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Abstract: In the theory of generalized hypergeometric functions, classical summation theorems for
the series 2 Fy, 35, 4F3, 5F4 and 7F play a key role. Very recently, Masjed-Jamei and Koepf established
generalizations of the above-mentioned summation theorems. Inspired by their work, the main
objective of the paper is to provide a new class of Laplace-type integrals involving generalized
hypergeometric functions ,F, for p = 2,3,4,5 and 7 in the most general forms. Several new and
known cases have also been obtained as special cases of our main findings.
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1. Introduction

The generalized hypergeometric function with p numerator and 4 denominator parameters is
defined [1-4] as

n=0 (bl)n T (bq)n I’l!,

in which no denominator parameters b; is allowed to be zero or a negative integer. If any numerator

ay, -, ap. B 00 (al)n"'(“p)ni
2y [bp . bq'Z] =Y o @

parameter 4; in Equation (1) is zero or a negative integer, the series terminates.
In addition, here, (a), is the well known Pochhammer symbol [5] for any complex number a
defined as

(@) = E @

_{1, (n=0,aeC\{0})
B a(a+1)---(a+n-1), (neN,aeC),

where T'(z) is the well known gamma function defined by
I'(z) = / e ¥x*Ldx (©)]
0
for Re(z) > 0.

Further, application of the ratio test shows that the series in Equation (1):
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(ii)
(iii)

(i)
(ii)
(iii)

converges for all finite zif p < g;
converges for |z| < 1if p =g+ 1; and
divergesforallzz # 0if p > g+ 1.

20f 21

In addition, following Bromwich [6] (p. 41 and 241), Knopp [7] (p. 401) or Luke [8], it can be
shown that the ;1 F; series is

absolutely convergent for |z| = 1if Re(y7) < 0;
conditionally convergent for |z] =1,z # 1if0 < Re(y) < 1; and
divergent for |z| = 1if 1 < Re(r), where

|4 q
n= Z aj — 2 bj.
j=1 =1

It is not out of place to mention here that, whenever a generalized hypergeometric function
reduces to products and quotients of gamma functions, the results are very useful from the point of
view of applications. For p = 2,3,4,5 and 7 of the generalized hypergeometric function in Equation (1)
with proper choice of parameters, the results in the form of summation theorems are available in the
literature in terms of gamma function. However, for p = 6, we do not have any summation theorem

available. Thus, in this paper, we do not consider the case for p = 6. Here, we mention the following

classical summation theorems [1,2], so that the paper may be self contained.

Gauss Theorem for Re(c —a —b) > 0

@ b'1 _I'(e)T(c—a—b)
2 c 7| T(c—a)(c—0)
Kummer’s Theorem
sl oab ] _T+a-bra+ia
P 14a-b" | T T -b+iar(1+a)
Second Gauss Theorem
F a, b 1| Jar(Ga+b+1))
P Ma+b+1) 2] T (a+ 1)L (b+1))

Bailey’s Theorem

pla 1-a 1] TGHIG
251 b /2 - (

Dixon’s Theorem for Re(a —2b — 2¢) > —2

a, b, c

F
32 1+a—b, 1+a-—c

7

T+ ia)TA+a-b)I(A+a—c)I(1—b—c+ 1a)

Fl+a)T(1-b+ia)T(1—c+ia)T(1+a—b—c)

Watson’s Theorem for Re(2c —a —b) > 1

a, b, c
Fa+b+1), 2c

VAT(c+ HT(3(a+b+1)T(c—3(a+b—1))

7

3b

(3(a+1)T(3(b+1)T(c—3(a—1))0(c—3(b—1))

4)

©)

(6)

@)

®)

©)
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e  Whipple’s Theorem for Re(b) > 0
a 1—a b
F ’ 4 1 10
32[0, 2b—c+1 ] (10)

_ w2720 T (e)T(2b — ¢ + 1)
ST+ —c+H1)T(EA—a+e))T(b+1-L(a+c))

e Pfaff-Saalschiitz Theorem

a, b, —n (c—a)u(c—"Db)y
F 1| = 77—+ 11
32[@ l+a+b—c—n 1 ()n(c—a—"b), ()
e Second Whipple’s Theorem
E a, 1+3%a, b ¢ 4l _Tla-b+1I(a—c+1) (12)
3l a—b41,a—c+1’ | T+ DI@a—b—c+1)
e Dougall’s Theorem for Re(a —c —d —e) > —1
a 1+ 1a c d e
L 7 2% ’ 7 ,1 13
54[%&1, a—c+1, a—d+1, a—e+1 (13)
Ta—c+)l(a—d+1)T(a—e+1)T(a—c—d—e+1)
S T@a+)l(a—d—e+1)l(a—c—e+1)(a—c—d+1)
e Second Dougall’s Theorem
a, 1+%a, b, ¢, d, 1+2a—b—c—d+n, -n
7Fs | 1 ; (14)
ia,a—b—i—l,a—c—i—l,a—d+1,b+c+d—u—n,a—|—1+n

(@a+1)p(a—b—c+)u(a—b—d+1)(a—c—d+1),
(a+1=b)p(a+1—-c)p(a+1—-d)p(a+1-b—c—d),

For very interesting applications of some of the above-mentioned classical summation theorems,
we refer a very popular and useful paper by Bailey [9].
In addition, for finite sums of hypergeometric series, if we use the following symbol

4
;r;[)i ai, -y ap,'Z — i qu:](al)n Zir:l
by, ---, b‘i n=0 Hl‘:1 (bi)n n

where, for instance,
(-1) (0) 1) ay---
pF(z) =0, ph(z) =1, PFq(Z):1+bl...qu’
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then, by using the following relation [10],

al/"' , a -1, 1
F p .
pra [ b, by, m ,Z] (15)
T(by)--T(by 1) T(ay —m+1)---T(ay g —m+1) (m—1)!

- T(ay)---T(ap—y) T(by —m+1)---T(bgog —m+1) zm1

aq—-m+1,---,a, 1—m+1
X p_1F— 4 ;
{plqllbl—m—kl,---,bql—m—i—l

(m—2) lal—m—i-l,---, ap—1—m+1

)3

very recently Masjed-Jamei and Koepf [11] established generalizations of the classical summation

theorems in Equations (4)—(14) in the following form:

—,1F,—
p—15g-1 bl—m+1,~~-,bq,1—m—|—l'

(16)

3h [ 4 b 1 ;1
c, m
IF(m)[(c)T(a—m+1)T'(b—m+1)
T(a)[(0)T(c —m + 1)
m=2) 1 g —m+1,b-—m+1 q

I(c—m+1I(c—a—b+m—1) E
I(c—a)l(c—Db) -t c—m+1 '

}

a, b, 1 o
P’lea—b—l-m,m' 11 {17)
mo1 T(m)Ta—b+mT(a—m+1I(b—m+1)

= (1) ()T ()T (a—b+1)
" Ta—b+1I(1+3(a—m+1)) _(’”1;2) a—m+1,b—m+1
TQ+a—mITm—b+i@a—m+1) ' a—b+1 ’
a, b, 1 1
b %(a+b+1),m’§ (18)

o DI (3(a+b+ 1) (a—m+1)T(b—m+1)
- T(a)T(O)T(—m+1+L@a+b+1))

VAT(=m+1+3(a+b+1) 20 g—m4+1, b-m+1 1
TA+3@a—m)TA+ib-—m) > | —m+1+3a+b+1) 2

=03
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b [ a, Zmb— am— 1, 1 ;% (19)
_ ou-1 Lm)T(0)T (@ —m +1)I'(m —a)
T(a)T(2m—a—1)(b—m+1)
X{ T(3(b—m+1)I(3(b—m+2)) _wza[a_m+4,m_a.1]}
T(—m+1+i@a+b)TAb-at1) > b—m+1 2
=y
U l ai/b+nlz’, a—cc,+ m,lm ;1] (20)
IrmI(a—b+mT(a—c+mIa+1—mI(b+1—m)(c+1—m)
B T(a)T(b)T(c)T(a—b+1)T(a—c+1)
{ T((a+3-m))L(a—b+1)[(a—c+1)T(~=b—c+i(a+3m—1))
T(a+2—m)(=b+L(a+m+1)T(—c+ia+m+1)T(a—b—c+m)
(m=2) [ ,_ _ _
— b [a m:—lé&,m:}ccﬂmﬂ 2y
= Qs
afs %(a{:,—b—‘-f’), ZC—CI—Il—ril, m ;11 @D
_T(mT(3(a+b+1)F(2c+1—mT(a+1—mT(b+1—m)T(c+1—m)
T(a)T ()T ()T (—m + L(a+b+3))T(2c —2m +2)
X{ VAT(c—m+3)T(~m+L(a+b+3)T(c—La+b-1))
T(1+ 3(a—m))T(1+5(b—m)T(c+1— 3(a+m))l(c+1—3(b+m))
(m-2) a—m+1, b—m+1, c—m+1
- sh l —m+1+3@+b+1), 2c—2m+2 i1 }
:Qé
sFs [ a’c,2mZb_—1c+1 b’m : i1 (22)

Irm)T()2b—c+1DI'(m—a)T(a+1—mT(b+1—m)
ra)rmrem—-1—al(c+1—mI'(2b—c—m+2)
x{ 2221 (c —m+1)
T(-m+1+3(a+c)I(-m+1+b+i@a—c+1))T(L(1—a+c))
r(2b—c—m+2) (m-2)
T(h+1-1L(atc) 3f2 ! }
o

a—m+1, b—m+1, m—a
c—m+1,2b—c—m+2

7
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(m =11 —c)m

= 23

0= a1~ b)s @)

(c—a)p(c—b)y
m)u(c—a—b+m—1),

}

7

a b, —n+m-—1,1
473 ¢, 1+a+b—c—n, m
(c—a—b+n)y1 {
(n+2—m)y_q (c+1-
(’"2)[ a—-m+1,b-—m+1, —n 1

— 3F
372 c—m+1,2+a+b—c—m—n

=04

(24)

F ;
> [ a+m—1),a—b+m, u—c+m m

a, s(a+m+1), b, 1] 1" 1T (m)
(a—m+3)l(a—m+1)
(

I(3(a+m—1)(a—b+m)(a—c+m)T
T(a)T(b)T()T(3(a+m+1))L(3(a—m+1))
I(b+1—m)T(c+1—m) { Ir1+a—-b)T(1+a—-c)
IFa—b+1Dl(a—c+1) re—m+a)l(m+a—>b—c)
m2 |\ g—m+1,b—m+1, $(a—m+3), c—m—i—l;l]}

— 4F
43 Ya—m+1),a—b+1,a—c+1

1
(3
1
2
b)

= )9

1
a, s(a+m+1), c, d, e, 1 1

(a+m—1),a—c+ma—d+ma—e+m,m

(25)

61‘"5[%
_ T(m)T(3(a+m—1)T(a—c+mT(a—d+m)T(a—e+m)
B Ta—c+Dl(a—d+1)T(a—e+1)
Ta—m+1)I(3(a—m+3)T(c+1—mT(d+1—
L(a)T ()T ()T (e)T(3(a+m +1))T(3(a —m+1))

" IFa—c+1)l(a—d+1)T(a—e+1)I(a—c—d—e+2m—1)

{F(2—m+a)F(a—c—e+m)F(a—d—e+m)F(a—c—d+m)
m—l—l,%(a—m—k?)),d—m—i-l,e—m—i-l 1
a—e+1 ’

m)T(e+1—m)

j

_(’”[;2) a—m+1,c—
St %(a—m+1), a—c+1, a—d+1,

= (o

d 2a—b—c—d+2m—14n, m—n—1, 1 ;1] 26)

a, %(a+m+1), b, ¢
m—mn,a+n+1,m

8F7[ %(a—&—m—l),a—b+m,a—c+m,a—d—|—m,b+c+d—a+1—
(1)L m— 1) x (38—a—m)y 1(1—a+b—m),
(%(1—{1—711)),”_1(1—11),”_1
y l—a+c—m)y_1(l—a+d—m)y_1(m+n+a—b—c—d)y_1(—a—n)y_1
(1=b)m-1(1 = )m1(l = d)ma(b+c+d—2a+2—=2m—n)y_1(n+2—m)yu_1
" {(a—m+2)n(u—b—c+m)n(a—b—d+m)n(a—c—d+m)n
(@a-b+1)u(a—c+1)y(a—d+1)(a—b—c—d+2m—1),

m—2
( ){ a—mt1, Fa—m3), bomtlcomild-mtl20—b-c—dtmn —n 1}}
1

%(u m+1),a—b+1l,a—c+1l,a—d+1,b+c+d+—a+2-2m—na—m+n+2 7
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Remark 1. For other generalizations of the results in Equations (5)—(10), we refer to [12-16].

On the other hand, we define the (direct) Laplace transform of a function f(t) of a real variable ¢
as the integral g(s) over a range of the complex parameter s as

8(s) = L{f(Es} = [ e () @)

provided the integral exists in the Lebesgue sense. For more details, see, for instance, the works of [17]
or [18]. It is interesting to mention here that, in view of the formula

/ e S dt = T(a)s ™ (28)
J0

provided Re(s) > 0 and Re(a) > 0, by using Equation (1), it is a simple exercise to show that the
Laplace transform of a generalized hypergeometric function , F; is obtained as [3,19,20]:

7

[ee]
—st,v—1 ay, -+, Adp,
t F, ;wt| dt 29
/0 e pq[bl, bqw] (29a)

_ v, ay, v, 4p W
- F(U)S Verqu [ bll Tty b;” S]
provided that when p < g, Re(v) > 0, Re(s) > 0 for w arbitrary, or p = q > 0, Re(v) > 0 and
Re(s) > Re(w).
Further, in Equation (29a), if we take p = g =1, v = b, a1 = a and by = ¢, we find that (see [20]),

® b1
/ €_Stt - 1F1
0

provided Re(b) > 0, Re(s) > 0, Re(s) > Re(w) and |s| > |w]|.

Finally, in Equation (29b), if we take w = }s and eitherc = $(a+b+1) orb = 1 — g, then it is
easy to see that the ,F; series appearing on the right-hand side of Equation (29b) are summable by
known summation theorems in Equations (6) and (7), respectively, and we find that

e, wt] dt = T(b)s,F [”’ bwl (29b)
C C S

00 r(Hrera 1
/ e n | 0 g e e TDIOIGatb Y ) (29¢)
0 2(a+b+1) 2 T(3a+1)rd(b+1))
provided Re(b) > 0 and Re(s) > 0, and that
00 T(1—a)l(30)T(3(c+1
/ e St E a; 1st dt = s*1 (1 %) (Zc)l (3(c+1)) , (29d)
Jo c 2 I'(3(c+a))T(53(c—a+1))

provided Re(1 —a) > 0 and Re(s) > 0.

The results in Equations (29b) and (29c) are very well-known in the literature and are recorded,
for example, in the work of [20].

In addition to Equation (29a), it is interesting to observe here that, when w = +sand g = p,
on similar lines, we can obtain the following result in view of the conditions of convergence of ,F;
mentioned in Section 1.

dt (2%)

0 _ _ al ... a
e stv-1 F / 7P gt
~/O Per blr Tty bp

— Ulull e, a
=T()s " ,.1F P. 41
() P+1P[b1, e, bp
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provided Re(v) > 0, Re(s) > 0and Re(by +---+bp —a; —---—ap, —v) > 0.

Remark 2. 1. Since there is no summation theorems for the series ,F, for argument %,1and —1 are available
in the literature, at this moment, it is not possible to find the Laplace-type integrals for the generalized
hypergeometric function ,Fy. We leave this open problem for the readers.

2. Laplace-type integrals in the case p = 2 were given by Deepthi et al. [21] and connections with fractional
integral operators were recently studied by Parmar and Purohit [22].

The aim of this paper is to provide a new class of Laplace-type integrals involving generalized
hypergeometric functions by employing the summation theorems in Equations (16)—(26). Several new
and known special cases have also been considered.

2. Laplace-Type Integrals Involving Generalized Hypergeometric Functions

In this section, we establish several new, interesting and elementary Laplace-type integrals in the
most general form, involving generalized hypergeometric functions asserted in the following theorems
that follow directly from Equations (29a) and (29¢) and the known results in Equations (16)—(26).
The results presented in this section would serve as key formulas from which, on specializing the
parameters, lead to several results, some of which are known and others are believed to be new.

[A] Laplace-type integrals involving generalized hypergeometric function  F,

The results to be established are asserted in the following theorems.

Theorem 1. For m € N, Re(s) > 0, Re(a) > 0 and Re(c —a — b+ m) > 1, the following result holds true.

/0 e st 1, [b’ ;;stl dt =T(a)s™*Qy, (30)

7

where ()1 is the same as given in Equation (16).

Theorem 2. For m € N, Re(s) > 0and Re(c —a — b+ m) > 1, the following result holds true.

/ e St [a, b;st} dt = s~ 10y, (31)
0 m

7

where ()1 is the same as given in Equation (16).

Theorem 3. For m € N, Re(s) > 0and Re(a) > 0, the following result holds true.

—st ya—1 4 . — —a
/0 e st 1,F, [a e st] dt =T(a)s™" Oy, (32)
where () is the same as given in Equation (17).

Theorem 4. For m € N, Re(s) > 0 and Re(b) > 0, the following result holds true.

e 1
SR " .—st| dt =T(b)s*Q
e Y AN (b)s7" 0, (33)
where () is the same as given in Equation (17).

Remark 3. The reader should observe that the results given in Theorems 3 and 4 are different but obtained from
the same known result in Equation (17).
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Theorem 5. For m € N and Re(s) > 0, the following result holds true.
/ st N b —st| dt = s 1) (34)
0 a—b+m, m’ !

where () is the same as given in Equation (17).

Theorem 6. For m € N, Re(s) > 0 and Re(a) > 0, the following result holds true.

* 1
/ efst 1= 2F2
0

where Q)3 is the same as given in Equation (18).

b 1 1
Ha+b+1), m2

st] dt =T(a)s™"Qy, (35)

Theorem 7. For m € Nand Re(s) > 0, the following result holds true.

[e¢]
/ €_St 2F2
0

where ()3 is the same as given in Equation (18).

a b 1
' jost|dt =510y, 36
%(a+b+1),m251 5B (36)

Theorem 8. For m € N, Re(s) > 0and Re(a) > 0, the following result holds true.

/o et 1LF [mb_ ' _nl{ g ESt] dt =T(a)s™" Q, (37)

where ()4 is the same as given in Equation (19).
Theorem 9. For m € N, Re(s) > 0and Re(2m — a — 1) > 0, the following result holds true.

/ R LY ) ; ;; ;stl dt =T(2m —a—1)s"T172"Qy, (38)

0

where ()4 is the same as given in Equation (19).

Theorem 10. For m € N and Re(s) > 0, the following result holds true.

0 —a-11
/O eStHF, l”’ me ‘jn 1;25t] dt = s 10, (39)

where Q)4 is the same as given in Equation (19).

Proof. To establish the result in Equation (30) asserted in Theorem 1, we proceed as follows.
In Equation (29), if wetake p = g = 2, v =4a,a; = b,ap = 1, by = ¢, and by = m, considering
positive sign, we get

/ e St [b' 1'51?] dx = s T(a)3F la’ b, 1;1] . (40)
0 c, m

7
¢, m ,

We now observe that the 3F, appearing on the right-hand side of Equation (40) can be evaluated
with the help of the result in Equation (16) and we easily arrive at the right-hand side of Equation (30).
This completes the proof of Equation (30) asserted in Theorem 1.
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In exactly the same manner, the results in Equations (31)—(39) asserted in Theorems 2-10 can be
evaluated. We however omit the details. [

Corollary 1. (a) In Theorem 1, if we take m = 1,2,3, we get the following results.

“© st p b |, T@T(QT(c—a—b)
/0 e Sty 11F1_C,st] dt = ST(c—a)(c—0b) ' 41)

/Ooe*”t”*leZ b, 1;51‘] dt (42)
0 ¢ 2
_(c—l)F(a—l){F(c—l)r(c—a—b+1)_1}
st (b—1) I'(c—a)T(c—0)
and
/Oooe—stta—lzl—’z [i; ;;st] dt (43)
_2T(a)(c—2), {F(cZ)F(cab+2)ab+02a2b+2}
- s7(a—2)2(b—2), T(c—a)l(c—0b) c—2 '

(b)  In Theorem 4, if we take m = 1,2,3, we get the following results.

o0 27 T(HT(MHT(1+a—b
[esen | st dt = BTG +a—b) (44)
0 1+a—b stT(5a+ 5)I(1+ 3a—b)
oo —st 4b—1 a, 1
F ;— 4
/O Y N st] dt (45)
_ (a—b+1)T(b) 17F(1+a—b)r(%a+%)
st(a—1)(b—1) T(a)[(3a—b+3)
and
/we—“ "1, F - (46)
0 22 134a—1b3
_ 2(a—b+1)T(a) T(3a)T(1+a—b)  3a+b—ab—3
sb(a—2)(b—2)2 |T(a—1)I(3a—b+2) 14+a—b '
(c) In Theorem 7, if we take m = 1,2,3, we get the following results.
00 T(a)T(3(a+b+1
/ e SR | b 1st dt = ﬁl(a) (2(a+1 1) , (47)
Jo Ha+b+1)2 s*T(3(a+1)r(3(b+1))
o b, 1 1
—st ya—1 ’ o
/0 RECY FURRRONT Sl (48)

_atb-Dla-1) [VATGa+b-1)
By r(3a)r(2n)

2
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and

(49)

[e0)
/ efst tafl 2F2

st
0 %(a—i—b—i—l),ﬁ’v?S s7(a—2)2(b—2);

y VaT(3(a+b-3)) _ab—a-b+1
I(3(a—-1))re-1)) a+b-3 '

b, 1 1 ]dtzzr(a)(a—kb—l)(a%—b—B)

(d) In Theorem 10, if we take m = 1,2,3, we get the following results.

st - 1_a.1 _ r(a)r(lb)r(l(b+l))
f e 11Fl[ b '2”} " TG DIGb—at D) 0

% . 1
/O et 11, [3 ) @ ) 1 2st] dt (1)

and

st a1 5—a, 1. _ S(b*Z)ZF(a)
/O TR |7 st dt = =G (52)

y T(3(b—1))T(3(b—2)) ~ 5a—a®+2b-10
T(3(a+b)-2)T(A(b—a+1)) 2(b—2)

Similarly, other results can be obtained from Theorems 2, 3, 5, 6, 8 and 9.

Remark 4. 1. The results in Equations (47) and (50) were recorded by [23] as well as [20].
2. The proofs of Theorems 11-35 given below are straight forward and can be proven with the help of the result
in Equation (29e), thus they are given here without proof.

[B] Laplace-type integrals involving generalized hypergeometric function 3F3

The results to be established are asserted in the following theorems.
Theorem 11. For m € N, Re(s) > 0, Re(a) > 0 and Re(a — 2b — 2c + 3m) > 1, the following result
holds true.

st ya—1 4 4 a

where )5 is the same as given in Equation (20).

Theorem 12. For m € N, Re(s) > 0, Re(b) > 0 and Re(a — 2b — 2c + 3m) > 1, the following result
holds true.

[ _ _ a, c, 1 —
/0 e gL leer a—c+m m;St] =t bQS, o

where Q)5 is the same as given in Equation (20).
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Theorem 13. For m € N, Re(s) > 0 and Re(a — 2b — 2c + 3m) > 1, the following result holds true.
a—b4+ma—c+m,m

/O esf3p3l @ b, ¢ ;st] dt = s 10, (55)

where )5 is the same as given in Equation (20).

Theorem 14. For m € N, Re(s) > 0, Re(a) > 0 and Re(2c —a — b) > —1, the following result holds true.

* 1
/ efst - 31:3
0

where Qg 1s the same as given in Equation (21).

b, c, 1

; st
Ta+b+1),2c+1—m,m ’

dt =T(a)s™* Q, (56)

Theorem 15. For m € N, Re(s) > 0, Re(c) > 0and Re(2c —a — b) > —1, the following result holds true.

* 1
/ e—st - 3F3
0

where Q)¢ is the same as given in Equation (21).

a, b, 1

; =T -0 7
%(a+b+1),2c+1—m,m'St dt (c)s 6/ (57)

Theorem 16. For m € N, Re(s) > 0 and Re(2c —a — b) > —1, the following result holds true.

00
/ e—St 3F3
JO

where ()¢ is the same as given in Equation (21).

a, b, c
Ha+b+1),2c+1—m,m

;st] dt = s71Q, (58)

Theorem 17. For m € N, Re(s) > 0, Re(a) > 0 and Re(b —m + 1) > 0, the following result holds true.

/e,stta,lng [Zmal, b1,
0 m

_ —a
6 bt dt =T(a)s " Qy, (59)

where Q)7 is the same as given in Equation (22).

Theorem 18. For m € N, Re(s) > 0, Re(b) > 0 and Re(b — m + 1) > 0, the following result holds true.

ad 2m—a—1, 1
/ e stb—1 3F3 |fll m—a ’ ; st
0 m

_ —b
A dt =T(b)s " Qy, (60)

where Q)7 is the same as given in Equation (22).

Theorem 19. For m € N, Re(s) > 0, Re(2m —a —1) > 0 and Re(b — m + 1) > 0, the following result
holds true.

/ e Iy L aIZb i’+ 1 1 m;st] dt =T(2m —a—1)s""172" 0y, (61)
JO 7 - 7

where ()7 is the same as given in Equation (22).



Axioms 2019, 8, 87

Theorem 20. For m € N, Re(s) > 0and Re(b —m + 1) > 0, the following result holds true.

[e0]
st a, 2m—a—1, b 1
F st dt =s7Q)y,
/oe 33[@ 2b—c+1, ms s 7

where )y is the same as given in Equation (22).

Theorem 21. Form € N, n € Ny, Re(s) > 0and Re(a) > 0, the following result holds true.

® 1
/ efst 1= SFS
0

where Qg is the same as given in Equation (23).

b, —n+m-1, 1
¢, 1+a+b—c—n, m

;st] dt =T(a)s " Qg,

Theorem 22. Form € N, n € Ny and Re(s) > 0, the following result holds true.

o0
/ E_St 3F3
0

where (g is the same as given in Equation (23).

a, b, —-n+m-1
¢, 1+a+b—c—n, m

;st] dt = s~ 10y,

Corollary 2. (e) In Theorem 11, if we take m = 1,2,3, we get the following results.

(e}
/ e—st tu—l 2F2
0

T(3a)T(A+a—b)I(1+a—c)T(1+3a—b—c)
28 T(1+da—b)T(1+La—o)T(1+a—b—c)’

b,

c
dt
1+a—-b, 14+a—c

; st

/o L [a—:,+2, le—c—klz, 2;St] at
Ia—1)(1+a—-b)(1+a—c)
s?(b—1)(c—1)
y {r(;(a+1))r(1+a—b)r(1+a—c)r(;a—b—c+g) _1}
T(a)[(2a—b+3)(Ja—c+3)F(2+a—b—c)

and

oo b o 1
—st ya—1 ’ ’
t F ;st| dt
/0 ¢ 33[a—b+3,a—c+3,351

~2(a—-b+1)(a—c+1),T(a)
o s (a — 2)2(17 — 2)2(C — 2)2

{ rla)rQ+a-b)f(Q+a-o)(la—b—c+4)

Ta—1)I(3a—b+2)T(Ja—c+2)T(3+a—b—c)

(@—2)(b—2)(c—2)
b+ D@a—ctl) _1}'

13 of 21

(62)

(63)

(64)

(65)

(66)

(67)
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(A In Theorem 14, if we take m = 1,2, 3, we get the following results.

b, ¢ . ;st} dt (68)

ﬁl"(u)l"( 2 %
s*T(3(a+DT(3(b+1))T(c—3(a—1))T(c—3(b—1))’
o —st a—1 b, c, 1 .
/0 e shs La+b+1), 2c1,2’5t1 dt (69)

(a+b—-1)T(a—1) [ VaAT(c—HT(3(a+b—1))T (C—%(ﬂ—i—b—l))_l
st (b—1) b)I'(c—1a)T(c— 1b)

—
—~
N—
ES}
~—
—
—~
NI—

and

/o e shs la+b+1),2c-2,3
(2c-3)(a+b—1)(a+b—3)T(a)
s (e=1)(a—-2)2(0-2)
X{ V(e =T (5(a+b—-3))T(c—3(a+b-1))
T(3(a=1))T(3(b =1)(c— z3(a+1)T(c—5(b+1))

(a—2)(b—2)
- a+b-3 _1}'

by e 1 ;st} dt (70)

(g) In Theorem 17, if we take m = 1,2, 3, we get the following results.

o 1—a b
—st ya—1 ’
t E ; st
/0 ¢ ZZlC,Zb—C—FlS

_ 2172 T(a)T (c)T(2b — c + 1)
s T(l@+e)T(b+i(a—c+1)TEA—a+e)T(b+1-1(@a+c))

dt (71)

3w b1 ] (- D(e-2)Ta)
e 3F3[c, —ct1, 2| T @ 26— 1) @2)

{ 723=2T (¢ — 1)T(2b — c) }
X -1
T(3(a+c)—-DIb+i@a—c—1)((1—a+c)I(b+1-1(a+c))

and

® st ja—1 b, 2b—c—1) I(a)
/0 L [c boci1,3 St] at = “4),(0—2), @3

y 2520 T (c — 2)I'(2b —c+1)
F(%(u+c)—2)1‘(b+ (a—c— )) (%(1—a+c)) (b+1—7( +0¢))

(a—=2)8—a)(b-2)
(c—=2)(2b—c—1) 1}'
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(h)  In Theorem 21, if we take m = 1,2,3, we get the following results.

« —st ja—1 —n, b . _ r(”)(c_a)n(c_b)n
/0 L l—i-a—i-b—c—n,c'St]dt_ s?(c)y(c—a—"0b), ’ @4
o0 —st qa—1 —Tl+1, b/ 1 .
/O et 3 ldta+bc—n Clz,st dt (75)
_ (l—=c)(c—a—b+n)T(a—1) (c—a)u(c—b)n 1
N n(1l —b)s* ()n(c—a—b+1),
and

« —st pa—1 —n+2, b, 1 .

A et | T st (76)

2(1—c)a(c—a—b+n)yI'(a)
s7(1—a)(1—-b):
(c—a)u(c—b)y

X{@—Z%@—a—b+@n

_|_

n(a—2)(b—2)
@—2xa+b—c—n—1)_1}'

Remark 5. The results in Equations (65), (68) and (71) are known results due to Kim et al. [24].

[C] Laplace-type integrals involving generalized hypergeometric function 4F;

The results to be established are asserted in the following theorems.

Theorem 23. For m € N, Re(s) > 0, Re(a) > 0 and Re(a — 2b — 2c + 3m) > 2, the following result
holds true.

« 1
/ €_St tﬂ_ 4F4
0

where Qg is the same as given in Equation (24).

; —st

; =T 7 Qo, 77
Ha+m—1), a—b+m, a—c+m, m (a)s ’ @7)

Ya+m+1), b ¢ 1 ]dt

Theorem 24. For m € N, Re(s) > 0, Re(c) > 0 and Re(a —2b —2c + 3m) > 2, the following result
holds true.

; —st

:r 7CQ 7
%(ﬂ+m—1),a—b+m,a—c+m, m (c)s 9 (78)

o 1
/ P JFs a, 2(ﬂ+m+1), b, 1 1 gt
0

where Qg is the same as given in Equation (24).

Theorem 25. For m € N, Re(s) > 0, Re(a +m +1) > 0and Re(a — 2b — 2c + 3m) > 2, the following
result holds true.

[e0]
—st 3 (a+m—1)
t2 E ;
/0 ¢ e Ha+m—1),a—b+m, a—c+m, m

@ b, c vt —st] dt (79)

= F(%(a +m+1))s2@tmt) 0y

where Qg is the same as given in Equation (24).
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Theorem 26. For m € N, Re(s) > 0 and Re(a — 2b — 2c + 3m) > 2, the following result holds true.

)
/ 67St 41:'4
0

where Qg is the same as given in Equation (24).

a, Ha+m+1), b, c
%(u—i—m—l), a—b+m,a—c+m, m

;—st} dt = s71Q, (80)

Corollary 3. (i) In Theorem 24, if we take m = 1,2, 3, we get the following results.

) 1
et e Ha+2), b
stpe=l g, | % 2(a ’ —st| dt 1
/0 ¢ 33 %a,a—b—kl,a—c—f—l’ s (81)

Fl+a-b)T(14+a—c)l(c)
ssT(1+a)T(14+a—b—c) ’

) 1
st e 5(a+3) b 1
stype—1 F & 2(a ’ ’ —st| dt 2

/0 ¢ 4 la+1),a-b+2,a-c+2,27 ° (82)

_ (I4+a-b)(14+a—c)T(c) 1 I'l+a—-0b)T(1+a—c)
s (a+1)(b—-1)(c—1) {_ Fa)l2+a—b—c) }

and

) 1
/0 oSt pe—1 1F1 %(L;/+3),2l(lﬂ_+b4_‘):3/ . i,c-k; 3 ;—st] dt (83)
2(14a—b)2(14+a—c)I(c)
st (a+2)(a—1)(b—2)2(c—2)
{1’(1+a—b)1“(1+a—c) a(b—2)(c—2) _1}
IFa—1)IB3+a—-b—c) (I1+a—0b)(1+a—-c) '

Similarly, other results can be obtained from Theorems 23, 25 and 26.
[D] Laplace-type integrals involving generalized hypergeometric function 5Fs

The results to be established are asserted in the following theorems.

Theorem 27. For m € N, Re(s) > 0, Re(a) > 0 and Re(2a — 2¢ — 2d — 2e + 3m) > 2, the following result
holds true.

%(ﬂ—f—m—f—l), C/ d/ e/ 1
(

;st| dt 84
a—l—m—l),a—c+m,a—d+m,a—e+m,ms (84)

where () is the same as given in Equation (25).

Theorem 28. For m € N, Re(s) > 0, Re(c) > 0 and Re(2a — 2c — 2d — 2e + 3m) > 2, the following result
holds true.

(85)

1
a, s(a+m+1), d, e, 1 st] 5t

/0067st tcfl 5]:5 .
0 %(a—km—l),a—c—i—m,a—d—i—m,a—e+m, m’

= F(C) Sic QlO/

where ()y is the same as given in Equation (25).
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Theorem 29. Form € N, Re(s) > 0, Re(a+m+1) > 0and Re(2a — 2c — 2d — 2e + 3m) > 2, the following
result holds true.

o
/0 oSt t%(aerfl) 5Fs

d 1
Lo c ’ ¢ st dt (86)
sa+m—1),a—c+ma—d+ma—e+m,m

1

=T(z(a+m+1))s 20@0m+) 0,

N —

where () is the same as given in Equation (25).

Theorem 30. For m € N, Re(s) > 0 and Re(2a — 2¢ — 2d — 2e + 3m) > 2, the following result holds true.

; 87
(a+m—1),a—c+ma—d+m,a—e+m,m (87)

1 _
, s(@a+m—1), c, d, e.St] it

where ()qg is the same as given in Equation (25).

Corollary 4. (j) In Theorem 27, if we take m = 1,2, 3, we get the following results.

oo 1
st 5(a+2) d e
Sl yF ¢ 2@+2) ’ ;st| dt 88
/o ¢ Pl a—ct1,a-d+l,a—e+1’’ (88)

TrM+a—-cTQ+a—-d)T(1+a—-e)T(1+a—c—d—e)
s*Tl+a—-d—e)T(l+a—c—e)T(1+a—c—d) '

® o c, La+3), d, e, 1 )
/0 e 15k %(u—i—l), a2—c+2,a—d+2,a—e+2,2'5t1dt (89)
(1+a—c)(14+a—d)(14+a—e)I(a)
s*(1+a)(c—1)(d—1)(e—1)
I'l4+a—c)l(1+a—dI(1+a—e)l(3+a—c—d—e) 1
{ FraIr2+a—-d—e)T24+a—c—e)T(24+a—c—4d) _}

and

o0
7stta71 L s st
/o ¢ 21 Ya42),a-c+3, a-d+3, a—e+3,3 °

21 +a—c)(1+a—d)(1+a—e)T(a)
- s (a—1)(a+2)(c—2)2(d ~2)2(e — 2)2
I'l4+a—c)l(1+a—d)I(1+a—e)l(5+a—c—d—e)
{F(a—1)F(3+a—d—e)l"(3+u—c—e)F(3+a—c—d)
a(c—2)(d—2)(e—2)
(1+a—c)(1+a—d)(1+a—e)}'

(90)

c, F(a+4), d, e, 1 ] it

Similarly, other results can be obtained from Theorems 28-30.
[E] Laplace-type integrals involving generalized hypergeometric function 4Fg

The results to be established are asserted in the following theorems.
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Theorem 31. Form € N, Re(s) > 0 and Re(a) > 0, the following result holds true.

/ st a1 1)
0

Ja %(a—i—m—i—l), b, ¢, d 2a—-b—c—d+2m—1+n, m—n—-1, 1 "
77 %(aerf1),afb+m,afc+m,a7d+m,b+c+dfa+1fmfn,a+n+1,m’

=T(a)s™" O,

t| dt

where ()11 is the same as given in Equation (26).

Theorem 32. For m € N, Re(s) > 0 and Re(a +m + 1) > 0, the following result holds true.

®© 1
/ e—st ti(“""m_l) % (92)
0
a, b, c, d, 2a—b—c—d+2m—1+n, m—n-—1, 1 ot | dt
77 %(a—l—m—1),a—b+m,a—c+m,a—d+m,b+c+d—a+1—m—n,a+n+1,m'
1 1
B F(E(a +m41))s 2@ Oy,

where ()11 is the same as given in Equation (26).

Theorem 33. For m € N, Re(s) > 0 and Re(b) > 0, the following result holds true.

/ oSt b1 (93)
0

%(u—l—m—i—l), b, ¢, d 2a—-b—c—d+2m—1+n, m—-n—1, 1

;st| dt
%(a—f—m—1),a—b+m,a—c+m,a—d+m,b+c+d—a+1—m—n,a+n+1,m’s

7F7 [
= F(b) Sib 011,

where ()11 is the same as given in Equation (26).

Theorem 34. For m € N, Re(s) > 0and Re(2a —b —c—d +2m —1+n) > 0, the following result
holds true.

/00 e—st t2a—b—c—d+2m+n—2 % (94)
0

F %(a+m+1), a, b, c, d, m—n—1, 1 ot | dt

757 %(u—l—m—1),11—b+m,a—c+m,u—d+m,b+c—|—d—a+1—m—n,a+n+1,m'

=T(2a—b—c—d+2m—1+n)s Gebcdtam=lin
where ()11 is the same as given in Equation (26).

Theorem 35. For m € N and Re(s) > 0, the following result holds true.

[ee]
/Oe—st7F7 (e st e (95)

11+m71),a—b+m,a—c+m,a—d+m,b+c+d—a+l—m—n,a+n+l,m’

-1
=s" (1,

where ()11 is the same as given in Equation (26).
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Corollary 5. (k) In Theorem 31, if we take m = 1, 2,3, we get the following results.

/ efst tufl (96)
0

b, %(a—}-Z), ¢, d, 2a—-b—c—d+n+1, -n ot | ar
676 lal+a-bl+a—cl+a—db+c+d—a—na+n+1’

T@)A+a)y(a—b—c+1)pla—b—d+1)y(a—c—d+1),
 os"(1+a—-b)y(l+a—c)y(l+a—d)y(l+a—b—c—d), ’

% st a1
/ st 11— (97)
0
b, l(rl+3), c, d, 2a—b—c—d+n+3, 1-n, 1
2 .
X 71:7 [ %(n+1),1+n—b,1+n—c,1+n—d,b+c+d—n—n—l,ﬂ+n+1,2 ’St] dt

b—a—-1)(c—a-1)(d—a—-1)(n+2+a—-b—c—d)(a+n)[(a)
ns®(1+a)(1—-b)(1—c)(1—d)(b+c+d—2a—2—n)
" {1_ : (a)p(a—b—c+2)y(a—b—d+2)(a—c—d+2), }

1+a-b)y(l+a—-c)u(l+a—-d)uB+a—-b—c—d),

and
® st a1
/ e T (98)
0
b, l(a+4)/ ¢, d 2a—b—c—d+n+5 2-n, 1
2 .
X 7F7 |: %(n+2),3+n—h,3+n—c,3+n—d/b+f+d—a—n—2,n+n+l,3 ’Sti| dt

_(@=2)(b—a—-2)(c—a—2)(d—a—2)
s?(a+2)(1—a)2(1-b)2(1—c)2(1—d)
(—a—n)y(3+n+a—-b—c—d)T(a)
(n—1)a(b+c+d—2a—4—n),
{(a—1)n(a—b—c—|—3)n(a—b—d+3)n(a—c—d+3)n
(a—b+Dy(a—c+Dp(a—d+1)(a—b—c—d+5),

na(b—2)(c—2)(d—2)(2a —b—c+n+3) .
(a—b+D(a—c+D)(a—d+1)(b+c+d—a—n—4)(n+a—1) }

+

Similarly, other results can be obtained from Theorems 32-35.

Remark 6. For evaluation of Eulerian’s type integrals involving generalized hypergeometric
functions by employing the summation theorems, Equations (16)—(26), we refer an interesting paper
by Jun et al. [25].

3. Concluding Remark

In the theory of generalized hypergeometric functions, classical summation theorems such as
those of Gauss, Gauss second, Kummer, Bailey, Dixon, Watson, Whipple, Saalschiitz and Dougall
play a key role. Applications of the above-mentioned classical summation theorems are well-known.
Very recently, Masjed-Jamei and Koepf established interesting and useful generalizations of the
above-mentioned classical summation theorems in the most general form.

In this paper, an attempt has been made for providing a list of several Laplace-type integrals
involving generalized hypergeometric functions ,F, for p = 2,3,4,5 and 7 in the most general forms
which would serve as key formulas from which, on specializing the parameters, lead to several results,
some of which are known and others are believed to be new. The results established in this paper are
simple, interesting, easily proven and may be potentially useful.
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We conclude this section by remarking that other applications of the generalized summation
theorems due to Masjed-Jamei and Koepf are under investigations and the same will form a part of the
subsequent paper in this direction.
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