(t)′ = kerA(t)′ ⊕ imA(t).

Orthogonal projectors P(t) and Q(t) of the space X onto the subspaces kerA(t) and kerA(t)′,
respectively, corresponding to the decompositions of the space X into two last orthogonal sums, will
be applied. We can write the explicit form of these projectors. Namely, let V(t) = (v1(t), ..., vk(t)) and
S(t) = (s1(t), ..., sk(t)), where s1(t), ..., sk(t) are the eigenvectors of the matrix A(t)′ corresponding
to eigenvalues λj(t) = 0, j = 1, ..., k. Following [9], we believe that the eigenvectors si(t) have been
chosen in such a way that V(t)′S(t) is the k × k identity matrix. We explain that this is possible.
The invertibility of the matrix V(t)′S(t) is proved in [1]. If V(t)′S(t) = B(t) 6= I, then we take the
columns of the matrix S(t)B(t)−1 as s1(t), ..., sk(t).

It easily follows from Assumption 2 that the k× k matrices V(t)′V(t) and S(t)′S(t) are invertible.
It is not difficult to see that P(t) = V(t)(V(t)′V(t))−1V(t)′ and Q(t) = S(t)(S(t)′S(t))−1S(t)′

are orthogonal projectors of the space X onto the subspaces kerA(t) and kerA(t)′, respectively,
corresponding to the decompositions of the space X into the orthogonal sums.

The operator
A(t) = (I −Q(t))A(t)(I − P(t)) : imA(t)′ −→ imA(t)

has the inverse operator. It will be denoted as A(t)+ = (I − P(t))A(t)+(I −Q(t)).
The following condition is assumed.

Assumption 3. For each t ∈ [0, T] the operator (I − P(t))A(t)(I − P(t)) : imA(t)′ → imA(t)′ is
stable—that is, all eigenvalues of this operator have negative real parts.

It is not difficult to prove that the operator Q(t)P(t) : kerA(t) → kerA(t)′ is invertible. Let us
take a vector x from kerA(t). Then, x = V(t)c(t), where c(t) = (c1(t), c2(t), ..., ck(t))′ and ci(t),
i = 1, 2, ..., k, are some scalar functions. Consider the equation Q(t)P(t)x = 0. It follows from this
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that V(t)′S(t)(S(t)′S(t))−1S(t)′V(t)c(t) = 0. Since V(t)′S(t) is a k× k identity matrix, then c(t) = 0,
which gives the provable invertibility.

4. Zero-Order Asymptotic Solution

From (5), we have the equation for x0(t):

A(t)x0(t) = 0.

Hence,
(I − P(t))x0(t) = 0. (9)

Using (9), we find from (7) the initial value

(I − P(0))Π0x(0) = (I − P(0))x0. (10)

From (6), we have the equation for Π0x(τ)

dΠ0x(τ)
dτ

= A(0)Π0x(τ).

This equation is equivalent to two ones:

d(I − P(0))Π0x(τ)
dτ

= (I − P(0))A(0)(I − P(0))Π0x(τ), (11)

d(P(0)Π0x(τ))
dτ

= P(0)A(0)(I − P(0))Π0x(τ). (12)

In view of Assumption 3, we obtain a unique solution of initial problem (10)-(11) satisfying
the inequality

‖ (I − P(0))Π0x(τ) ‖ ≤ c exp (−ατ), τ ≥ 0,

with some positive constants c and α independent of τ (see, for instance, [13], p. 106). In this estimate,
any norm may be used, since all norms in a finite dimensional space are equivalent. Functions
satisfying the last inequality are called exponential-type boundary functions.

From (12), we get the equality P(0)Π0x(τ) = P(0)Π0x(0) +
τ∫
0

P(0)A(0)(I − P(0))Π0x(s) ds.

Since P(0)Π0x(τ) → 0 as τ → +∞, then P(0)Π0x(0) = −
∫ +∞

0 P(0)A(0)(I − P(0))Π0x(s) ds. Using
the exponential estimate for (I − P(0))Π0x(s), we uniquely define the exponential-type boundary
function P(0)Π0x(τ), namely,

P(0)Π0x(τ) = −
∫ +∞

τ
P(0)A(0)(I − P(0))Π0x(s) ds. (13)

Hence, the exponential-type boundary function Π0x(τ) has been found. Then, we can get the
initial value from (7):

P(0)x0(0) = P(0)(x0 −Π0x(0)). (14)

In view of (5), the equation for x1(t) has the form

A(t)x1(t) = − f 0(t) +
dx0(t)

dt
.

Taking into account (9), we can write the solvability condition for the last equation in the form

Q(t)
d(P(t)x0(t))

dt
= Q(t) f (P(t)x0(t), t, 0).
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Since
d(P(t)x(t))

dt
=

d(P(t)2x(t))
dt

=
d(P(t))

dt
P(t)x(t) + P(t)

d(P(t)x(t))
dt

, (15)

we obtain the equation

d(P(t)x0(t))
dt = (Q(t)P(t))−1Q(t)(− dP(t)

dt P(t)x0(t) + f (P(t)x0(t), t, 0))
+(I − P(t)) dP(t)

dt P(t)x0(t).
(16)

If operator A(t) is constant, then projectors P(t) = P and Q(t) = Q are constant too, and the last
equation has the form

d(Px0(t))
dt

= (QP)−1Q f (Px0(t), t, 0). (17)

We will yet assume the condition.

Assumption 4. Problem (14)–(16) has a unique solution on the segment [0, T].

A similar assumption regarding the solvability of some initial-value problem for a non-linear
equation of the smaller dimension than the original one was presented in [1] (Assumption IV, p. 13).

Thus, the function x0(t) is defined. Hence, the zero-order asymptotics for a solution of
problem (1)-(2) is found.

The following Table 1 shows the sequence of finding zero-order asymptotics terms.

Table 1. The algorithm for finding the zero-order asymptotics terms.

Asymptotics Terms Formulas

(I − P(t))x0(t) = 0 (9)
(I − P(0))Π0x(τ) (10), (11)

P(0)Π0x(τ) (13)
P(t)x0(t) (14), (16)

5. Higher-Order Asymptotic Solutions

Suppose that the terms xj(t) and Πjx(τ) of expansion (3), j = 0, 1, ..., n − 1, n ≥ 1, have
been found.

From equation (5) with j = n, we obtain the relation

A(t)xn(t) =
dxn−1(t)

dt
− f n−1(t),

where the right-hand side is known. Applying the operator I-Q(t) to this equation, we have

(I −Q(t))A(t)(I − P(t))xn(t) = (I −Q(t))(
dxn−1(t)

dt
− f n−1(t)).

From here, we find:

(I − P(t))xn(t) = A(t)+(I −Q(t))(
dxn−1(t)

dt
− f n−1(t)). (18)

Then, we can find from (8) with j = n the initial value

(I − P(0))Πnx(0) = −(I − P(0))xn(0). (19)
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The equation (6) with j = n has the form

dΠnx(τ)
dτ

= A(0)Πnx(τ) + Πn−1 f (τ) + [(A(ετ)− A(0))Πx(τ, ε)]n.

This equation is equivalent to two ones.

d(I − P(0))Πnx(τ)
dτ

= (I − P(0))A(0)(I − P(0))Πnx(τ) + (I − P(0))Πn−1 f (τ)+

+(I − P(0))[(A(ετ)− A(0))Πx(τ, ε)]n,
(20)

d(P(0)Πnx(τ))
dτ

= P(0)(A(0)(I − P(0))Πnx(τ) + Πn−1 f (τ)+

+[(A(ετ)− A(0))Πx(τ, ε)]n).
(21)

The sum of two last summands in the right-hand side in (20) is a known exponential-type
boundary function. Therefore, in view of Assumption 3, we can find from (19) and (20) the
exponential-type boundary function (I − P(0))Πnx(τ). Note that the proof of exponential estimates
for boundary functions is given in detail in monograph [14].

As the function in the braces on the right-hand side in (21) is a known exponential-type boundary
function, we can get from (21) the exponential-type boundary function P(0)Πnx(τ), namely

P(0)Πnx(τ) = −
∫ +∞

τ P(0)(A(0)(I − P(0))Πnx(s) + Πn−1 f (s)
+[(A(εs)− A(0))Πx(s, ε)]n) ds.

(22)

Hence, the exponential-type boundary function Πnx(τ) is defined. Then, we can find from (8)
with j = n the initial value

P(0)xn(0) = −P(0)Πnx(0). (23)

Writing out equation (5) with j = n + 1, we get

dxn(t)
dt

= A(t)xn+1(t) + f n(t).

The solvability condition for this equation has the form

Q(t)
d(P(t)xn(t))

dt
= Q(t)( f n(t)−

d((I − P(t))xn(t))
dt

).

In view of (15), we obtain from here the equation

d(P(t)xn(t))
dt

= (Q(t)P(t))−1Q(t)( f n(t) +
dP(t)

dt
P(t)xn(t)−

−d((I − P(t))xn(t))
dt

) + (I − P(t))
dP(t)

dt
P(t)xn(t).

(24)

If operator A(t) is constant, then this equation has the form:

d(Pxn(t))
dt

= (QP)−1Q( f n(t)−
d((I − P)xn(t))

dt
). (25)

It should be noted that equation (24) is linear with respect to P(t)xn(t). As (I − P(t))xn(t) has
been found (see (18)), we can define the function P(t)xn(t) from (23) and (24).

Hence, we have found the terms of the n-th order in expansion (3).
The following Table 2 shows the sequence of finding the n-th order terms in expansion (3).
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Table 2. The algorithm for finding the n-th order asymptotics terms, n ≥ 1.

Asymptotics Terms Formulas

(I − P(t))xn(t) (18)
(I − P(0))Πnx(τ) (19), (20)

P(0)Πnx(τ) (22)
P(t)xn(t) (23),(24)

The previous arguments have, as a consequence, the following assertion.

Theorem 1. Under Assumptions 1–4, the asymptotic solution of problem (1)-(2) in form (3) can be constructed
with the help of orthogonal projectors onto kerA(t) and kerA(t)′. The order of finding the asymptotics terms is
the following: (I − P(t))xj(t), (I − P(0))Πjx(τ), P(0)Πjx(τ), P(t)xj(t), j ≥ 0.

6. Illustrative Example

Consider the following initial value problem of form (1)-(2) on the segment [0, T]:

ε
dy
dt

= −y + εz2,

ε
dz
dt

= y,
(26)

y(0, ε) = 1, z(0, ε) = 1. (27)

Here, t ∈ [0, 0.3], x(t, ε) = (y(t, ε), z(t, ε))′; y = y(t, ε), z = z(t, ε) ∈ IR; x0 = (1, 1)′,

A(t) = A =

(
−1 0
1 0

)
, f (x, t, ε) =

(
z2

0

)
.

Hence,

λ1 = 0, λ2 = −1, kerA = {(0, a)′}, V = (0, 1)′, kerA′ = {(a, a)′},

S = (1, 1)′, imA = {(−a, a)′}, imA′ = {(a, 0)′},

P =

(
0 0
0 1

)
, I − P =

(
1 0
0 0

)
, Q =

(
1/2 1/2
1/2 1/2

)
,

(I − P)A(I − P) =

(
−1 0
0 0

)
: imA′ → imA′,

(QP)−1 =

(
0 0
0 2

)
: kerA′ → kerA, A+ =

(
−1/2 1/2

0 0

)
: imA→ imA′.

We will construct the first-order approximation for the asymptotic solution of problem (26)-(27)
using projectors P and Q.

Relation (9), in this case, has the form:(
1 0
0 0

)(
y0(t)
z0(t)

)
=

(
y0(t)

0

)
=

(
0
0

)
.

Therefore, y0(t) = 0.
From (10), we get Π0y(0) = 1.
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Equation (11) has the form:

d
dτ

(
Π0y(τ)

0

)
=

(
−Π0y(τ)

0

)
.

Taking into account the initial value Π0y(0) = 1 found from (10), we obtain from the last equation
Π0y(τ) = e−τ .

From (13), we find Π0z(τ) = −
∫ +∞

τ Π0y(s)ds = −e−τ .
From (14) and (17) we derive, respectively,(

0 0
0 1

)(
y0(0)
z0(0)

)
=

(
0

z0(0)

)
=

(
0 0
0 1

)((
1
1

)
−
(

1
−1

))
=

(
0
2

)
.

d
dt

(
0

z0(t)

)
=

(
0 0
0 2

)(
1/2 1/2
1/2 1/2

)(
(z0(t))2

0

)
=

(
0

(z0(t))2

)
,

In view of the last two relations, we have z0(t) = 1/(0.5− t).
It is easy to verify that conditions 1–4 are satisfied for problem (26)-(27).
Thus, we have found the zero-order asymptotic solution of form (3) x̃0(t, ε) for the solution of

problems (26)-(27). Namely, we have

ỹ0(t, ε) = e−τ ,

z̃0(t, ε) = 1/(0.5− t)− e−τ , τ = t/ε.

Now, we will seek for the first-order asymptotics.
Equation (18) for n = 1 has the form:(
y1(t)

0

)
=

(
−1/2 1/2

0 0

)(
1/2 −1/2
−1/2 1/2

)(
d
dt

(
0

z0(t)

)
−
(
(z0(t))2

0

))
=

(
1/(0.5− t)2

0

)
.

Therefore, y1(t) = 1/(0.5− t)2.
From (19) with n = 1, we get Π1y(0) = −4.
Equation (20) for n = 1 has the form:

d
dτ

(
Π1y(τ)

0

)
=

(
−Π1y(τ) + 4Π0z(τ) + (Π0z(τ))2

0

)
.

From the last two relations, we obtain Π1y(τ) = −(3 + 4τ + e−τ)e−τ .
From (22) with n = 1, we find Π1z(τ) = −

∫ +∞
τ Π1y(s) ds = (7 + 4τ + e−τ/2)e−τ .

From (23) and (25) with n = 1, we derive, respectively,

d
dt

(
0

z1(t)

)
=

(
0 0
0 2

)(
1/2 1/2
1/2 1/2

)((
2z0(t)z1(t)

0

)
− d

dt

(
y1(t)

0

))
=

(
0

2z0(t)z1(t)− dy1(t)/dt

)
,

(
0

z1(0)

)
=

(
0

−Π1z(0)

)
.

In view of the last two relations, we have z1(t) = (ln(0.5− t)2 − 15/8 + ln4)/(0.5− t)2.
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Thus, we have found for problems (26)-(27) the first-order asymptotic solution of form (3) x̃1(t, ε).
Namely, we have

ỹ1(t, ε) = ỹ0(t, ε) + ε(y1(t) + Π1y(τ)),

z̃1(t, ε) = z̃0(t, ε) + ε(z1(t) + Π1z(τ)).

Of course, these results can be obtained using the algorithm from [4], but we would like to
demonstrate here the use of projectors for finding asymptotics terms. The results obtained by Maple 13
are given in Figures 1 and 2. They have been presented for the completeness of the paper. The solid
line represents the exact solution; the dash-dotted line—the solution of the degenerate problem, the
line consisting of squares represents the zero-order approximation; and the dash line represents the
the first-order approximation. These graphs show that an asymptotic solution is closer to the exact one
if we use higher-order asymptotics. If we use the smaller value of ε, then it will result in an asymptotic
solution more similar to the exact one. The graphs of the solution of the degenerate problem and the
zero-order approximation illustrate the known property of boundary functions that are essential only
for arguments in some vicinities of points where additional conditions are prescribed.

Figure 1. Trajectory y(t, ε) with ε = 0.01 and its approximations.

Figure 2. Trajectory z(t, ε) with ε = 0.01 and its approximations.
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7. Conclusions

This paper dealt with a new approach to the algorithm of the method of boundary functions
from [4] for asymptotic solving initial value problem of form (1)-(2) in the critical case. Namely, the
algorithm was formulated with the help of orthogonal projectors of the space X onto kerA(t) and
kerA(t)′. Such an approach clearly shows the structure of the algorithm for finding asymptotics terms,
given in Tables 1 and 2 of the paper.
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