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Abstract: We study factorization properties of continuous homomorphisms defined on submonoids
of products of topologized monoids. We prove that if S is an ω-retractable submonoid of a product
D = ∏i∈I Di of topologized monoids and f : S→ H is a continuous homomorphism to a topologized
semigroup H with ψ(H) ≤ ω, then one can find a countable subset E of I and a continuous
homomorphism g : pE(S)→ H satisfying f = g ◦ pE � S, where pE is the projection of D to ∏i∈E Di.
The same conclusion is valid if S contains the Σ-product ΣD ⊂ D. Furthermore, we show that in both
cases, there exists the smallest by inclusion subset E ⊂ I with the aforementioned properties.
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1. Introduction

The present article is a natural continuation of [1], where we study continuous mappings
(of subspaces) of products of topological spaces and establish the existence of an irreducible factorization
of those mappings under quite general assumptions. The survey article [2] by M. Hušek presents
a well-structured exposition of the methods and results on factorization available prior to the year 1976.

Our purpose here is to consider the case when f : S → H is a continuous homomorphism
of a submonoid S of a product D = ∏i∈I Di of topologized monoids. ‘Topologized’ means that
the factors Di carry arbitrary topologies that can have no connection with multiplication on the monoids.
For continuous homomorphisms of products of topological groups and subgroups of products,
this study was initiated in [3–5].

As with [1], we are interested in identifying conditions under which a continuous homomorphism
f : S→ H admits an irreducible factorization in the form

f = g ◦ pJ � S, (1)

where J is a subset of the index set I, pJ : D → DJ = ∏i∈J Di is the projection, and g : pJ(S) → H
is a continuous homomorphism. ‘Irreducible’ means that J is the least by inclusion subset of I for which
f can be decomposed as in (1). If one can find a finite (countable) set J ⊂ I for which (1) holds true,
we say that f has finite (countable) type.

The very first result of this kind comes from the Pontryagin–van Kampen duality theory:
Every continuous homomorphism of a product D = ∏i∈I Di of compact abelian groups Di to the circle
group T (called character) has finite type. S. Kaplan in [5] extends this result to products of reflexive
(not necessarily locally compact) topological abelian groups.

In contrast, every product of infinitely many nontrivial (i.e., containing more than one point)
Tychonoff spaces admits a continuous real-valued function which does not have finite type.
The aforementioned facts show a big difference between the properties of continuous real-valued
functions on the one hand, and continuous characters on the other. This difference is, indeed,
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even deeper. The following fact is purely algebraic: If f is a homomorphism of a product ∏i∈I Di
of abelian groups to a slender group H, then f has finite type provided the cardinality of the index
set I is less than the first uncountable Ulam measurable cardinal. [It is consistent with ZFC that such
a cardinal does not exist.] An infinite cyclic group is the simplest example of a slender group (see [6]).
The reader can consult [7] for more information on the algebraic component of this study.

Since the continuity of a homomorphism f : G → H of left topological groups is equivalent
to the continuity of f at the identity of G, one can expect that continuous homomorphisms
defined on subgroups of products of left topological groups have countable type more frequently
than continuous real-valued functions on products of spaces do. The following result proved
in ([3], Lemma 8.5.4) confirms this conjecture and serves as a starting point for us:

Proposition 1. A continuous homomorphism f : S → H defined on an arbitrary subgroup S of a product
D = ∏i∈I Di of left topological groups has countable type provided that the left topological group H is a first
countable T1-space.

Several results on factorization of (weakly) continuous homomorphisms defined on subgroups
of products of semitopological groups can be found in [8,9].

In Section 2 we extend the validity of Proposition 1 to different situations, mainly when the factors
Di and the codomain H of f are topologized monoids. These extensions of Proposition 1 are obtained
at the cost of restricting the choice of a submonoid S ⊂ D. However, we weaken considerably
the conditions on the factors Di and codomain H of f . For example, in Corollaries 1 and 2 we show
that Proposition 1 is valid for a submonoid S of the product D = ∏i∈I Di of topologized monoids Di
provided that S is either ω-retractable (see Definition 1) or contains the Σ-product ΣD ⊂ D. Furthermore,
we show that in both Corollary 1 and Corollary 2, there exists the least by inclusion subset J of the index
set I such that the decomposition (1) is valid, i.e., f admits an irreducible factorization. More general
or complementing results are established in Theorem 1 and Proposition 2.

It is also worth noting that if the subgroup S of D in Proposition 1 satisfies either S = D or S = ΣD,
then one can weaken the requirement on H by assuming that H has countable pseudocharacter.
This follows directly from Corollary 1 since both D and ΣD are retractable (see Definition 1).

By a product of a family {Xi : i ∈ I} of topological spaces we always mean the topological
product of this family, i.e., the Cartesian product set X = ∏i∈I Xi with the Tychonoff product topology,
as defined in ([10], Section 2.3). This also applies in the case when the family {Xi : i ∈ I} consists
of (semi)topological (semi)groups or monoids.

Notation and Preliminary Facts

A semigroup is a nonempty set S with a binary associative operation (called multiplication).
A semigroup with an identity element is called a monoid. Clearly a monoid has a unique identity.

Assume that G is a semigroup (monoid, group) with a topology. If the left shifts in G are
continuous, then G is called left topological semigroup (monoid, group). If both left and right shifts in G
are continuous, then G is said to be a semitopological semigroup (monoid, group). If multiplication in G
is jointly continuous, we say that G is a topological semigroup. The concept of topological monoid is defined
similarly. Furthermore, if G is a group and multiplication in G is jointly continuous, we say that G is a
paratopological group. A paratopological group with continuous inversion is a topological group.

The following simple fact is almost immediate from the above definitions (see e.g., [11], Chapter 1).

Lemma 1. Let f : G → H be a homomorphism of an abstract monoid (group) G to a semitopological
semigroup H. Then the image f (G) with the topology inherited from H is a semitopological monoid (group).
Similarly, if H is a topological semigroup, then f (G) is a topological monoid (paratopological group).

One can easily extend Lemma 1 to the case when H is a left or right topological semigroup.
For example, if f : G → H is a homomorphism of an abstract monoid (group) G to a left topological
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semigroup H, then the image f (G) with the topology inherited from H is a left topological
monoid (group).

The next algebraic fact is well known and very easy to prove (see [11], Theorem 1.48).

Lemma 2. Let f : D → H and p : D → F be homomorphisms of semigroups such that the equality p(x) = p(y)
implies that f (x) = f (y) whenever x, y ∈ D. If p is surjective, then there exists a unique homomorphism
g : F → H satisfying f = g ◦ p.

Let X = ∏i∈I Xi be the product of a family {Xi : i ∈ I} of spaces and a = (ai)i∈I ∈ X
be an arbitrary point. For every x ∈ X, we put

diff(x, a) = {i ∈ I : xi 6= ai}.

Then
ΣX(a) = {x ∈ X : |diff(x, a)| ≤ ω}

is a dense subspace of X called the Σ-product of the family {Xi : i ∈ I} with center at a. If every factor
Xi is a monoid (group), we will always choose a to be the identity e of X. In the latter case, ΣX(e)
is a dense submonoid (subgroup) of the product X and we abbreviate ΣX(e) to ΣX.

Assume that Z is a subset of the product X = ∏i∈I Xi of a family {Xi : i ∈ I} of sets and f : Z → Y
is an arbitrary mapping. We say that f depends on J, for some J ⊂ I, if the equality f (x) = f (y) holds
for all x, y ∈ Z with pJ(x) = pJ(y), where pJ : X → ∏i∈J Xi is the projection. It is clear that if f
depends on J, then there exists a mapping g of pJ(Z) to Y satisfying f = g ◦ pJ � Z.

Definition 1. Let Di be a monoid with identity ei, where i ∈ I. For a nonempty subset J of I, we define
a retraction rJ of D = ∏i∈I Di by letting

rJ(x)i =

{
xi if i ∈ J;

ei if i ∈ I \ J,
(2)

for each element x ∈ D. A subset S of D is said to be retractable if rJ(S) ⊂ S, for each J ⊂ I. If κ is an infinite
cardinal and the latter inclusion is valid for all subsets J of I with |J| ≤ κ, we say that S is κ-retractable.
Similarly, if the inclusion rJ(S) ⊂ S holds for each finite set J ⊂ I, we call S finitely retractable.

Clearly, the monoid D = ∏i∈I Di is retractable, while ΣD is a retractable submonoid of D.
We use the notion of κ-retractability and its modifications in Theorem 1 and Proposition 2, meanwhile
the retraction rJ appears in the proofs of Lemmas 3 and 4.

Lemma 3. Let D = ∏i∈I Di be the product of monoids Di and ei be the identity of Di, where i ∈ I. Let also S
be a κ-retractable submonoid of D, for a cardinal κ ≥ ω. If x, y ∈ S and K, L are disjoint subsets of the index
set I with |K| ≤ κ and |L| ≤ κ, then there exists an element s ∈ S such that pK(s) = pK(x), pL(s) = pL(y)
and si = ei for each i ∈ I \ (K ∪ L).

Proof. Since S is κ-retractable, rK(x) and rL(y) are in S. Then the element s = rK(x) · rL(y) ∈ S satisfies
the equalities of the lemma.

Lemma 4. Let Z be a subspace of the product space X = ∏i∈I Xi and J be a nonempty subset of the index set I.
If rJ(Z) ⊂ Z, then the restriction to Z of the projection pJ : X → XJ = ∏i∈J Xi is quotient when considered to
be a mapping of Z onto its image pJ(Z) ⊂ XJ .

Proof. The definition of rJ implies that pJ = pJ ◦ rJ . It is also clear that the restriction pJ � rJ(X)

is a homeomorphism between rJ(X) and pJ(X) = XJ . Hence pJ � rJ(Z) is a homeomorphism of rJ(Z)
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onto pJ(Z). The inclusion rJ(Z) ⊂ Z means that rJ � Z is a retraction of Z onto its subspace rJ(Z).
Every retraction is a quotient mapping, so the mapping pJ �Z is quotient as the composition of the
quotient mapping rJ �Z and the homeomorphism pJ � rJ(Z).

Given a space X, we denote by PX the underlying set X with the topology whose base consists
of all nonempty Gδ-sets in X. The space PX is usually referred to as the P-modification of X. If X is a (left)
topological group or monoid, then PX with the same multiplication is also a (left) topological group
or monoid. If PX = X, i.e., every Gδ-set in X is open, we say that X is a P-space.

Sometimes a product space X = ∏i∈I Xi is considered with the ω-box topology whose base consists
of the rectangular sets with countable supports,{

∏
i∈J

Ui × ∏
i∈I\J

Xi : J ⊂ I, |J| ≤ ω, Ui is open in Xi for each i ∈ J
}

.

The ω-box topology is always finer than the Tychonoff product topology.
The pseudocharacter of a space X is the least cardinal κ ≥ ω such that every point x ∈ X

is the intersection of at most κ open sets in X. The pseudocharacter of X is denoted by ψ(X). Notice that
the pseudocharacter is defined for T1-spaces only.

2. Factoring Continuous Homomorphisms

First we introduce notation which is used all along this article.
Let D = ∏i∈I Di be the product of a family {Di : i ∈ I} of monoids, S be a submonoid of D,

and f : S → H be a homomorphism to a semigroup H. Denote by J ( f ) the family of all sets J ⊂ I
such that f depends on J. Our main concern is to determine the properties of the family J ( f ).
For example, one can ask whether J ( f ) is a filter or whether it has a minimal (or even the smallest,
by inclusion) element.

It turns out that the intersection of the family J ( f ), denoted by J f , admits a clear description
in terms of f . Let us say that an index i ∈ I is f -essential if there exist points x, y ∈ S
such that diff(x, y) = {i} and f (x) 6= f (y). Let E f be the set of all f -essential indices in I.
According to ([1], Proposition 2.2), the equalities E f =

⋂J ( f ) = J f are valid.
In the sequel a monoid (semigroup) with an arbitrary topology is called a topologized monoid

(semigroup). In a topologized monoid, there can be no relation between multiplication and the topology
of the monoid.

The following theorem is one of the main results of the article.

Theorem 1. Let κ be an infinite cardinal, S be a κ-retractable submonoid of a product D = ∏i∈I Di
of topologized monoids, and f : S → H a nontrivial continuous homomorphism to a topologized semigroup
H satisfying ψ(H) ≤ κ. Then E =

⋂J ( f ) is the smallest by inclusion element of the family J ( f ),
1 ≤ |E| ≤ κ, and there exists a continuous homomorphism g : pE(S) → H satisfying f = g ◦ pE � S,
where pE : D → ∏i∈E Di is the projection.

Proof. Clearly, the image f (S) is a topologized monoid. Replacing H with f (S), if necessarily,
we can assume that H itself is a topologized monoid. Let e and eH be the identity elements of D and H,
respectively. Notice that H is a T1-space since pseudocharacter is defined only for T1-spaces.

Claim 1. There exists J ∈ J ( f ) with |J| ≤ κ.

Indeed, it follows from ψ(eH , H) ≤ κ and the continuity of f that there exists a subset J of I
with |J| ≤ κ such that S ∩ p−1

J pJ(e) ⊂ f−1 f (e) = f−1(eH), where pJ : D → ∏i∈J Di is the projection.
Let us verify that f depends on J and, hence, J ∈ J ( f ).
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Take arbitrary elements x, y ∈ S such that pJ(x) = pJ(y). Since f is continuous and ψ(H) ≤ κ,
we can find a set C ⊂ I such that |C| ≤ κ and S ∩ p−1

C pC(x) ⊂ f−1 f (x) and S ∩ p−1
C pC(y) ⊂ f−1 f (y).

Clearly we can assume that J ⊂ C. Let x′ = rC(x) and y′ = rC(y). Then x′, y′ ∈ S. Since pC(x′) = pC(x)
and pC(y′) = pC(y), our choice of C implies that f (x′) = f (x) and f (y′) = f (y).

Let z = rJ(x), x′′ = rC\J(x) and y′′ = rC\J(y). Then {z, x′′, y′′} ⊂ S and pJ(x′′) = pJ(y′′) = pJ(e).
Hence f (x′′) = f (y′′) = f (e) = eH , according to our choice of J. Notice that x′ = x′′ · z and y′ = y′′ · z,
which implies that f (x′) = f (x′′) · f (z) = f (z) and f (y′) = f (y′′) · f (z) = f (z). Therefore,
we conclude that f (x) = f (x′) = f (z) = f (y′) = f (y), which proves that f depends on J and J ∈ J ( f ).
Claim 1 is proved.

Claim 2. If x ∈ S and E ∩ diff(x, e) = ∅, then f (x) = eH .

First we prove the claim in the special case when diff(x, e) is finite, say, diff(x, e) = {i1, . . . , in}.
Then can write x = x1 · · · xn, where x1, . . . , xn are elements of S such that diff(xk, e) = {ik} for each
k = 1, . . . , n (here we use the finite retractability of S). By ([1], Proposition 2.2), the set E =

⋂J ( f )
consists of all f -essential indices in I. Hence f (x1) = · · · = f (xn) = eH because ik /∈ E for each k ≤ n.
Therefore, f (x) = f (x1) · · · f (xn) = eH .

If diff(x, e) is infinite, we consider the set

P = {rF(x) : F ⊂ I \ E, |F| < ω}.

Notice that P ⊂ S, by the finite retractability of S. It follows from the inclusion diff(x, e) ⊂ I \ E
and our definition of P that x ∈ P, while f (P) = {eH} because the set diff(z, e) is finite and disjoint
from E, for each z ∈ P. Since f is continuous and takes values in the T1-space H, we conclude that
f (x) = eH , as claimed.

Claim 3. E 6= ∅.

If E is empty, then Claim 2 implies that f (x) = eH for each x ∈ S, which contradicts our
assumption that f is nontrivial.

Claim 4. E =
⋂J ( f ) is the smallest by inclusion element of J ( f ).

Let us fix J ∈ J ( f ) as in Claim 1. Then E ⊂ J, so |E| ≤ |J| ≤ κ. It suffices to verify that f
depends on E. Consider arbitrary elements x, y ∈ S with pE(x) = pE(y). Since |J| ≤ κ and S is
κ-retractable, x′ = rJ(x) and y′ = rJ(y) are elements of S. If follows from the obvious equalities
pJ(x′) = pJ(x) and pJ(y′) = pJ(y) and our choice of J ∈ J ( f ) that f (x′) = f (x) and f (y′) = f (y).
Let L = J \ E. If L = ∅, then E = J ∈ J ( f ), as claimed. Thus, we can assume that L 6= ∅. Put
z = rE(x′), x′′ = pL(x′) and y′′ = rL(y′). Then {z, x′′, y′′} ⊂ S and the equality pE(x) = pE(y) implies
that x′ = z · x′′ and y′ = z · y′′. Notice that diff(x′′, e) and diff(y′′, e) are disjoint from E, so we can
apply Claim 2 to conclude that f (x′′) = eH and f (y′′) = eH . Therefore,

f (x′) = f (z · x′′) = f (z) · f (x′′) = f (z) & f (y′) = f (z · y′′) = f (z) · f (y′′) = f (z).

Summing up, we have that f (x) = f (x′) = f (z) = f (y′) = f (y). Thus f depends on E and,
hence, E ∈ J ( f ). This proves Claim 4.

Since f depends on E, Lemma 2 implies that there exists a homomorphism g : pE(S) → H
satisfying f = g ◦ pE �S. The continuity of g follows from the fact that the restriction pE �S is a quotient
mapping (see Lemma 4). This completes the proof of the theorem.

We present below a special case of Theorem 1 for κ = ω. Notice that Corollary 1 includes the case
of the trivial homomorphism f , when E = ∅.
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Corollary 1. Let D = ∏i∈I Di be a product of topologized monoids, S be an ω-retractable submonoid of D
and f : S → H a continuous homomorphism to a topologized semigroup H of countable pseudocharacter.
Then E =

⋂J ( f ) is the smallest element of J ( f ) satisfying |E| ≤ ω and f has countable type.

According to Lemma 4, the retraction rJ : S→ S of an ω-retractable submonoid S of D is a quotient
mapping, for each countable set J ⊂ I. We improve this result in the following lemma which is close
to ([1], Lemma 1.3).

Lemma 5. Let S be an ω-retractable submonoid of the product D = ∏i∈I Di of topologized monoids Di.
Then the restriction to S of the projection pJ : D → DJ = ∏i∈J Di is an open homomorphism of S onto its image
pJ(S), for each countable set J ⊂ I. The conclusion is valid for the three natural topologies on D and DJ ,
the Tychonoff product topology, the ω-box topology, and the P-modification of the latter.

Proof. We prove the lemma for the ω-box topology on both D and DJ = ∏i∈J Di ⊃ pJ(S)— the
arguments for the Tychonoff product topology and the P-modification of the ω-box topology are
almost the same.

Let J be a nonempty countable subset of I. Take an arbitrary open set U in D such that U ∩ S 6= ∅.
We can assume without loss of generality that U = p−1

C (V) and V = ∏i∈C Vi, where C is a countable
subset of I and Vi is open in Di for each i ∈ C. Clearly we can also assume that J ⊂ C. The conclusion
of the lemma is immediate from the following claim:

Claim 5. pJ(S ∩U) = pJ(S) ∩ pJ(U).

The inclusion pJ(S∩U) ⊂ pJ(S)∩ pJ(U) is obvious. Let us verify that pJ(S)∩ pJ(U) ⊂ pJ(S∩U).
Take an arbitrary point z ∈ pJ(S) ∩ pJ(U). Then z = pJ(x) for some x ∈ S. Pick an element t ∈ S ∩U
and put F = C \ J. According to Lemma 3, there exists an element s ∈ S such that pJ(s) = pJ(x)
and pF(s) = pF(t). Since si = xi = zi ∈ Vi for each i ∈ J and si = ti ∈ Vi for each i ∈ F, we see that
s ∈ U. Hence s ∈ S ∩U and z = pJ(x) = pJ(s) ∈ pJ(S ∩U). This proves the claim and the lemma.

Example 2.13 in [1] shows that Corollary 1 cannot be extended to arbitrary dense subgroups
of products of topological groups, even if dense subgroups are pseudocompact.

The following lemma is evident; it shows that in the case of a continuous mapping f defined
on a P-space X, the codomain Y of f can be assumed discrete provided that ψ(Y) ≤ ω.

Lemma 6. Let f : X → Y be a continuous mapping, where X is a P-space and ψ(Y) ≤ ω. Then f remains
continuous when Y is endowed with the discrete topology.

Let D = ∏i∈I Di be a product of topologized monoids and PD be the P-modification of the space
D. It turns out that a considerable part of Corollary 1 remains valid for continuous homomorphisms
defined on certain submonoids of PD. This happens if the domain S of a continuous homomorphism
is either an ω-retractable submonoid of D or it contains the Σ-product ΣD. It is clear that
the P-modification of S, denoted by PS, is a subspace (and submonoid) of PD.

First we present a well-known fact on restrictions of projections to ‘big’ dense subspaces
of products (see e.g., [1], Lemma 2.10).

Lemma 7. Let X = ∏i∈I Xi be a product of spaces and S be a subspace of X such that pJ(S) = XJ := ∏i∈J Xi
for each countable set J ⊂ I, where pJ : X → XJ is the projection. Then the restriction pJ � S is an open
continuous mapping of S onto XJ , for each J ⊂ I with |J| ≤ ω.

Proposition 2. Let D = ∏i∈I Di be a product of topologized monoids and S be a submonoid of D such
that either
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(a) ΣD ⊂ S, or
(b) S is ω-retractable.

If f is a continuous homomorphism of the submonoid PS of PD to a discrete semigroup K, then f has
countable type.

Proof. The image f (S) is a submonoid of K. Let e∗ be the identity of f (S). Since K is discrete, the kernel
of f is an open submonoid of PS. Hence we can find a countable subset J of the index set I such
that S ∩ p−1

J (eJ) ⊂ ker f , where eJ is the identity element of DJ . Denote by ei the identity of Di,
for each i ∈ I.

We claim that f depends on J. The following argument is close to the proof of Claim 4 in Theorem 1.
Take arbitrary elements x, y ∈ S such that pJ(x) = pJ(y). Since f is continuous and K is discrete,
we can find a countable set C ⊂ I such that S ∩ p−1

C pC(x) ⊂ f−1 f (x) and S ∩ p−1
C pC(y) ⊂ f−1 f (y).

Clearly we can assume that J ⊂ C. Let x′ = rC(x) and y′ = rC(y). Since C is countable, x′, y′ are
elements of S in case (b), while {x′, y′} ⊂ ΣD ⊂ S in case (a). It also follows from the equalities
pC(x′) = pC(x) and pC(y′) = pC(y) and our choice of C that f (x′) = f (x) and f (y′) = f (y).

Consider the elements z = rJ(x) and x′′, y′′ ∈ D defined by x′′i = ei = y′′i for each i ∈ J ∪ (I \ C)
and x′′i = xi, y′′i = yi for each i ∈ C \ J. Again, {z, x′′, y′′} ⊂ S in each of the cases (a) and (b).
Notice that pJ(x′′) = pJ(y′′) = eJ , so our choice of J implies that f (x′′) = f (y′′) = e∗. Also, we have
that x′ = x′′ · z and y′ = y′′ · z. The latter implies that f (x′) = f (x′′) · f (z) = f (z) and f (y′) =

f (y′′) · f (z) = f (z). Therefore, we conclude that f (x) = f (x′) = f (z) = f (y′) = f (y), which proves
the claim.

By virtue of Lemma 2, there exists a homomorphism g of pJ(S) to K satisfying f = g ◦ pJ � S.
Since the projection pJ : PD → PDJ and its restriction to PS are open mappings (we apply Lemma 7
in case (a) and Lemma 5 in case (b)), the homomorphism g : pJ(S)→ K is continuous provided pJ(S)
carries the topology inherited from PDJ .

It is worth mentioning that (b) of Proposition 2 is a version of Corollary 1 for the P-modification
of the product D = ∏i∈I Di. However, the family J ( f ) can fail to contain minimal elements under
the conditions of Proposition 2, even if f is a continuous character defined on the whole product PD.
This follows from ([1], Example 2.16) if one replaces the unit interval I with the circle group T there.

An analogue of Proposition 2 for the Tychonoff product topology on D is given below.
It complements Corollary 1.

Corollary 2. Let D = ∏i∈I Di be a product of topologized monoids and S be a submonoid of D such
that ΣD ⊂ S. If f is a continuous homomorphism of S to a topologized semigroup K with ψ(K) ≤ ω,
then E =

⋂J ( f ) is an element of J ( f ) satisfying |E| ≤ ω. Furthermore, f has countable type.

Proof. Let PD be the P-modification of the space D and PS be the submonoid S endowed with
the topology inherited from PD. Since ψ(K) ≤ ω, the space PK is discrete. Hence, by Lemma 6,
the homomorphism f : PS → PK is continuous. According to Proposition 2, the homomorphism
f : PS → PK has countable type. We can therefore find a countable set J ⊂ I and a continuous
homomorphism g : pJ(S)→ PK satisfying f = g ◦ pJ � S, where pJ(S) carries the topology inherited
from PDJ . We claim that g remains continuous when considered as a homomorphism of pJ(S) to K,
where pJ(S) inherits its topology from DJ = ∏i∈J Di.

Indeed, since ΣD ⊂ S, we have the equality pA(S) = DA, for each countable set A ⊂ I.
Then the mapping pJ � S of S onto DJ is open by Lemma 7, whence the continuity of g follows.
Thus, f has countable type.

Finally, making use of the inclusion ΣD ⊂ S, we can repeat the arguments in Claims 2–4
of the proof of Theorem 1 to conclude that E =

⋂J ( f ) is an element of J ( f ).
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If the range K of the homomorphism f in Corollary 2 is a regular space, then one can weaken
the condition imposed on the submonoid S of D as follows:

Corollary 3. Let D = ∏i∈I Di be a product of topologized monoids and S be a submonoid of D such that
σD ⊂ S. If f is a continuous homomorphism of S to a topologized semigroup K with ψ(K) ≤ ω and the space
K is regular, then E =

⋂J ( f ) is an element of J ( f ) satisfying |E| ≤ ω and f has countable type.

Proof. Since K is regular it follows from ([1], Theorem 2.16) that the family J ( f ) contains the smallest
element E =

⋂J ( f ) and that the mapping g : pE(S) → K satisfying f = g ◦ pE � S is continuous.
Therefore, to complete the proof, it suffices to show that E is countable.

Let f ∗ be the restriction of f to σD. Since σD ⊂ S and K is regular (hence Hausdorff), we can apply
([1], Lemma 2.15) to obtain the equality E =

⋂J ( f ) =
⋂J ( f ∗). Clearly σD is a retractable

submonoid of D and f ∗ is a continuous homomorphism of P(σD) to the discrete semigroup PK.
Therefore, by (b) of Proposition 2, f ∗ has countable type (notice that the definition of J ( f ) does not
depend on the topologies of S and K). Hence the family J ( f ∗) contains a countable element, say, C.
Since E =

⋂J ( f ∗) ⊂ C, the set E is countable as well. In particular, f has countable type.

Our next aim is to present Theorem 2 whose proof requires three preliminary facts.
The first and second of them are close to Theorem 1.7.2 and Proposition 1.6.22 of [3], respectively,
while the third one is almost evident.

A space X is called pseudo-ω1-compact if every locally finite family of open sets in X
is countable. Several authors use the term discrete countable chain condition (DCCC, for brevity) in place
of pseudo-ω1-compactness. The following proposition is a special case of ([12], Theorem 5).

Proposition 3. Let S be a dense subspace of a product space X = ∏i∈I Xi and f : S → Y be a continuous
mapping to a space Y with a regular Gδ-diagonal. If S is pseudo-ω1-compact, then there exists a countable set
J ⊂ I such that f depends on J.

The nontrivial part of the next lemma was announced in [13] as Lemma 2 and proved in a more
general form in [14].

Lemma 8. Let S be a subspace of a product X = ∏i∈I Xi of spaces such that pJ(S) = ∏i∈J Xi, for each finite
set J ⊂ I. Then X is pseudo-ω1-compact if and only if so is S.

A subset Z of a space X is said to be a zero-set if there exists a continuous real-valued function f
on X such that Z = f−1(0). The diagonal of X is the subset ∆X = {(x, x) : x ∈ X} of X× X. Hence X
has a zero-set diagonal if ∆X is a zero-set in X × X. Notice that every zero-set is the intersection
of countably many closed neighborhoods. This implies that a space with a zero-set diagonal has
a regular Gδ-diagonal. The next fact is known in folklore and can be proved in several distinct ways.
We present a direct argument with the use of prenorms on topological groups (see [3], Section 3.3).

Lemma 9. Every topological group G of countable pseudocharacter has a zero-set diagonal.

Proof. Since ψ(G) ≤ ω, there exists a sequence {Un : n ∈ ω} of open symmetric neighborhoods
of the identity e in G such that U2

n+1 ⊂ Un for each n ∈ ω and {e} =
⋂

n∈ω Un. It follows from
([3], Lemma 3.3.10) that there exists a continuous prenorm N on G satisfying

{z ∈ G : N(z) < 1/2n} ⊂ Un,

for each n ∈ ω. We define a continuous real-valued function h on G× G by letting h(x, y) = N(x−1y),
for all x, y ∈ G. It remains to verify that ∆G = h−1(0). Clearly h(x, x) = 0 for each x ∈ G. Take arbitrary
elements x, y ∈ G with x 6= y. Then z = x−1y 6= e, so z /∈ Un for some n ∈ ω. Hence our choice of N
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and the definition of h imply that h(x, y) = N(z) ≥ 1/2n > 0. This proves the equality ∆G = h−1(0)
and shows that ∆G is a zero-set in G× G.

The following result is of almost pure topological character; we think nevertheless that it presents
some interest in the context of topological algebra.

Theorem 2. Let S be a subspace of a product D = ∏i∈I Di of topological spaces such that pJ(S) = ∏i∈J Di,
for each countable set J ⊂ I. If D is pseudo-ω1-compact, then every continuous mapping f : S → K
to a topological group K with ψ(K) ≤ ω has countable type. The same conclusion is valid if K is a Hausdorff
paratopological group of countable π-character.

Proof. If K is a topological group with ψ(K) ≤ ω, then Lemma 9 implies that K has a regular
Gδ-diagonal. Similarly, if K is a Hausdorff paratopological group of countable π-character, then we use
([15], Theorem 25) to conclude that K has a regular Gδ-diagonal.

Applying Lemma 8 we see that S is pseudo-ω1-compact, so Proposition 3 implies that there exists
a countable set J ⊂ I such that f depends on J. Hence we can find a mapping g of pJ(S) = ∏i∈J Di
to K satisfying f = g ◦ pJ � S. It follows from our assumptions about S that the restriction of pJ to S
is an open mapping (see Lemma 7), so the equality f = g ◦ pJ � S implies that g is continuous. Thus, f
has countable type.

Our last example (which we borrow from [1]) shows, in particular, that the condition ΣD ⊂ S
on the submonoid S of PD in (a) of Proposition 2 or in Corollary 2 cannot be weakened to the density
of S in D, nor even in PD.

Let us recall that a character of an abstract group G is a homomorphism of G to the torus T.
Since the discrete group Z(2) = {−1, 1} is a subgroup of T, every homomorphism of a group G to Z(2)
is a character. We denote the power of the continuum by c, so c = 2ω.

Example 1. (See [1], Example 2.13) Let p be the projection of the compact topological group
Π = Z(2)c ×Z(2) to the second factor Z(2). There exists a dense pseudocompact subgroup S of Π such
that χ = p � S depends on each of the factors Z(2)c and Z(2). In particular, χ is a continuous character
of a dense subgroup of Π, but the family J (χ) fails to be a filter and has no smallest element.

The forthcoming article [16] continues this line of our study but it focuses more on the cases where
a continuous homomorphism f : S→ K depends on a finite subset of the index set I.

All main results in Section 2, except for Proposition 3 and Theorem 2, concern continuous
homomorphism defined on submonoids of products of topologized monoids. This gives rise
to the following general problem:

Problem 1. Which of the results in Section 2 remain valid for continuous homomorphisms defined
on subsemigroups of products of topological semigroups?

Needless to say, the existence of the identity element in monoids has been crucial in the major
part of our arguments here.
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