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Abstract: We will prove the generalized Hyers—-Ulam stability and the hyperstability of the
additive functional equation f(x1 +y1, X2 + Y2, ., Xn + Yn) = f(x1,X2,..., %0) + f(Y1, Y2, .-, Yn)-
By restricting the domain of a mapping f that satisfies the inequality condition used in the assumption
part of the stability theorem, we partially generalize the results of the stability theorems of the additive
function equations.
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1. Introduction

In 1940, Ulam [1] gave the question concerning the stability of homomorphisms in a conference of
the mathematics club of the University of Wisconsin as follows:

Let (G, ) be a group, and let (G, -, d) be a metric group with the metric d. Given é > 0, does there
exist € > 0 such that if a mapping i : G — G’ satisfies the inequality

d(h(xy), h(x)h(y)) <
forall x,y € G, then there is a homomorphism H : G — H with
d(h(x),H(x)) <e

forall x € G?
Next year, the Ulam’s conjecture was partially solved by Hyers [2] for the additive
functional equation.

Theorem 1. [2], Let X and Y be Banach spaces. Suppose that the mapping f : X — Y satisfies the inequality

If(x+y)—f(x)— f(y)|| <e Vx,y€X, e:constant.

Then, there exists a unique additive mapping
Alx+y) = Alx) + Aly),

such that ||f(x) — A(x)|| < e, where the limit A(x) = limy—00 27" f(2"x).
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Thereafter, this phenomenon has been called the Hyers-Ulam stability.

Theorem 2. Let X and Y be Banach spaces. Suppose that the mapping f : X — Y satisfies the inequality

If(x+y) = f(x) = FWI < 0(lIx]1P + llyl1P) ©)

forall x,y € X\{0}, where 6 and p are constants with 6 > 0 and p # 1. Then, there exists a unique additive
mapping T : X — Y such that
6
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forall x € X\{0}.

Theorem 2 is due to Aoki [3] and Rassias [4] for 0 < p < 1, Gajda [5] for p > 1, Hyers [2] for
p = 0, and Rassias [6] for p < 0.

In 1994, Gavruta [7] generalized these results for additive mapping by replacing 0(||x||” + ||y||?)
in (1) by a general function ¢(x, y), which is called the ‘generalized Hyers—Ulam stability” in this paper.

In 2001, the term hyperstability was used for the first time probably by G. Maksa and Z. Péles
in [8]. However, in 1949, it seems to have created by D. G. Bourgin [9] that the first hyperstability result
concerned the ring homomorphisms.

We say that a functional equation D (f) = 0is hyperstable if any function f satisfying the equation
D(f) = 0 approximately is a true solution of ©(f) = 0, which is a phenomenon called hyperstability.

The hyperstability results for the additive (Cauchy) equation were investigated by Brzdek [10,11].

In this paper, let V and W be vector spaces, X be a real normed space, and Y be a real Banach
space. We denote the set of natural numbers by N and the set of real numbers by R.

For a given mapping f : V* — W, where V" denotes V x V x - - - x V, let us consider the additive
functional equation

f('xl +y1/x2+y2/-«~1xn "‘]/n) :f(xl/x2/~--/xn)+f(ylry2/~--/]/n)/ (3)

forallx;,y; € V(i=1,2,...,n).

Each solution of the additive functional Equation (3) is called an n-variable additive mapping.
A typical example for the solutions of Equation (3) is the mapping f : R" — R! given by
flxr, 2,0, x0) = (Lo auixi, Liq a2iXi, - - -, Li—q a1;X;) with real constants a;;.

In this paper, we will prove the generalized Hyers—Ulam stability of the additive functional
Equation (3) in the spirit of Gdvruta [7], and the hyperstability of the additive functional Equation (3).

2. Main Results
For a given mapping f : V" — W, we use the following abbreviation:
Df(x1,y1,%2,Y2, ..., Xn,Yn) = f(X1+ Y1, X2+ Y2, .., Xn+ Yn)
— f(x1,x2,. .., xn) — f(Y1, Y2, - Yn)

for all x1,y1,%2,Y2,...,%Xn,Yn € V. We need the following lemma to prove main theorems.

Lemma 1. Ifa mapping f : V"' — W satisfies (3) for all x1,y1, X2, Y2, ..., Xn, Yn € V\{0}, then f satisfies (3)
forall x1,y1,%x2,Y2, ..., Xn,Yyn € V.
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Proof. Let x € V\{0} be a fixed element, and leti € {1,2,...,n}. For given x;,y; € V, let xi(l), xl.(Z),
1 2y

yz /yl
xfl) =x, xl(z) = —x,yl(l) =x, yl(z) = - if ;=0 and y; =0,
xfl) = }/i,x(z) = —]/1,]/1(1) ,]/1(2) yzl if x; =0 and y; #0,
xfl) = %,xfz) = El,yl( ) = xi,yl( )= _x if x; #0 and y; =0,
Xj X; .
xfl) = é,xfz) = El,yl(l) (k+ 1)}/1/%( ) = —ky; if x;#0 and y; #0,

where k is a fixed integer, such that 3 + (k+1)y; # 0,% — ky; # 0. Then, xl(l), l( ),ylm,yl(z), M4
y 2 4y € v\{0} and x| )+yfl> ¥ 4y ® = x; i foralli=1,2,.

Hence the equalities Df(x1 ,yg ). xﬁl),yg})) = 0, Df(xl ,ygz),._ x’(qz),ygzZ)) _—
Df(x1 ,x1 ,xé ),xéz), . xﬁll),x,g)) = 0, and Df(y1 ,yg ),yg >,y§2), ) ,y,& ),y,g)) = 0 hold for all
X1,Y1,X2, Y2, .-, X, Yu € V. Since the equality

Df(xl,yl,xz,yL e X, Yn)
=Df (i + i Py, ) P L )
‘l‘Df(xl /yg )/xg )/ygl)/-‘-/xfl)fyfi )+Df(x1 ’yg )’xg )’yg )’ ‘.’x}SZ)’yng))

—Df(xgl),xgz),xgl),xéz),.. 3c£ll),x,(1 ) — Df( 1 ,yl ),yg ),yg ),...,y,g),y,g))

holds for all x1,y1,X2,Y2, ..., %n, yn € V, we conclude that f satisfies Df(x1,¥1,...,%n, yn) = O for all
xl/y11x2/y2/°"1xﬂ/yn S V D

0,...,0), we can
) € V\{0} be the

7

Thereafter, let i € {1,2,3,...,n}. For a given element (x1,x2,...,x,) # (0,
(2
l

choose a fixed element x’ # 0, such that x” € {x1,x,,...,x,}. Moreover, let xl(l)

elements defined by

- xi,x.(2) = x; if x; #0,

O if x;=0. 4)
By using Lemma 1, we can prove the following set of stability theorems.

Theorem 3. Suppose that f : V"' — Y is a mapping for which there exists a function ¢ : (V\{0})?" — [0, ),
such that

00 m m m m m m
Z (P(Z x1,2 ]/1/2 x2/22m]/2/'-'/2 xl’llz y}’l) < 00 (5)
m=0
and
||Df(x1/ Y1,X2,Y2,-- -, Xn, yrl) || < GD(XL}/L X2,Y2,. .. /xn,yn) (6)

forall x1,y1,%2,Y2, ..., Xn,Yn € V\{0}. Then, there exists a unique mapping F : V"' — Y that satisfies

DF(x1/y1/x2/y2/~ . -/xn/]/n) - 0 (7)



Axioms 2019, 8, 76 40f 11

forall x1,Yy1,%2,Y2, -, %Xn, Yn € V and

= 2Myx ,ZmXQ,...,me
1f (e 22, 20m) = F (%1, %2, 20) || < EO e il 2 ®)
m=

forall (x1,x2,...,x,) € V'\{(0,0,...,0)}, where the function p : V" — R is defined by
,u(xlle/' . ~/-xn)

=@ <x§ ),x?),xgl),xf), ..,x,(f),x,(f)) +2

1 1 1 1 2 2 2 2 2 2
w@www SUEQPNEE OF O O o 3

272727277272
forall (x1,x2,...,%4) € V"\{(0,0,...,0)}.
Proof. From the inequality (6) and the equalities

f(2x1,2x0,...,2x,) — 2f (x1,%2, ..., Xn) )
=f(2x1,2x,...,2x,) — f (xgl),xél),...,x,(})) —f (xgz),xé ),...,x,(qz)>

1 (1 (1) 2 (2 (2)
X x x ) x x
_2f(x1,x2,...,xn)+2f< 12 , é S, ; >+2f (12 ,—é ,...,—; >

W i) w) Y
+f (xl /xz VA ', ) 2f ( 2 7 2 7 7 2 >
2 (2 (2)
X X X
+f <x§2>,x§2>,...,x,§2)) —2f (12, 27,..., ; )
n 2 1 _(2) (1 (2
xp) x” xy x Xy x,
=f (xV, 7,4, 6 —2Df (12 S T e Ty )

for all (xq,x2,...,x,) € V'\{(0,0,...,0)}, we have

@ .0 .2 1) @) R R R R o 5
HDf x1 ,x1 JXy Xy Xy, Xy )H—i—ZHDf I A A R A H

2x1,2x3,...,2
Hf(xllxz,...,xn)_f( X1, x22, ,2%,)
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for all (x1,xp,...,x,) € V™{(0,0,...,0)}. From the above inequality, we get the (following-
4 palces) inequality

Hf(zmxl,...,zmxn) f (2’”+’”’x1,...,zm+m/x”) H

om om-+m'
mtm'—1 | f (ka1,. . .,kan) f (2k+1x1,...,2k“xn)
= = 2 - 2k+1 H
m+m’ —1 k k k
1(2%x1,2%x, ..., 2%xy)
< p 2k+1 (10)
=m

for all (x1,x2,...,x,) € V™"\{(0,0,...,0)} and all positive integers m,m’. Thus, the sequence

{W}md\? is a Cauchy sequence for all (x1,xp,...,x,) € V"\{(0,0,...,0)}. Since Y is a

£(2™0,2"0,...,2"0)
zm

real Banach space and lim;;—co = 0, we can define a mapping F : V" — Y by

o f(2"x1,2Mx0,...,2"xy)
F(xl,xz,...,xn)—rigréo T
for all xq,x2,...,x, € V. By putting m = 0 and by letting m' — oo in the inequalities (10), we can
obtain the inequalities (8) for all (xq,x2,...,x,) € V"\{(0,0,...,0)}.
From the inequality (6), we can obtain

‘< @ (2"x1,2™y1,2"xp, ..., 2" X, 2"y
< o

H Df(2™xq,2"y1,2"x2,2™ya, ..., 2™ X0, 2™y )
zm

forall x1,y1,%2,Y2, .-, Xn, yn € V\{0}. Since the right-hand side in the above equality tends to zero as
m — oo, and the equality

. Df(2"Mxq,2™y1,2Mx0,2My,, ..., 2" x,, 2™
DF(xlryerZIyZ/-~-/xn1y'rl) = lim f( ! LA 2 LE - yn)

m—o00 2m

holds, then F satisfies the equality (7) for all x1,y1,..., %z, yn € V\{0}. By Lemma 1, F satisfies the
equality (3) for all x1,y1,%2,Y2,..., %0, yn € V. If G: V" = Y is another n-variable additive mapping
that satisfies (8), then we obtain G(0,0,...,0) =0 = F(0,0...,0) and

|G (x1,x2,...,xn) — F(x1,%2,...,%) ||

. G (ka1,2kx2,...,2kxn) - f (kal,kaz,...,kan)

2k 2k
f (kal,kaz,. ..,2kxn> F <2kx1,2kx2,...,2kxn)
+ 2k B 2k
< i u(2mxy,2"xy, ..., 2Mxy)
B m=k 2m

for all (x1,xp,...,x,) € V'\{(0,0,...,0)} and all k € N. Since }_5,_ Mzmxl’z’;ﬁf"“’zmx”) —0ask — oo,
we have G(x1,x2,...,x,) = F(x1,x2,...,xy) for all x1,x,...,x, € V. Hence, the mapping F is the
unique n-variable additive mapping, as desired. [

The condition x1,y1, X2, Y2, - .., Xn, yn € V\{0} used in the inequality (6) differs from the condition
(x1,x2,...,x1) #(0,0,...,0) and (y1,y2,...,yn) # (0,0,...,0) handled by the other authors. If the
function f satisfies the inequality (3.2) for all (x1,x2,...,%,) # (0,0,...,0) and (y1,y2,---,Yn) #
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(0,0,...,0), then the function f satisfies the inequality (3.2) for all x1,y1,X2,Y2,...,%n,yn € V\{0}.
Therefore, the condition x1,y1, X2, Y2, ..., Xn, Yn € V\{0} used in the inequality (3.2) in this paper is
a generalization of the conditions used in the inequality (3.2) in the well-known pre-results ([10,11]).
This condition will apply until Corollary 1.

Theorem 4. Suppose that f : V' — Y is a mapping for which there exists a function ¢ : (V\{0})?" — [0, )
that satisfies

o X1 Y1 X2 Y2 Xn Y
Z (7755 ' 2? zT)<°°’ (1)

and (6) for all x1,y1,%2,Y2,...,%n,yn € V\{0}. Then, there exists a unique mapping F : V" — Y that
satisfies (7) for all x1,y1,%X2,Y2, ..., Xn, Yn € V and

X2 X
I f (x1,%2,. .., %n) — F(x1,%2,...,%n) || < Z 2"y (2m+1’2m+1’ ) ,zm'jrl) (12)

forall (x1,x2,...,x,) € V'\{(0,0,...,0)}, where the function p : V" — R is defined as Theorem 3.

Proof. By choosing a fixed element x € V\{0}, we can obtain

—X X —X X —X X —X
1£(0,0,...,0)]| sz(zm zm,...,ww)—[)f(zml,zm1,...,2m1,2m1)
X X X X —X —X —X —X
_Df(Zm,Zm,,2m,2m>—Df<2m,2m,,2m,2m> ‘
X —X X —X X —X X —X
<2¢ om’ gm’ " om? pm ¢ om—1/pm—1""""" om—1" pm—1

X X X —X —X —X —X
+‘P(2m som s 271)4’") Qu u e

— 0 as m — oo,

so f(0,0,...,0) = 0. Since the equality (9) holds for all (x1,x7,...,x,) € V\{(0,0,...,0)}, the
inequality (6) implies the inequality

Hf(xl,xz,...,xn)—2f (%,%,,%)H <u (%,%,,le)

forall (xq,x2,...,x,) € V'\{(0,0,...,0)}. From the above inequality, we can also obtain the inequality

m X1 X2 Xn m+m' X1 X2
‘2 f(zim’zim""’zim)iz f(2m+m”2m+m” ’ 2m+m’>H

m+m’—1
k X1 X2 Xn
< k:zm ZV(2k+l’2k+l""’2k+1) (13)

for all (x1,x2,...,x,) € V"\{(0,0,...,0)} and all positive integers m,m’. Thus, the sequences
{me(zm,...,%)}meN is a Cauchy sequence for all (xi,...,x,) € V™\{(0,...,0)}. Since
£(0,0,...,0) = 0and Y is a real Banach space, we can define a mapping F : V" — Y by

F(xq,x2,...,%,) = lim me(xl X2 . x—")

1m—00 pm’ ym’ " om

forall xq,x,...,x, € V. By putting m = 0 and by letting m’ — co in the inequality (13), we can obtain
the inequality (12) for all (x1, x2,...,x,) € V"\{(0,0,...,0)}.
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From the inequality (6), we get

Hzmpf(ﬂ oy Xn yl)“gzm¢(xl Yy X2 Y¥2 Xn yn>

Zmlzm/2m/2m/-.-/27m/2m 27/27,2?,27,.. 2111 Zm

for all x1,y1,X2,Y2,-- -, Xn, Yn € V\{0}. Since the right-hand side in the above equality tends to zero
as m — oo, then F satisfies the equality (7) for all x1,y1,x2,¥2,...,Xn, ¥n € V\{0}. By Lemma 1, F
satisfies the equality (3) for all x1,y1, X2, Y2, ..., Xn, yn € V. If G : V' — Y is another n-variable additive
mapping satisfying (12), then we obtain G(0,0,...,0) =0 = F(0,0,...,0) and

|G (x1,x2,...,xn) — F (x1,%2,..., %) ||
P ) G )
+H2kf<2k chi ' 2k> zkp(zk R )H
Smgkzmﬂ (znf}u'zrfilf“"zn}:il)

— 0 as k— o

for all (xq1,x7,...,x,) € V"\{(0,0,...,0)}. Hence, the mapping F is the unique n-variable additive
mapping, as desired. [

The following corollary follows from Theorems 3 and 4.

Corollary 1. Let (X, ||| - |||) be a normed space, 6 > 0, and let p be a real number with p # 1. Suppose that
f+ X" = Y is a mapping that satisfies

IDf(x1, y1, %2, Y2, -+ X Yu) | < O ea [P+ [y 1P+ (2l [P+ -+ [xal 1P+ [yal[IP) - (14)

for all x1,y1,%2,Y2, .., Xn, Yn € X\{0}. Then, there exists a unique n-variable additive mapping F : X" — Y,
such that

4(27 +4)nb

||f(x1,x2,...,xn)—F(x1,x2,..., )Hiw

{Illxz\ll” p1<i<n} (15)

forall (x1,x2,...,x,) € X"\{(0,0,...,0)}.
Proof. Put (1, y1,x2, 2+ o) 5= Ol -+ 1yl l17 4 12l llP + 1lyal|17 4. [l [ +
11yal]|?) for all x1,y1, %2, 2, - ., Xn, yn € X\{0}, then [[|x V][], ||1xP]]] < maxyso{[||xi]|IP : 1< i<

n} for all i from (4). Hence, due to y of Theorems 3 and 4, we obtain that

u(xq,x2,...,%n)

(1) 2 1) @) 1 (2
_ L @ 1) (2 1 (2 x1 X' X Xn '~ Xn
_q)(xl PXT Xy Xy e Xy, Xy )+2(p< A B R A )

P\ 22222 P\ 22222

<(n+ Gy max(|wF 11 <n)

for all (x1,x2,...,x,) € X"\{(0,0,...,0)}. Therefore, the inequality (15) can be obtained easily
from (8) and (12) in Theorems 3 and 4. [
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The following theorem for the hyperstability of n-variable additive functional equation follows
from Corollary 1.

Theorem 5. Let (X, ||| - |||) be a normed space and p be a real number with p < 0. Suppose that f : X" — Y
is a mapping that satisfies (14) for all x1,y1,%2,Y2,...,%n, Yn € X\{0}. Then, f is an n-variable additive
mapping itself.

Proof. By Corollary 1, there exists a unique n-variable additive mapping F : X" — Y, such
that (15) for all x1,xp,...,x, € X"\{(0,0,...,0)} and DF (x1,y1,X2,Y2,.-.,Xn,yn) = O for all
X1, Y1, X2, Y2, Xn, Yn € X.

For a given (x1,x2,...,x,) # (0,0,...,0), let x’ # 0 be a nonzero fixed element in {x1, x2,..., x5},
and let

xi(g) (m 1)xl, @ —mx; when x; #0,
xz@ mx = —mx when x; = 0.

Then, we can easily show that |||xi(3)|||, |||x§4)||| < mP max, zof|||x;]||P : 1 < i < n}foralli
from (4). If (x1,x2,...,x4) € X\{(0,0,...,0)}, then the equality f(x1,x2,...,%,) = F(x1,%2,..., %)
follows from the inequalities

| f(x1,x2,. .., x0) = F (x1,%2,...,%n) ||
HDf (x%g’),xl ),xg ),xgl), xﬁ, ),x£l4)> — DF (xf’),x;‘l),xé ),x§4),...,x,(13),x,<14))

—i—f(x1 ,xéB), ..,(x,(f)) +f(x£4),x£4),...,x,(14))

— F(x§3),x£ ), .., (x,(f')) — F(x§4),x£4),...,x£l4))H

<m’ ~2nem;x{|||xi||vﬂ r<i<nd a7 1Y) B YY)

LA )P0 )|

4(2° +4)

<mP(14+ 22— 2~
<t (14 35—

) 2n0 max{|||x;|||? : 1 <i<n}
xﬁéO

as m — oco. For (x1,x2,...,x,) = (0,0,...,0), if we choose a fixed element of x € X\{0}, then the
equality f0,0,...,0) = F0,0,...,0) follows from the inequalities

Ilf(0,0,...,0) —F(0,0,...,0) ||
=||Df (mx, —mx, mx, —mx, ..., mx, —mx) — DF (mx, —mx, mx, ..., mx, —mx)
+ f(mx,mx, ..., mx) + f(—mx, —mx, ..., —mx)
— F(mx,mx,...,mx) — F(—mx, —mx, ..., —mx)||
<mP - 2n0||x||P + || f (mx, mx, ..., mx) — F(mx,mx, ..., mx)||
+ || f(=mx, —mx, ..., —mx) — F(—mx, —mx, ..., —mx)||
<m? <1+§£|2;j_24;|> 2n6|||x|||P

as m — oo. Therefore, f is an n-variable additive mapping itself. [J

The following example follows from Theorem 5.
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Example 1. Let (R, | - |) be a normed space with absolute value | - |, (R', || - ||) be a Banach space with Euclid
norm || - ||, and p < 0 be a real number. Suppose that f : R" — R is a continuous mapping such that

IDf(x1,y1, %2, Y2, s X, Y) || < O ]P + |ya [P+ [x2f + [y2 P+ [P+ [ya]7)

forall x1,y1,X2,Y2, - -, Xn,Yn € R\{0}. Then, the mapping f : R" — R} given by

n n n
f(xl, X2,...,xn) = Zalixi,Zazixi,...,Zalixi ’ (16)
i=1 i=1 i=1
where ay;, ay;, . . ., a;; are real constants, indicates that

f(1,0,0,...,0) = (a11,821, - .. ,an1),
f(O/ 1/0/"-/0) = (a12/a22I" 'IQIZ)I

£(0,...,0,0,1) = (a1, azn, - - -, a1,)-

Proof. Since f : R" — R/ is a continuous n-variable additive mapping by Theorem 5, then the function
f:R" — Rl is given by (16). O

In the following theorems, we replace the domain (V\{0})?" of ¢ and Df in Theorems 3 and 4
with V2. Then, we can improve the result inequality (8).

Theorem 6. Suppose that f : V' — Y is a mapping for which there exists a function ¢ : V?" — [0,0)
satisfying (5) and (6) for all x1,Y1,%2,Y2, .., Xn, Yn € V. Then, there exists a unique mapping F : V' — Y,
such that (7) for all x1,y1,%2,Y2,.--,Xn,Yn € V and

@ (2Mx1,2Mx1,2Mxp, .., 2" Xy, 2™ )

Ilf (x1,%2,...,%0) — F(x1,%2,...,%2) || < 20 S (17)
m=
forall x1,x3,...,x, € V.
Proof. The equality
f(2x1,2x9,...,2x,) —2f (x1,X2, ..., Xn) = Df (x1,X1,X2,X2, ..., Xn, Xn) (18)
for all x1,x7,...,x, € V and the inequality (6) imply that the inequality
2x1,2%x5,...,2x 1
Hf(xl/-xZI-"/xi’l)_f( ! 22 n) Siqo(xl/xler/xZ/---/xn/xn)
for all x1,xy,...,x, € V. From the above inequality, we can derive the inequalities
f (mell . /zmxn) f (2m+m’x1, e ,2m+m,xn)
om - om+m’
m—+n' =1 @ (kal,kal,kaz,kaz,. .. ,kan,kan>
< (19)

k+1
k=m 2

for all x1,xp,...,x, € V and all positive integers m, m’. The remainder of the proof of this theorem
developed after inequality (19) is omitted because it is similar to that of Theorem 3. [J
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Theorem 7. Suppose that f : V' — Y is a mapping for which there exists a function ¢ : V?" — [0,0)
satisfying (11) and (6) for all x1,y1,%2,Y2, .., Xn, Yn € V. Then, there exists a unique mapping F : V" =Y
that satisfies (7) for all x1,y1,X2,Y2, ..., Xn, Yn € V and

- X1 X1 X2 Xn Xn
1f Genseeosdtn) = Fxq, 0 x0) || < 202’”4) <2m+1’ 17 17 pmA 2m+1) (20)
m=
forall xq,x3,..., %, € V.

Proof. The equality (18) for all x1, x5, ...,x; € V and the inequality (6) imply that the inequality

_of(X 22 ’Lﬂ) < (ﬂﬂﬂ L"’L")
Hf(xl/x2/~~-/x1’l) 2f(2/ 2/~--/2 ||_§0 2/ 2/ 2/~~-/ 2/2

for all x1,xy,...,x, € V. From the above inequality, we can derive the inequality

m X1 X Xn m-+m’ X1 X2 Xn
I e

m+m' —1

k X1 X1 X2 Xn Xn
< 2q)(2k+1’2k+1’2k+1""’?’?)

k=m

(21)

for all x1,xp,...,x, € V and all positive integers m, m’. The remainder of the proof of this theorem
developed after inequality (21) is omitted because it is similar to that of Theorem 4. [

The following corollary follows from Theorems 6 and 7.

Corollary 2. Let (X, ||| - |||) be a normed space and p be a nonnegative real number with p # 1. Suppose
that f : X" — Y is a mapping satisfying (14) for all x1,y1,%2,Y2,--.,Xn,Yn € X. Then, there exists a unique
n-variable additive mapping F : X" — Y such that

20
1f (x1 22,0 20m) = F (x1, %2, 2) || smmrmnu 2l [lP 4 A xal [IP) - (22)

forall x1,x3,...,%, € X.

Proof. By putting ¢(x1,y1,%2,y2, -, %, yn) = O(1[|allI7 + sl 17 + [z |17 + [lyall [P + - +
2] |1P + [[lyall|P) for all x1,y1, x2,Y2, - .., Xn, Yn € X, then we easily obtain (22) from (17) and (20) of
Theorems 6 and 7. [

3. Conclusions

We obtained two stability results.

Theorems 3 and 4 are the generalized Hyers-Ulam stability for the additive functional Equation (3)
on V", which is a generalization for the stability of the Cauchy functional equation in papers of Aoki [3],
Rassias [4], Gajda [5], Hyers [2], and Gavruta [7].

Theorems 6 and 7 are the hyperstablity of the additive functional Equation (3) on V", which is a
generalization of the Brzdek’s results [10,11] for the Cauchy functional equation.

If the function f satisfies the inequality (6) for all (x1,x,...,x,) # (0,0,...,0)
and (y1,¥2,---,¥n) # (0,0,...,0), then the function f satisfies the inequality (6) for all
X1,Y1,%2,Y2, -+, Xn, yn € V\{0}. Therefore, the condition x1,y1,x2,y2,...,%n,yn € V\{0} used in
the inequality (3.2) of this paper is a generalization of the conditions used in the inequality (6) in
well-known pre-results ([10,11]).
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