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Abstract: In this manuscript, we introduce almost b-metric spaces and prove modifications of fixed
point theorems for Reich and Hardy–Rogers type contractions. We present an approach generalizing
some fixed point theorems to the case of almost b-metric spaces by reducing almost b-metrics to the
corresponding b-metrics. Later, we show that this approach can not work for all kinds of contractions.
To confirm this, we present a proof in which the contraction condition is such that it cannot be reduced
to corresponding b-metrics.
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1. Introduction

In [1] Filipović and Kukić considered some classical contraction principles of Kannan [2], Reich [3]
and Hardy–Rogers [4] in b-metric spaces and rectangular b-metric spaces without the assumption of
continuity of the corresponding metric. The fact that a b-metric d need not be continuous must remind
us to use caution in the proofs.

As possibly more general forms of the theorems proven in [1], here we further try to, as many
authors before, generalize metric spaces. Plenty of generalizations in previous two decades were done.
Starting from 1989, b-metric spaces were introduced in [5]. After, partial b-metric spaces [6], metric-like
spaces [7] and b-dislocated metric spaces [8] have been given. For related contraction principles in the
setting of above spaces, the readers can see [9–19].

As an attempt to continue in that spirit, we initiate the concept of almost b-metric spaces.
The motivation of this initiation comes from [20] where Mitrović, George and Hussain introduced
almost rectangular b-metric spaces.

2. Preliminaries

Bakhtin in [5] and Czerwik in [21] introduced b-metric spaces as a generalization of standard
metric spaces.

Definition 1 (Ref. [5,21]). Let X be a nonempty set and s ≥ 1. The function db : X × X → [0,+∞) is a
b-metric if and only if, for all χ, ζ, σ ∈ X, we have
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(bM1) db(χ, ζ) = 0 if and only if χ = ζ,
(bM2) db(χ, ζ) = db(ζ, χ),
(bM3) db(χ, σ) ≤ s(db(χ, ζ) + db(ζ, σ)).

(X, db, s) is said a b-metric space and s ≥ 1 is its coefficient.

In particular, if s = 1 then (X, d) is a standard metric space.
Recall that a sequence {χn} in X, b-converges to χ ∈ X if and only if db(χn, χ) → 0 as n → ∞.

{χn} is b-Cauchy if and only if db(χn, χm)→ 0 as n, m→ ∞. If each b-Cauchy sequence is b-convergent
in X, then (X, db, s) is said to be b-complete.

If in previous definition, we assume that only (bM1) and (bM3) hold, then we denote db as dq and
we call (X, dq, s) a quasi-b-metric space.

In next few lines, we make a brief overview of some well known types of contractions. Let (X, d)
be a metric space and T : X → X be such that

• d(Tχ, Tζ) ≤ λd(χ, ζ), λ ∈ [0, 1), a Banach type of contraction;
• d(Tχ, Tζ) ≤ λ (d(χ, Tχ) + d(ζ, Tζ)) , λ ∈ [0, 1

2 ), a Kannan type of contraction;
• d(Tχ, Tζ) ≤ λ (d(χ, Tζ) + d(ζ, Tχ)) , λ ∈ [0, 1

2 ), a Chatterjea type of contraction;
• d(Tχ, Tζ) ≤ αd(χ, ζ) + βd(χ, Tχ) + γd(ζ, Tζ) where α, β, γ ≥ 0 with α + β + γ < 1, a Reich type

of contraction;
• d(Tχ, Tζ) ≤ αd(χ, ζ) + βd(χ, Tχ) + γd(ζ, Tζ) + δd(χ, Tζ) + µd(ζ, Tχ) where α, β, γ, δ, µ ≥ 0 with

α + β + γ + δ + µ < 1, a Hardy–Rogers type of contraction.

In [1] Filipović and Kukić proved new theorems with additional conditions that are necessary to
prove the theorems without assumption of continuity of b-metric. Here, we cite only formulations of
those theorems and for the proofs, we refer on [1].

Theorem 1. Ref. [1] let T be a self-mapping on a complete b-metric space (X, db, s ≥ 1) such that

db(Tχ, Tζ) ≤ λdb(χ, ζ) + µdb(χ, Tχ) + δdb(ζ, Tζ),

for all χ, ζ ∈ X, where λ, µ, δ ≥ 0 with λ + µ + δ < 1 and

δ <
1
s

.

Then there is a unique fixed point of T.

Theorem 2. Ref. [1] let (X, db, s ≥ 1) be a complete b-metric space and T : X → X be a mapping satisfying

db(Tχ, Tζ) ≤ a1db(χ, ζ) + a2db(χ, Tχ) + a3db(ζ, Tζ) + a4db(χ, Tζ) + a5db(ζ, Tχ),

for all χ, ζ ∈ X, where a1, a2, a3, a4, a5 ≥ 0 are such that a1 + a2 + a3 + s(a4 + a5) < 1 and a1 > 1− 2
s .

Then T has a unique fixed point.

In the sequel of this paper, we introduce almost-b-metric spaces and present the related previous
theorems in this setting. At the end, we also give some results for different type of contractions, where
the proofs cannot be reduced to the corresponding b-metrics.

3. Main Results

In this section, let us firstly introduce the concept of almost-b-metric spaces, as a class of
quasi-b-metric spaces with the additional requirement that diminishes a lack of symmetry. We set a
demand that existence of the left limit of sequence implies the existence of the right limit (bM2l) or
that existence of the right limit of sequence implies the existence of the left limit of the same sequence
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(bM2r). After that, we introduce a couple of examples of almost-b-metrics and also an example of
a quasi-b-metric, which is not an almost-b-metric. Finally, we prove Theorems 1 and 2 with the
assumption (bM2left) instead of (bM2).

Definition 2. Let X be a nonempty set and s ≥ 1. Let dab : X× X → [0,+∞) be a function such that for all
χ, ζ, σ, χn ∈ X,

(bM1) dab(χ, ζ) = 0 iff χ = ζ,
(bM2l) dab(χn, χ)→ 0, n→ ∞ implies dab(χ, χn)→ 0, n→ ∞,
(bM2r) dab(χ, χn)→ 0, n→ ∞ implies dab(χn, χ)→ 0, n→ ∞,
(bM3) dab(χ, ζ) ≤ s(dab(χ, σ) + dab(σ, ζ)).

Then (X, dab, s) is called an

1. l-almost-b-metric space if (bM1), (bM2l) and (bM3) hold;
2. r-almost-b-metric space if (bM1), (bM2r) and (bM3) hold;
3. almost-b-metric space if (bM1), (bM2l), (bM2r) and (bM3) hold.

In the next two examples, we present two quasi-b-metrics, which are also almost-b-metrics.

Example 1. Let X = {0, 1, 2}. Choose α ≥ 2. Consider the b-metric dab : X× X → [0,+∞) defined by

dab(0, 0) = dab(1, 1) = dab(2, 2) = 0,

dab(1, 0) = 1, dab(0, 1) =
3
2

,

dab(2, 1) = 1, dab(1, 2) =
3
2

,

dab(2, 0) = α, dab(0, 2) = α + 1.

Note that dab satisfies (bM1), (bM3), (bM2l) and (bM2r) ( but not (bM2)). For α > 2, the ordinary
triangle inequality is not verified. Indeed,

dab(0, 2) = α + 1 > 3 =
3
2
+

3
2
= dab(0, 1) + dab(1, 2).

However, the following is satisfied for all x, y, z ∈ X,

dab(x, y) ≤ α + 2
2

(dab(x, z) + dab(z, y)).

Example 2. Let X = [0,+∞) and define dab : X× X → [0,+∞) as

dab(x, y) =

{
(x− y)3, x ≥ y

4(y− x)3, x < y

Then (X, dab, 4) is an almost b-metric space. (bM1), (bM2l) and (bM2r) are obvious. It remains to prove
that for all x, y, z,∈ X,

dab(x, y) ≤ 4(dab(x, z) + dab(z, y)).

Case 1. x ≥ y and dab(x, y) = (x− y)3. Starting from the inequality (α + β)3 ≤ 4(α3 + β3), we separate
the cases:

y ≤ z ≤ x:
dab(x, y) = (x− y)3 = (x− z + z− y)3

≤ 4((x− z)3 + (y− z)3) = 4(dab(x, z) + dab(z, y)),
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z ≤ y ≤ x:
dab(x, y) = (x− y)3 ≤ 4((x− z)3 + (y− z)3)

≤ 4((x− z)3 + 4(y− z)3) = 4(dab(x, z) + dab(z, y)),
y ≤ x ≤ z:

dab(x, y) = (x− y)3 ≤ 4((x− z)3 + (z− y)3)

≤ 4(4(z− x)3 + (z− y)3) = 4(dab(x, z) + dab(z, y)).

Case 2. x < y and dab(x, y) = 4(y− x)3. Again, we separate the cases:

x ≤ z ≤ y:
dab(x, y) = 4(y− x)3 = 4(y− z + z− x)3

≤ 4(4(y− z)3 + 4(z− x)3) = 4(dab(x, z) + dab(z, y)),
z ≤ x ≤ y:

dab(x, y) = 4(y− x)3 ≤ 4 · 4((y− z)3 + (z− x)3)

= 4(4(y− z)3 + 4(z− x)3)

≤ 4(4(y− z)3 + (x− z)3) = 4(dab(x, z) + dab(z, y)),
x ≤ y ≤ z:

dab(x, y) = 4(y− x)3 ≤ 4 · 4((y− z)3 + (z− x)3)

= 4 · (4(y− z)3 + 4(z− x)3)

≤ 4((z− y)3 + 4(z− x)3) = 4(dab(x, z) + dab(z, y)).

In the two previous examples, we constructed an almost-b-metric, which is also a quasi-b metric.
The next example shows that there is a quasi-b-metric dq, that it is not an almost-b-metric.

Example 3. Let X = R and define dq : X× X → [0, ∞) as

dq(x, y) =

{
(x− y)3, x ≥ y

1, x < y

As in the previous example, (bM3) and (bM1) are obvious. Notice that

dq(
1
n

, 0)→ 0, n→ ∞ but dq(0,
1
n
) = 1,

so (bM2l) does not hold and it is the same for (bM2r). We conclude that (X, dq, 4) is a quasi-b-metric space,
but it is not an almost-b-metric space.

There are many examples of b-metrics that are not continuous. Here, we modify one of such
examples in sense that we do not demand symmetry.

Example 4. Let A = N∪ {∞} and define dq : A× A→ [0,+∞):

dq(x, y) =



0, x = y
1
x
− 1

y
, if x < y and one of x and y is odd and the other

is odd or ∞

1
2

(
1
y
− 1

x

)
, if y < x and one of x and y is odd and the other

is odd or ∞

3, if one of x and y is even and the other is even or ∞

2, otherwise.
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Then (A, dq, 3
2 ) is a quasi-b-metric space (it is also an almost-b-metric space). Note that dq is not continuous.

Indeed, dq(2n + 1, ∞)→ 0, when n→ ∞. But, dq(2n + 1, 2) = 2, while dq(∞, 2) = 3.

Here, we introduce some basic concepts for almost-b-metric spaces. The following notions are
quite standard and also valid in quasi-b- metric spaces.

Definition 3. Let (X, dab, s) be an almost-b-metric space. A sequence {χn} in X is said to be

left-Cauchy if and only if for each ε > 0 there is an n0 ∈ N such that dab(χn, χm) < ε for all n ≥ m > n0,
which can be written as lim

n≥m→∞
dab(χn, χm) = 0,

right-Cauchy if and only if for each ε > 0 there is n0 ∈ N so that dab(χn, χm) < ε for all m ≥ n > n0,
which can be written as lim

m≥n→∞
d(χn, χm) = 0,

Cauchy if and only if for each ε > 0, there is n0 ∈ N so that dab(χn, χm) < ε for all n, m > n0.

In a quasi-b-metric space, a sequence is Cauchy if and only if it is left-Cauchy and right-Cauchy.
The same is satisfied in almost-b-metric spaces. An almost-b-metric space (X, dab, s) is left-complete if
and only if each left-Cauchy sequence {χn} in X satisfies lim

n→∞
dab(χn, χ) = 0, right-complete if and

only if each right-Cauchy sequence {χn} in X satisfies lim
n→∞

dab(χ, χn) = 0 and is complete if and only

if each Cauchy sequence in X is convergent.
In the next lemma, we will associate a b-metric to a given quasi-b-metric or an almost-b-metric.

For some kind of contractions, by virtue of this correlation, the proofs from b-metric spaces can easily
be translated into quasi-b-metric spaces and almost-b-metric spaces as their subclass.

Lemma 1. If (X, dq, s) is a quasi-b-metric space with s ≥ 1, then (X, l, s) is a b-metric space, where

l(χ, ζ) =
dq(χ, ζ) + dq(ζ, χ)

2
.

Proof. l(x, y) is a b-metric.

(bM1) Suppose that l(x, y) = 0. Then dq(x,y)+dq(y,x)
2 = 0 and since dq(x, y) ≥ 0, we obtain that

dq(x, y) = dq(y, x) = 0 and that is, x = y, so we conclude that l(x, y) satisfies (bM1).
(bM2) l(x, y) is symmetric by definition:

l(x, y) =
dq(x, y) + dq(y, x)

2
=

dq(y, x) + dq(x, y)
2

= l(y, x).

(bM3) For all x, y, z,∈ X, the following is satisfied:

dq(x, z) ≤ s(dq(x, y) + dq(y, z)).

Simply, by adding the following inequality to the previous

dq(z, x) ≤ s(dq(z, y) + dq(y, x))

and dividing the resulted sum by two, we obtain

l(x, z) ≤ s(l(x, y) + l(y, z)).

Remark 1. If (X, dab, s) is a complete almost-b-metric space, then from (bM2l) and (bM2r), we conclude that
(X, l, s) is a complete b-metric space.
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The following theorems are modifications of Theorems 1 and 2 for quasi-b metric spaces and
almost-b-metric spaces. Since almost-b-metric spaces are contained in quasi-b-metric spaces, we denote
a metric by dq.

Theorem 3. Let (X, dq, s) be a b-complete quasi-b-metric space with coefficient s > 1 and T : X → X be a
mapping such that

dq(Tx, Ty) ≤ λdq(x, y) + µdq(x, Tx) + δdq(Ty, y), (1)

for all x, y, z ∈ X, where λ, µ, δ ≥ 0 and

λ + 2 ·max{µ, δ} < 1 and max{µ, δ} < 1
s

. (2)

Then T has a unique fixed point.

Proof. From Lemma 1, we conclude that (X, l, s) is a complete b-metric space. Further, from (1),
the b-metric l(x, y) satisfies:

l(Tx, Ty) =
dq(Tx, Ty) + dQ(Ty, Tx)

2

≤ 1
2
(
λdq(x, y) + µdq(x, Tx) + δdq(Ty, y)

)
+

1
2
(
λdq(y, x) + µdq(y, Ty) + δdq(Tx, x)

)
= λl(x, y) +

1
2
(µdq(x, Tx) + δdq(Tx, x)) +

1
2
(µdq(y, Ty) + δdq(Ty, y))

≤ λl(x, y) +
1
2
·max{µ, δ}(dq(x, Tx) + dq(Tx, x))

+
1
2
·max{µ, δ}(dq(y, Ty) + dq(Ty, y))

= λl(x, y) + max{µ, δ}l(x, Tx) + max{µ, δ}l(y, Ty).

Now, from Theorem 1, we conclude that T has a unique fixed point.

In the next result, we propose a Hardy–Rogers type contraction for quasi-b metric spaces and
almost-b-metric spaces.

Theorem 4. Let (X, dq, s) be a complete quasi-b-metric space with coefficient s > 1 and T : X → X be a
mapping satisfying

dq(Tx, Ty) ≤ a1dq(x, y) + a2dq(x, Tx) + a3dq(Ty, y) + a4dq(x, Ty) + a5dq(Tx, y), (3)

for all x, y ∈ X, where a1, a2, a3, a4, a5 ≥ 0 with a1 + 2 · max{a2, a3}+ 2s · max{a4, a5} < 1 and a1 >

max{0, 1− 2
s }. Then T has a unique fixed point.

Proof. From Lemma 1, we conclude that (X, l, s) is a complete b-metric space. Starting from (3), we
obtain for any x, y ∈ X,

2l(Tx, Ty) = dq(Tx, Ty) + dq(Ty, Tx)

≤ a1dq(x, y) + a1dq(y, x) + a2dq(x, Tx) + a2dq(y, Ty) + a3dq(Ty, y)

+ a3dq(Tx, x) + a4dq(x, Ty) + a4dq(y, Tx) + a5dq(Tx, y) + a5dq(Ty, x).
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Further, we get

l(Tx, Ty) ≤ a1l(x, y) +
1
2
(
a2dq(x, Tx) + a3dq(Tx, x)

)
+

1
2
(
a2dq(y, Ty) + a3dq(Ty, y)

)
+

1
2
(
a4dq(x, Ty) + a5dq(Ty, x)

)
+

1
2
(
a4dq(y, Tx) + a5dq(Tx, y)

)
≤ a1l(x, y) + max{a2, a3}l(x, Tx) + max{a2, a3}l(y, Ty)

+ max{a4, a5}l(x, Ty) + max{a4, a5}l(y, Tx).

From Theorem 2 and conditions from Theorem 4, we conclude that self-mapping T on the
complete b-metric space (X, l, s) has an unique fixed point, say x∗. Finally, according to Theorem 2,
the result follows.

It is not difficult to see that Theorems 3 and 4 are also satisfied for s = 1. To be specific, then
(X, d, 1) is a quasi-metric space, (X, l) is a metric space, while condition (2) reduces to the well known
condition λ + µ + δ < 1 for Reich type contractions, and similar for Hardy–Rogers type contractions.

The following results slightly differ from previous in a sense that we use properties (bM2l) and
(bM2r). Before we state our result, we prove an auxiliary lemma that we use it in the proof. Since the
lemma is satisfied in the quasi-b-metric spaces, it is also valid in almost-b-metric spaces, so again we
denote it by dq (having in mind that it is also valid for dab).

Lemma 2. Let {χn} be a sequence in a quasi-b-metric space (X, dq, s ≥ 1) such that

dq(χn, χn+1) ≤ λ · dq(χn−1, χn), (4)

for some λ ∈ [0, 1
s ) and each n ∈ N. Then {χn} is a right-Cauchy sequence.

Proof. From (4), we get
dq(χn, χn+1) ≤ λndq(χ0, χ1). (5)

Let n, m ∈ N with n < m. Then

dq (χn, χm)

≤ s
(
dq (χn, χn+1) + dq (χn+1, χm)

)
= sdq (χn, χn+1) + sdq (χn+1, χm)

≤ sdq (χn, χn+1) + s2dq (χn+1, χn+2) + s2dq (χn+2, χm)

≤ sdq (χn, χn+1) + s2dq (χn+1, χn+2) + s3dq (χn+2, χn+3) + ...

+ sm−n−1dq (χm−2, χm−1) + sm−n−1dq (χm−1, χm)

≤
[
sλn + s2λn+1 + s3λn+2 + ... + sm−n−1λm−2

]
dq (χ0, χ1)

+ sm−n−1λm−1dq (χ0, χ1)

= sλn
(

1 + (sλ) + (sλ)2 + ... + (sλ)m−n−2
)

dq (χ0, χ1) +
(sλ)m−1

sn dq (χ0, χ1)

≤
(

sλn

1− sλ
+

(sλ)m−1

sn

)
dq (χ0, χ1)→ 0 (m > n→ ∞).

Since sλ < 1, we have

dq (χn, χm)→ 0, m > n, n→ ∞ or equivalently lim
m>n→∞

dq (χn, χm) = 0,

that is, {χn} is right-Cauchy.



Axioms 2019, 8, 70 8 of 12

The following result is analogue to Lemma 2 for left- Cauchy sequences.

Lemma 3. Let {χn} be a sequence in a quasi-b-metric space (X, dq, s ≥ 1) such that

dq(χn+1, χn) ≤ λ · dq(χn, χn−1) (6)

for some λ ∈ [0, 1
s ) and each n ∈ N. Then {χn} is a left-Cauchy sequence.

Proof. The proof follows the same steps as in Lemma 2, where, starting from (6), the condition (5) is
replaced by

dq(χn+1, χn) ≤ λndq(χ1, χ0). (7)

Let n, m ∈ N with n > m. Then

dq (χn, χm)

≤ s
(
dq (χn, χm+1) + dq (χm+1, χm)

)
= sdq (χm+1, χm) + sdq (χn, χm+1)

≤ sdq (χm+1, χm) + s2dq (χn, χm+2) + s2dq (χm+2, χm+1)

≤ sdq (χm+1, χm) + s2d (χm+2, χm+1) + ...

+ sn−m−1 (dq(χn, χn−1) + dq(χn−1, χn−2)
)

≤
[
sλm + s2λm+1 + s3λm+2 + ... + sn−m−1λn−2

]
dq (χ1, χ0)

+ sn−m−1λn−1dq (χ1, χ0)

= sλm
(

1 + (sλ) + (sλ)2 + ... + (sλ)n−m−2
)

dq (χ1, χ0) +
(sλ)n−1

sm dq (χ1, χ0)

≤
(

sλm

1− sλ
+

(sλ)n−1

sm

)
dq (χ1, χ0)→ 0 (n > m→ ∞).

Since sλ < 1, we conclude that

dq (χn, χm)→ 0, n > m, m→ ∞ or equivalently lim
n>m→∞

dq (χn, χm) = 0,

that is, {χn} is left-Cauchy.

Remark 2. It is not hard to see that Lemma 2 and Lemma 3 hold if λ ∈ [ 1
s , 1). For details, see Lemma 5 in [22].

In the proof of the next theorem, we use the assumption (bM2r), hence we state it an
almost-b-metric, and so denote the metric by dab.

Theorem 5. Let (X, dab, s) be a right-complete r-almost b-metric space with coefficient s > 1 and T : X → X
be a mapping satisfying

dab(Tx, Ty) ≤ k ·max{dab(x, y), dab(x, Tx), dab(y, Ty)}, (8)

for all x, y ∈ X, where k is such that 0 ≤ k < 1
s . Then T has a unique fixed point.
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Proof. At the beginning of the proof, let us consider uniqueness of a possible fixed point. To prove
that the fixed point is unique, if it exists, suppose that T has two distinct fixed points x∗, y∗ ∈ X. Then
we get

dab(x∗, y∗) = dab(Tx∗, Ty∗)

≤ k ·max{dab(x∗, y∗), dab(x∗, Tx∗), dab(y∗, Ty∗)}
= kdab(x∗, y∗) < dab(x∗, y∗),

which is a contradiction.
For an arbitrary χ0 ∈ X, consider the sequence χn = Tχn−1 = Tnχ0, n ∈ N. If χn = χn+1 for

some n, then χn is the unique fixed point of T. We suppose that dab(χn, χn+1) > 0 for all n ∈ N.
We start from (8) for dab(χn, χn+1). Then for any n ∈ N, we get

dab(χn, χn+1) = dab(Tχn−1, Tχn)

≤ k ·max{dab(χn−1, χn), dab(χn−1, Tχn−1), dab(χn, Tχn)}
= k ·max{dab(χn−1, χn), dab(χn−1, χn), dab(χn, χn+1)}
= k ·max{dab(χn−1, χn), dab(χn, χn+1)}.

(9)

If dab(χm−1, χm) ≤ dab(χm, χm+1) for some m ∈ N, then from (9) we get

dab(χm, χm+1) ≤ k · dab(χm, χm+1) < dab(χm, χm+1)

which is a contradiction. So, we have

dab(χn, χn+1) ≤ k · dab(χn−1, χn) for all n ∈ N. (10)

From (10) and Lemma 2 we can easily conclude that for some n0 ∈ N,

dab(χn, χm) < ε

for all m ≥ n > n0, so {χn} is a right-Cauchy sequence.
Since (X, dab, s > 1) is a right-complete r-almost-b-metric space, we get that the sequence {χn}

right converges to x∗ ∈ X, i.e., dab(x, χn) → 0 as n → ∞. (bM2r) implies that dab(χn, x∗) → 0
as n→ ∞.

The end of the proof is analogue to the standard case. From (bM3) and (8), we obtain

1
s

dab(x∗, Tx∗) ≤ dab(x∗, χn+1) + dab(χn+1, Tx∗)

= dab(x∗, χn+1) + dab(Tχn, Tx∗)

≤ dab(x∗, χn+1) + k ·max{dab(χn, x∗), dab(χn, Tχn), dab(x∗, Tx∗)}
→ k · dab(x∗, Tx∗), n→ ∞.

Finally, x∗ = Tx∗. In the last inequality, we used property (bM2r) to obtain that dab(χn, x∗)→ 0
as n → ∞ and also that dab(χn, Tχn) = dab(χn, χn+1) → 0 as n → ∞ since {χn} is a right-Cauchy
sequence.

From the previous theorem, we can draw several corollaries that are analogous to Banach, Kannan
and Reich type contraction principles, respectively.

Corollary 1. Let (X, dab, s) be a right-complete r-almost b-metric space with coefficient s > 1 and T : X → X
be such that

Banach contraction:
dab(Tx, Ty) ≤ k · dab(x, y)
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for all x, y ∈ X where 0 ≤ k < 1
s .

Kannan contraction:
dab (Tx, Ty) ≤ k1dab (x, f x) + k2dab (y, f y)

for all x, y ∈ X where k1, k2 ≥ 0 such that k1 + k2 < 1
s .

Reich contraction:
dab (Tx, Ty) ≤ k1dab (x, y) + k2dab (x, f x) + k3dab (y, f y) ,

for all x, y ∈ X where k1, k, k3 ≥ 0 such that k1 + k2 + k3 < 1
s .

Then T has a unique fixed point.

The next result is analogue to Theorem 5 for left-complete l-almost b-metric spaces.

Theorem 6. Let (X, dab, s) be a left-complete l-almost b-metric space with s > 1 and T : X → X be such that

dab(Tx, Ty) ≤ k ·max{dab(x, y), dab(Tx, x), dab(Ty, y)}, (11)

for all x, y ∈ X where 0 ≤ k < 1
s . Then T has a unique fixed point.

Proof. The uniqueness of a possible fixed point is obtained the same way as in proof of Theorem 5.
For arbitrary χ0 ∈ X, consider the sequence χn = Tχn−1 = Tnχ0, n ∈ N. If χn = χn+1 for some

n, then χn is a unique fixed point of T. Hence, we suppose that dab(χn+1, χn) > 0 for all n ∈ N.
We start from (11) for dab(χn+1, χn). Then for any n ∈ N, using same considerations as in previous

proof, we get

dab(χn+1, χn) = dab(Tχn, Tχn−1)

≤ k ·max{dab(χn, χn−1), dab(Tχn, χn), dab(Tχn−1, χn−1)}
≤ k · dab(χn, χn−1).

(12)

From (12) and Lemma 3, we can easily conclude that for some n0 ∈ N,

dab(χn, χm) < ε

for all n ≥ m > n0, so {χn} is a left-Cauchy sequence.
Since (X, dab, s > 1) is a left-complete l-almost-b-metric space, we get that the sequence {χn} left

converges to x∗ ∈ X, i.e., dab(χn, x∗)→ 0, n→ ∞. (bM2l) implies that dab(x∗, χn)→ 0 as n→ ∞.
Finally, from (bM3) and (11), we obtain

1
s

dab(Tx∗, x∗) ≤ dab(Tx∗, χn+1) + dab(χn+1, x∗)

= dab(Tx∗, Tχn) + dab(χn+1, x∗)

≤ k ·max{dab(x∗, χn), dab(Tx∗, x∗), dab(Tχn, χn)}+ dab(χn+1, x∗)

→ k · dab(Tx∗, x∗), n→ ∞,

and so x∗ = Tx∗. In the last inequality, we used property (bM2l) that implies dab(x∗, χn)→ 0, n→ ∞
and also that dab(Tχn, χn) = dab(χn+1, χn)→ 0, n→ ∞ since {χn} is a left-Cauchy sequence.

The previous considerations should convince the readers that many generalizations of contraction
principles may be obtained in almost-b-spaces, which are introduced here, and present a proper
subclass of quasi-b-metric spaces. As another benefit of this paper, we point out the principle applied
in Theorems 3 and 4 that elegantly proves some contractions in quasi-b-metric spaces.
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Finally, we state some open questions in the context of almost-b-metric spaces (respectively
quasi-b-metric spaces). If s = 1, we have appropriate unresolved questions in the context of
quasi-metric spaces. We present formulations for the case of a right-complete r-almost b-metric
space, noting that similar issues remain open in left-complete l-almost b-metric spaces.

Problem 1. (Generalized Ćirić type contraction of first order) Let (X, dab, s ≥ 1) be a right-complete r-almost
b-metric space and T : X → X be a mapping satisfying

dab (Tx, Ty) ≤ k max
{

dab (x, y) ,
dab (x, Tx) + dab (y, Ty)

2s
,

dab (x, Ty) + dab (y, Tx)
2s

}
,

for all x, y ∈ X where 0 ≤ k < 1
s . Then T has a unique fixed point.

Problem 2. (Generalized Ćirić type contraction of second order) Let (X, dab, s ≥ 1) be a right-complete r-almost
b-metric space and T : X → X be a mapping satisfying

dab (Tx, Ty) ≤ k max
{

dab (x, y) , dab (x, Tx) , dab (y, Ty) ,
dab (x, Ty) + dab (y, Tx)

2s

}
,

for all x, y ∈ X where 0 ≤ k < 1
s . Then T has a unique fixed point.

Problem 3. (Quasicontraction of Ćirić type) Let (X, dab, s ≥ 1) be a right-complete r-almost b-metric space
and T : X → X be such that

dab (Tx, Ty) ≤ k max {dab (x, y) , dab (x, Tx) , dab (y, Ty) , dab (x, Ty) , dab (y, Tx)} ,

for all x, y ∈ X where 0 ≤ k < 1
s . Then T has a unique fixed point.
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20. Mitrović, Z.D.;̇ George, R.;̇ Hussain, N. Some remarks on contraction mappings in rectangular b-metric
spaces. BSPM 2018, in press. [CrossRef]

21. Czerwik, S. Contraction mappings in b-metric spaces. Acta. Math. Inf. Univ. Ostrav 1993, 1, 5–11.
22. Miculescu, R.; Mihail, A. New fixed points theorems for set-valued contractions in b-metric spaces. J. Fixed

Point Theory Appl. 2017, 19, 2153–2163. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.22436/jnsa.010.04.20
http://dx.doi.org/10.22436/jnsa.009.05.48
http://dx.doi.org/10.1186/1687-1812-2012-88
http://dx.doi.org/10.3390/axioms8010034
http://dx.doi.org/10.1155/2018/3264620
http://dx.doi.org/10.3390/math6110221
http://dx.doi.org/10.3390/math7040334
http://dx.doi.org/10.3390/math7040313
http://dx.doi.org/10.5269/bspm.41754.
http://dx.doi.org/10.1007/s11784-016-0400-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Main Results
	References

