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Abstract: Some well known results from the existing literature are extended and generalized via new
contractive type mappings in fuzzy metric spaces. A non trivial supporting example is also provided
to demonstrate the validity of the obtained results.

Keywords: fuzzy metric space; a-0-fuzzy contraction; M-cauchy sequence; G-cauchy sequence

1. Introduction

The Banach contraction principle [1] plays an important role in the study of nonlinear equations
and is one of the most useful mathematical tools for establishing the existence and uniqueness of
a solution of an operator equation Tx = x. Many researchers have extended and generalized this
principle in different spaces such as b-metric spaces, vector valued metric spaces, G-metric spaces,
partially ordered complete metric spaces, cone metric spaces etc. Zadeh [2] introduced the notions
of fuzzy logic and fuzzy sets. With this introduction, fuzzy mathematics began to evolve. Kramosil
and Michalek [3] initiated the concept of fuzzy metric space as a generalization of the probabilistic
metric space.

Fixed point theory in fuzzy metric space has been an attractive area for researchers. Heilpern [4]
introduced fuzzy mappings and proved the fixed point theorem for such mappings. Grabiec [5]
defined complete fuzzy metric space ( G-complete fuzzy metric space) and extended the Banach fixed
point theorem to fuzzy metric space (in the sense of Kramosil and Michalek). Besides the extension of
the illustrious Banach contraction principle, several results concerning fixed point were established in
G-complete fuzzy metric spaces (see, e.g, [6]). Gregori and Sapena [6] defined fuzzy contraction and
established a fixed point result in fuzzy metric space in the sense of George and Veeramani. Afterwards
many fixed point results were established for complete fuzzy metric spaces introduced by George and
Veeramani [7], called M-complete fuzzy metric.

Gopal et al. [8] proposed the notion of a-¢-fuzzy contractive mapping and proved some fixed
point results in G-complete fuzzy metric spaces in the sense of Grabiec. In this paper, we propose the
notion of a-g-fuzzy contractive mapping and establish some fixed point results for such mappings.
Our work generalizes several corresponding results given in the literature, in particular, the Grabiec
fixed point theorem is extended. A supporting example is also given.

2. Preliminaries

In this section we recall some basic definitions which will be needed in the sequel.
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Definition 1 ([9]). A binary operation * : [0,1] x [0,1] — [0,1] satisfying conditions (1)—(4) is called
continuous t-norm:

1 * is associative and commutative,

2. is continuous,

3. lxr=rforallr €[0,1],

4 ifr<sandw < zthenrxw < sxzforallr,s,w,z € [0,1].

axp p = max{a + p — 1,0}, called Lukasievicz t-norm,

« xp B = ap, called product t-norm, and

a *p B = min{a, B}, minimum t-norm are examples of continuous t-norms.
Michalek and Kramosil [3] defined fuzzy metric space in the following way.

Definition 2. Having a nonempty set S, let ¢ be a fuzzy set on S? x [0, c0) and * be a continuous t-norm. Then
the triplet (S, g, *) is said to be fuzzy metric space if the following conditions are satisfied:

(K1) ¢(r,s,0) =0;

(K2) ¢(r,s,0) =1iffr =sforallr,s € Sand { > 0;

(K3) ¢(r,s,€) =¢(s,r, ) forall ¢ > 0;

(K4) ¢(r,s,0) xg(s,w,t) < g(r,w,l+t) forallr,s,w € Sand {,t > 0;

(K5) ¢(r,s,£) : [0,00) — [0,1] is left continuous and non-decreasing function of ¢;
(K6) limy ,o¢(r,5,€) =1, forallv,s,w € S.

The value of ¢(7, s, ¢) represents the degree of closeness between r and s with respectto £ > 0.
Veeramani and George modified Kramosil’s definition of fuzzy metric space in the following way.

Definition 3 ([10]). The triplet (S, ¢, *) is called fuzzy metric space, if S is a nonempty set, * is a continuous
t-norm and ¢ is a fuzzy set on S* x [0,00) such that for all r,s,w € S and {,t > 0 the following assertions
are satisfied.

(G1) ¢(r,s,¢) >

(G2) ¢(r,s, E)-lzﬁ‘r—s

(G3) ¢(r,s,£) =¢(s,r,0),

(G4) ¢(r,8,0) xg(s,w,t) <g(r,w, L+1),
(G5) ¢(r,s,.): (0,00) — [0,1] is continuous.

Remark 1 ([11]). It should be noted that 0 < ¢(r,s,{) < lifr # sand ¢ > 0.
Lemma 1 ([6]). ¢(7,s,.) is nondecreasing for all r,s € S.

Example 1 ([10]). For a metric space (S,d), let M : S?> x (0,00) — [0, 1] be defined as

ket

g(r,s,0) = Wd() Y r,s € Sand ¢ > 0.wherek,m,n € RT,

where * is product t-norm (also true for minimum t-norm). Then ¢ is a fuzzy metric on S and is referred to as a
fuzzy metric induced by the metric d.

If we take k = m = n = 1, then the above fuzzy metric reduces to the well known standard fuzzy
metric. For further examples of fuzzy metrics see [12].

Definition 4 ([7]). In a fuzzy metric space (S, ¢, *):

1. Asequence {ry} will converge tor € Sif limy 0o G(ry,7,¢) =1, ¥V £ > 0.
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2. {rutnen is said to be an M-cauchy sequence if for every positive real number € € (0,1) and £ > 0 there
exists ne € N. such that ¢(ry, tm, ) >1—¢€, ¥V m,n > ne.
3. A{ru}nen is called G-cauchy sequence if imy—eo G(7yy 1k, 70, £) = 1, for all £ > 0 and each k € N.

If every M-Cauchy sequence converges to some point of a fuzzy metric space (S, ¢, *), then (S, g, *)
is called M-complete. Similarly (S, ¢, *) will be G-complete if every G-Cauchy sequence converges in
it. It is worth mentioning that G-completeness implies M-completeness.

3. Main Results

Definition 5. Let (S, g, *) be a fuzzy metric space and Q) be the class of all mappings ¢ : [0,1] — [1,00) such
that for any sequence {r,} C [0,1], of positive real numbers r, — 1 = o(rn) — 1. Then a self mapping
F: S — Sis said to be a-o-fuzzy contraction if there exists two functions o : S? x (0,00) — [0,00) and 0 € Q
such that

(c(Fr, Fs, k)" FrOREA > o(g(r,5,0))5(r,5, 0), @
forallr,s €S, £>0andx € (0,1).
Now we have proved our first result.

Theorem 1. Let (S, g, *) be a G-complete fuzzy metric space, F : S — S be a-o-fuzzy contraction where
w:S? x (0,00) — [0,00) is such that «(r, Fr,£) > 1, forallr € S £ > 0.
Then F has a unique fixed point.

Proof. Define sequence {r,} by r, 11 = Fry, n € NU {0} where ry is an arbitrary but fixed element in
S. Then by the hypothesis it follows that a(ry,, Fry, £) > 1, forn € NU{0}.If 11 = r, forany n € N,
then r,, is a fixed point of F. Therefore we assume that r,, 1 # r,, for all n € N, i.e., that no consecutive
terms of the sequence {r, } are equal.

Further, if r, = r,, for some n < m, then as no consecutive terms of the sequence {r, } are equal
from (1), we have

Q(T”+1,7n+2, €> = Q(Fi’n, Frn+l/€)
(g(Frnl Frn+1, Kg))0((Vn,Frn,z)ﬂl(rn+1,Frn+1,€)

>
= 0(6(rn rnt1,0))6(rn g1, €) = 6(rus rusa, £),
ie., ¢(tn, 141, 0) < ¢(rys1,7n+2,¢). Similarly one can show that
Q(Tn, 7’n+1/£) < g(rn+1/rn+2/‘€) << g(rm, rm-i-l/g)'

Now r, = ry implies that r,41 = Fry, = Fry = 441, and so, the above inequality yields a
contradiction. Thus we can suppose 1, # ry, for all distinct m, n € N. Using (1), we get

g(rnl r}’l-‘rl/Kg) 2 (Q(Pri’l—ll Prn, Kg))vc(rn,l,Frn,l,f)uc(r,,,Frn,ﬁ)

Z Q(Q(rnflrTnze))g(rnflrrnzg) 2 Q(anlrrnzey

Therefore

c(rn, s, 60) > ¢(rp_1,7n,0). ()
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Continuing in this manner, one can conclude by simple induction that

L
Q(T’n, rn+1/K€) > g(?‘(), 1, W) (3)

Let g be a positive integer, then using (K4), we have

q
L l —— 14
g(rn, Tnq, 6) > Q(T’n, Tn+1, 6) * g(rn+1/rn+2/ 6) Koo * g(rn+q—1/rn+EI/ 6)

Using (3), we have

14 14
¢(rn,Tniq, £) = ¢(ro, 11, q?) *¢(ro, 11, W) Ko *¢(ro, 11, W)
For n — oo, the above inequality becomes

Jim ¢ (ru, Tniq, 0) = 1.
Hence {r,} is G-cauchy. Therefore there will be some w € S such thatr, — w as n — oo, that is
limy, e (4, w, £) = 1 for each ¢ > 0.
Now using (K4) and (1) we have

/ 14
¢(Fw,w,l) > ¢(Fw,Fry, E) x¢(rha1,w, 5)
> (P, Fry, £ RO s (1,0, )

Y4 / Y4
> o(g(w, 1y, E))Q(w/ n, 5) * (g1, w, E)

14 14
> g(w,rn,i) *g(rnﬂ,w,i) —1x1=1.

Thus Fw = w. To show uniqueness, let w and z be two distinct fixed points of F. Thatis w = Fw #
Fz =z.Thenforall ¢ > 0,0 < ¢(w,z,¢) = g(Fw, Fz,¢) < 1. Therefore using (1), we have

1>¢(w,z0) = ¢(Fw,Fz,l) > (¢(Fw,Fz, 0))"@FolazFz0)

l L l
2 Q(g(w,z, E))g(w,z, ;) Z g(w,z, %)

Applying (1) repeatedly, we have 1 > ¢(w,z,¢) > ¢(w, z, %) >¢(w,z, é) > >¢(w,z, Kin)
Letting n — co, we have 1 < ¢(w, z,£) < 1. Which is a contradiction. Hence w = z. [

Theorem 2. Let(S, ¢, *) be a G-complete fuzzy metric space , F : S — S be a mapping. If there exists two
mappings a : S? x (0,00) — [0,00) and ¢ € Q such that a(r,Fr, ) > 1,forallr € S,{ > 0and

26(FrEsl) > (y(r, Fr, 0)a(s, Fs, £) + 1)8(&(ns0)s(rs0) 4)
forallr,s € 5,0 <x < land { > 0, then F has a unique fixed point.

Proof. Let rg be an arbitrary element in S. Set 7,11 = Fry, n € N. Then by the hypothesis of the
theorem it follows that a(r,, Fry, ¢) > 1, where n € NU{0}.If r,, ;1 = r, forany n € N, then r,, is a
fixed point of F. Therefore we assume that 7,11 # r,, for all n € N, i.e., that no consecutive terms of
the sequence {r, } are equal.
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Further, if r, = r,, for some n < m, then as no consecutive terms of the sequence {r, } are equal
from (4), we have

2?(7n+1/rn+2r£) zg(FranrnJrer)

zg(Frn,Pr,,H,KZ)

v Vv

(a(rnlrn_i_l, g)a(rn+1/ rn+2, g) + 1)Q((g(rn,rnﬂ,6))g(rn,rﬂ+1,ﬁ)
2§(7’;1,?’n+1,[>,

vV

ie., ¢(rn, 141, 0) < ¢(rys1,7nt2,¢). Similarly one can show that

g(rﬂ/ rn+1/€) < g(rn+1rrn+2/‘€) <0< g(rm, rerlrg)'

Now r, = ry implies that 7,4y = Fry, = Fry = ry41, and so, the above inequality yields a
contradiction. Thus we can suppose 1, # ry, for all distinct m, n € N. Using (4), we get
26rnrnrikl)  — p(6(Fra—1,Fruxl))

(06(1’,1,1, Tn,f)a(rn, Tn+l, f) + 1)Q((9(7n—1r7nr€))€(rn—lrrn/€)
ZQ(G(anlrrnré))G(rnflr”nrg)'

AR,

Therefore

c(rn, tng1,x0) > 0(6(rn—1,72,))(¢(rn—1,7n,£)) 5)
= g(r}’l/ Tn+1, Kg) Z Q(”nflz n, 6)

Continuing in this manner one can conclude, by simple induction, that

/
§(rw rns1, k) = g(ro,m, —=). (6)

Using (K4), we have for any positive integer g,

Q(Tn/ rn-&-q; Z) Z G(T’n/ Tn+1, 6) * Q(rn+1rrn+2/ a) ORI * Q(”n+q71/7’n+q, 6)

Using (6), we have

14 14
Q(”n/rnJrq/g) Z Q(T’O/ 1, q?) * Q(TO/ 1, W) Koo * g(ro, 1, W)
For n — oo the above inequality gives

nlgr;o (Tn,nyg 0) = 1.

Hence {r,} is G-cauchy. As S is complete, there will be w € S such thatr, — w as n — oo, that is
limy, 00 ¢(ry, w, £) = 1 for each £ > 0.
Using (4) we have

26(Fwrpsrkl)  _ o(c(Fw,Fryxl)) > (a(w, Fw, 0)a(ry, Fro, £) + 1)Q((g(w,rn,é))(g(w,rn,é)
> pel(s(wrn ) (g(wrn,l)
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This implies
G(Fuw, i1, 1) = ((g(w, 1u, €))((w, 7, £). )

Using (K4) and (7) we get

14 14

¢(Fw,w,xl) > g(Fw,rnH,KE)*g(w,rnH,KE)
14 / /
> Q(g(wﬂn,i))g(wmn,i)*g(w,i’nH,KE)

{
> g(w,rn, 5) * Q(wrrn+1/K§)'

For n — oo the above inequality gives

nlglc}cg(Fwwxﬂ)—léPw—

To prove uniqueness of the fixed point, assume w and z be two distinct fixed points of F. That is
w = Fw # Fz =z. Thenforall { > 0,0 < g(w,z,{) = ¢(Fw, Fz,{) < 1. Therefore using (4), we have

2~ pswzl)  _ oc(FwFz,l)
= (“(W,Fw,g)oc(z,Fz,g) +1)Q(g(w,z,K)) c(wz,L)
> ze(g(wz Dg(wz,t)
> 2cwag),

which implies 1 > ¢(w,z,¢) > ¢(w, z, %) With repeated use of (4), it turns out that

£y

l l
1> ¢(w,z,0) 2 ¢(w,z, ) 2 g(w,z,K—z) 226wz 3

For n — co, we get 1 < ¢g(w,z,¢) < 1. Which is a contradiction. Therefore w = z. [

Theorem 3. Let(S, g, *) be a G-complete fuzzy metric space, F : S — S be a mapping. If there exist two
mappings a : S% x (0,00) — [0,00) and ¢ € Q such that a(r,Fr,l) > 1,forallr € S, > 0and

¢(Fr, Fs,«f)
e ) el )65, ®

forallr,s € 5,0 < x < land £ > 0, then F has a unique fixed point.

Proof. Setr, 1 = Fry,,n=0,1,-- -, for a fixed element ry € S. By hypothesis of the theorem we have
a(rn, Fru, 0) = a(rn,1y41,¢) > 1 wheren € NU{0}. Let r,, 11 # 1y, for n > 0. Otherwise ry, is fixed
point of F and hence the result is proved. Further, if r,, = r,, for some n < m, then as no consecutive
terms of the sequence {r, } are equal from (8), we have

g(rn-i-l/ 7n+2/ 6) == Q(Frn/ F”n+1/ e)
¢(Fry, Fryyq,x0)
Fr,, F 14
= el e ) 2 G Al a2, 0
> 0(6(rn, 1941, 0))6(rn, Tnga, £)
> g(?’n,T’,H,l, )/
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ie., ¢(rn, 141, ¢) < ¢(rys1,ni2, £). Similarly it can be proved that

Q(”nr rn+1r£) < Q(T’n+1, rn+2/£) <0< Q(rm/ Tm+1, 6)

Now r, = ry implies that r,41 = Fry, = Fry = ry41, and so, the above inequality yields a
contradiction. Thus we can suppose 1, # ry, for all distinct m, n € N. Using (8), we have

¢(Fry_q, Fry,xf)
0((7’”,1, rn)“(”nr Tn41, 6)
Q(g(rnfll n, e))g(rnfl/ n, 6)

g(r}’l/ rn+1/K€> = g(Frflfl/ Frn, Kg) Z

v

Therefore

g(rnrrn+1/K€) > Q(g(rn*lrrnlé))(g(rnflr Tnfg)) (9)
= G<r}’l/ 7/'1/l+l/K‘€> 2 Q(”nflrrnlg)-

Following the related arguments in the proof of Theorem (1), we conclude that {r,} is a G-cauchy
sequence. Due to the completeness of S, there will be w € S such that r, - w as n — oo, that is
limy, 0 (4, w, £) = 1 for each ¢ > 0.

Then using (K4) and (8) we have

l 1
¢(Fw,w,xl) > g(Pw,rnH,KE) g(w,rnﬂ,xi)

¢ Y
= ¢(Fw, Fry, KE) x¢(w, 141, KE)

¢(Fw, Frn,K%)
a(w, Fw, £)a(ry, 141,

%

xg(w,r Kg)

é) G s 'n4+1, 2
/ / /
> Q((Q(w/ T'n, E))(Q(w; T'n, 5) * Q(wl Tn+1, KE)

l l
Z g(w/ri’l/ E) *g(wrrn+1/K§)~

For n — oo the above inequality gives

lim ¢(Fw,w,kl) =1= Fw = w.

n—oo
For uniqueness, assume w and z be two distinct fixed points of F. That is w = Fw # Fz = z. Then for
all¢ > 0,0 < ¢(w,z,¢) = ¢(Fw, Fz,¢) < 1. Therefore using (8), we have

1>¢(w,z,¢) = ¢(Fw,Fz¥)
¢(Fw, Fz,0)
~ a(w, Fw,l)a(z, Fz,0)

> olelwz Dz ) 2 cw

2

Using (8), it can be shown that1 > ¢(w,z,¢) > g(w,z,%) > g(w,z,K%) > > g(w,z,Kin).

Letting n — co, we get 1 < ¢(w,z,¢) < 1, a contradiction. Hence w = z. [

By taking «(r,s,¢) = 1 and o(t) = 1 in Theorems (1), (2) and (3) , we have the following corollary
which is actually the fixed point result established by Grabiec [5].
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Corollary 1. Let (S, g, *) be a G-complete fuzzy metric space and F : S — S be be a self mapping such that
¢(Fr,Fs,kl) > ¢(r,s,¥) (10)

forallr,s € S, £>0andx € (0,1).
Then F has a unique fixed point.

4. Example
In this section we present a supporting example to demonstrate the validity of our results.

Example 2. Let S = [0,00), rxs = rs forall r,s € [0,1] and ¢(r,s,¢) = e forallr,s € Sand t > 0.
Then (S, ¢, *) is a complete fuzzy metric space. Let F : S — S be defined as

Fu:{g, ifr € [0,1],
Vi ifr € (1,00).

Further, define o : S? x (0,00) — [0, 00) as

V2 ifr,s € [0,1],
a(r,s,0) = < ()05 ifr,s € (1,00),

0 otherwise.

Also forall r,s € S and £ > 0, we have «(r, Fr,¢) > 1, and

—|u—v|

(g(Fr,FU’E))a(r,Fr,E)oc(s,Fs,Z) > e w

= (g(r,s,0)) F¢(r,s,0).

That is F is a-o-fuzzy contraction with o(t) = 1, where t € [0,1].
Thus all conditions of Theorem (1) are fulfilled. Obviously 0 is a unique fixed point of F.

Similarly supporting examples for other results do exist and can be constructed easily.

5. Conclusions

We proposed the concept of the a-0-Fuzzy Contraction and some new types of fuzzy contractive
mappings. We proved three theorems which ensure the existence and uniqueness of fixed points of
these new types of contractive mappings. The new concepts may lead to further investigation and
applications. For example, using the recent ideas in the literature, it is possible to extend our results to
the case of coupled fixed points in fuzzy metric spaces.
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