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Abstract: A Structure Theorem for Protori is derived for the category of finite-dimensional protori
(compact connected abelian groups), which details the interplay between the properties of density,
discreteness, torsion, and divisibility within a finite-dimensional protorus. The spectrum of
resolutions for a finite-dimensional protorus are parameterized in the structure theorem by the dual
category of finite rank torsion-free abelian groups. A consequence is a universal resolution for
a finite-dimensional protorus, independent of a choice of a particular subgroup. A resolution is also
given strictly in terms of the path component of the identity and the union of all zero-dimensional
subgroups. The structure theorem is applied to show that a morphism of finite-dimensional
protori lifts to a product morphism between products of periodic locally compact groups and real
vector spaces.
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1. Introduction

All compact groups herein are finite-dimensional and all torsion-free groups have finite rank.
We carry out a study of the structure of compact, connected abelian groups, or protori. A practical new
perspective on the category of torsion-free abelian groups, from the point of view of the dual category
of protori, emerges organically from a detailed analysis of the algebro-topological structure of protori.
A Structure Theorem for Protori (Theorem 1) is derived which applies to all objects in the category
of protori.

Rather than a study involving specialization and classification relative to a particular morphism,
we take a holistic approach to the category of protori. The main results are a Structure Theorem
for Protori (Theorem 1), a universal resolution for a protorus (Corollary 6), a structural result on
the lattice of compact open subgroups of zero-dimensional subgroups of a protorus under a natural
locally compact topology (Proposition 6), and a lifting theorem for morphisms of protori (Theorem 2),
which facilitates a reduction to a decoupled analysis of morphisms between periodic LCA groups.

The Structure Theorem for Protori is formulated for an arbitrary protorus by applying the key
new Lemma 5, intrinsically engineered for protori, to the Resolution Theorem for Compact Abelian
Groups (Proposition 2.2, [1]), which states that a compact abelian group H is topologically isomorphic
to [A x £(H)]/T for a totally disconnected I' and a profinite subgroup A of H such that H/A is
a torus, where £(H) is the Lie algebra of H (Proposition 7.36, [2]). An immediate consequence of
the Structure Theorem for Protori is the existence of a universal resolution for a protorus G (Corollary 6):
[&XOO x £(G)]/Xw, where EXoo is a periodic (Definition 1.13, [3]), locally compact topological divisible
hull of a profinite A of a given resolution of G, Xy is a minimal quotient-divisible extension of
an intervening Pontryagin dual of G, and the concept of minimal divisible locally compact cover of G
is introduced (Corollary 7) and realized via EXOC x £(G). The canonical zero-dimensional periodic
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group A X, is an inverse limit of discrete groups, topologically isomorphic to the local direct product
of its divisible p-Sylow components, each isomorphic to a product of powers of the p-adic numbers
@p and/or the Priifer group Z(p®) (pp. 48-49, [3]). Proposition 4 details a fundamental new
result deconstructing periodic LCA groups intrinsic to protori; the result facilitates an approach
enabling one to assess the impact in situ of addition to a fixed profinite A* a torsion-free Y* with
rk Y* = dim G, effecting a parametrization of topologically isomorphic resolutions via the spectrum of
such torsion-free groups.

We would be remiss not to toot the horn a bit, emphasizing Theorem 1 gives for the first time
resolutions of a protorus G not in terms of a particular profinite subgroup in L(G) but rather in terms
of its topological divisible hull in G; further, a topological divisible hull of some A € L(G) serves merely
as an upper bound for the spectrum of resolutions associated with torsion-free subgroups spanning
the region between a dense free subgroup Za of A and a minimal quotient-divisible extension of
the Pontryagin dual of G; in the large, the Structure Theorem for Protori gives a pseudoalgorithm
for deriving a periodic LCA group and associated resolution determined by any torsion-free group
bounded below by Z, A € L(G), and above by the divisible hull of Z, in G. The Structure Theorem for
Protori not only describes the structure of an arbitrary protorus, but it provides a tool, with instructions,
for surgically deconstructing protori.

Applying the structure theory developed in Theorem 1, we derive a Structure Theorem for
Morphisms (Theorem 2) a new result stating that a morphism f: G — H of protori with duals X
and Y lifts to a product map between minimal divisible locally compact covers f |3 xfe: ng X
£(G) — gyoc x £(H). Because £(G) and £(H) are finite-dimensional real topological vector spaces
(Proposition 7.24, [3]), the Structure Theorem for Morphisms reduces the analysis of protori morphisms
to those between divisible periodic LCA groups. Because A X, and ﬁyw are divisible periodic
LCA groups topologically isomorphic to the local product of their p-Sylow components, respected
by protori morphisms, protori morphisms are an amalgam of their restrictions to p-Sylow factors,
where the action on such a factor is uniquely determined by its action on a compact open subgroup.
Thus, the Structure Theorem for Morphisms implies that deconstructing protori morphisms effectively
reduces to the analysis of morphisms between finitely generated Zp-modules. Lastly, we state without
proof that Theorem 2 generalizes the analogous result that a morphism between complex tori lifts to
a complex-linear map between complex vector spaces (Proposition 2.1, [4]).

Regarding the breakdown of sections comprising the paper: Section 2 provides the requisite
background for our study. Section 3 proves the main structure theory results. Section 4 gives
several illustrative applications involving projective resolutions, ACD groups, and morphisms of protori,
culminating in a general lifting theorem for the category of protori.

2. Background

A protorus is a compact connected abelian group. The name proforus derives from the formulation
of its definition as an inverse limit of tori (Corollary 8.18, Proposition 1.33) [2], analogous to a profinite
group as an inverse limit of finite groups. A morphism between topological groups is a continuous
homomorphism. A topological isomorphism is an open bijective morphism between topological
groups, which we indicate by ~;. Set T = R/Z with the quotient topology induced from the Euclidean
topology on R, for which Z is discrete under the subspace topology. A torus is a topological group
topologically isomorphic to T" for some positive integer n. A protorus is torus-free if it contains no
subgroups topologically isomorphic to a torus.

All groups herein are abelian and all topological groups are Hausdorff. All finite-dimensional
real topological vector spaces are topologically isomorphic to a real Euclidean vector space of the same
dimension. All references to duality refer to Pontryagin duality. Finitely generated in the context of
profinite groups will always mean topologically finitely generated. If A and B are topological groups
which each contain an isomorphic copy X* of a torsion-free group X such that X* embeds diagonally
in A x B as a closed subgroup, then we write (A x B)/X for the associated quotient. Some authors use
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the term solenoid or solenoidal group to describe protori; we use protorus to connote compact connected
abelian group and solenoid to mean one-dimensional protorus.

Pontryagin duality is a contravariant endofunctor on the category of locally compact abelian
groups under continuous homomorphism, ¥ : LCA — LCA, given by G¥ = Hom(G,T) under

continuous

the topology of compact convergence and p¥: HY — G by p¥(x) = xop for p: G — H, such that v
is naturally isomorphic to the identify functor. Each object in the category is isomorphic to some image
of the Pontryagin duality functor. Pontryagin duality restricts to an equivalence between the category
of discrete abelian groups and the opposite category of compact abelian groups (Theorem 7.63) [2]
wherein compact abelian groups are connected if and only if they are divisible (Proposition 7.5(i), [2]),
(24.3, [5]), (23.17, [5]), (24.25, [5]). Some locally compact abelian groups, such as finite cyclic groups
Z(n), the real numbers R, the p-adic numbers @p, and the adeles A are categorical fixed points of
the Pontryagin duality functor.

For a compact abelian group G, the Lie algebra £(G)

£ Hom(R, G), consisting of the set of

continuous

continuous homomorphisms under the topology of compact convergence, is a real topological vector
space (Proposition 7.36, [2]). The exponential function of G, exp;: £(G) — G given by exp(r) = r(1),
is a morphism of topological groups, and exp; is injective when G is torus-free (Corollary 8.47, [2]).
Let Gg denote the connected component of the identity and G, = exp; £(G) the path component of
the identity in G (Theorem 8.30, [2]).

The dimension of a compact abelian group G is dim G = dimg £(G). When G is a compact abelian

group, £(G) = RYMEC ag topological vector spaces (Proposition 7.24, [2]) and dim G = dimgp(Q®yz GY)
when G has positive dimension (Theorem 8.22, [2]). A sequence of compact abelian groups G; i

Ga 4 G3 is exact if ¢ and ¢ are, respectively, injective and surjective morphisms and Ker ¢y = Im ¢;

note that automatically ¢ is open onto its image and 1 is open (Theorem 5.29, [5]). For a morphism

p: G — H of locally compact abelian groups, the adjoint of p is the morphism p¥: HY — GV given
¢ ¥

by p¥ (x) = x o p (Theorem 24.38, [5]). A sequence of compact abelian groups G; — G, — Gz is exact

v

if and only if Gy »— Gy — Gy’ is an exact sequence of discrete abelian groups (Theorem 2.1, [6]).
A compact abelian group G is totally disconnected < dim G = 0 < GV is torsion & dim(Q® G"¥) = 0
(Corollary 8.5, [2]).

Torsion-free abelian groups A and B are quasi-isomorphic if there is f: A — B, g: B — A,
and 0 # n € Zsuchthat fg = n-1gpand gf = n-14; A and B are nearly-isomorphicif for each 0 # n € Z
there is a relatively prime m € Z, f: A — B, and g: B — A such that fg = m-1gpand gf = m-14.
By (Corollary 7.7, [7]), A and B are quasi-isomorphic if and only if there is a monomorphism h: A — B
such that A/f(B) is finite. It follows by Pontryagin duality that A and B are quasi-isomorphic if
and only if there is a surjective morphism ¥ : BY — A" with finite kernel. This is exactly the definition
of isogeny between protori: G and H are isogenous if there is a surjective morphism G — H with
finite kernel. Define protori G and H to be topologically nearly-isomorphic if G¥ and H" are nearly
isomorphic. Evidently from the definitions, quasi-isomorphism and near-isomorphism of torsion-free groups
and isogeny and topological near-isomorphism of protori are equivalence relations.

Let P denote the set of prime numbers. A supernatural number is a formal productn = [ p"»
peP

where 0 < n, € Z u {o0} (Section 2.3, [8]). We denote the p-adic integers Zp and the p-adic numbers @p.
Let S denote the set of all supernatural numbers. A height sequence (np),cp is a sequence of exponents
of a supernatural number. Define an equivalence relation on S by stipulating that supernatural
numbers m and n are equivalent if their height sequences are equal except for a finite number of
primes p for which my,, n, < o0. Define a type to be an equivalence class of a height sequence, denoted
T = [(np)pep]. For an element a of a torsion-free group X, the p-height of a in X, htff (a),peP,isn
if there exists 0 < n € Z such that a € p"X\p"*t1X and o otherwise. The height sequence of a in X
is (ht;((a)) pep- Define the type of a in X to be [(ht;f(a))pep]. Because any two nonzero elements of
a rank-1 torsion-free group A have the same type in A, the type of A, type(A), is the type of any
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nonzero element in A. Two rank-1 groups A and B are isomorphic if and only if type(A) = type(B),
and given n € S there is a rank-1 torsion-free group C with type(C) = [(np)pyep] (Theorem 1.1, [7]).
For a torsion-free group X, set Tsup(X) < [(sup{ht;f(a): 0 #ae X})pep)]-

An abelian group D is divisible if for every 0 # d € D and 0 # k € Z there is a d’ € D such that
kd" = d. A torsion-free group X is quotient-divisible if it contains a free subgroup F such that X/F is
a divisible (torsion) group (p. 473, [9]). Define the radius of 0 # z = (z1,...,24) € Z",0 < n € Z, to be
r(z) = ged(zy,...,zn) and set r(0) = 0. Set B"(r) = {z € Z": r(z) < r} and define a unit hemisphere
H < 7" tobe a subset of B"(1)\{0} for which each line through 0 in Q" passes through exactly one point
in H. A minimal quotient-divisible extension of a rank-n torsion-free group X with H € Z" < X < Q”",
H a unit hemisphere, is Xoo £ Y, >, X Z[%]z where Z[%] = {J_rﬁ: 0<j,leZ}.

zeH peP X (2)>0

A profinite group is an inverse limit of finite groups or, equivalently, a totally disconnected
compact Hausdorff group (Theorem 1.34, [2]); such a group is finitely generated if it contains a dense
finitely generated subgroup. Profinite abelian groups D and E are isogenous if there are morphisms
f:D — Eand g: E — D such that E/f(D) and D/g(E) are bounded torsion groups; for finitely
generated D and E, this is equivalent to E/f(D) and D/g(E) being finite. By symmetry, isogeny of
profinite abelian groups is an equivalence relation. Proceeding strictly according to Pontryagin duality,
one would conclude that torsion abelian groups A and B be defined as quasi-isomorphic if there are
morphisms hi: A — Band k: B — A such that B/h(A) and A/k(B) are bounded torsion groups; this is,
in fact, the definition for quasi-isomorphism between torsion abelian groups (see Proposition 1.8, [7]).

The development of a structure theory for protori is very much dependent on the theory of
profinite abelian groups. The profinite theory in this section is derived in large part from the standard
reference by Ribes and Zaleeskii [8]. We begin by showing that the additivity of dimension for vector
spaces also holds for compact abelian groups.

Lemma 1. If 0 - Gy — Gy, — Gs — 0 is an exact sequence of compact abelian groups, then dim G, =
dim Gy + dim Gg.

Proof. The exactness of 0 — G; — G — G3 — 0 implies the exactness of 0 — Gy — Gy — G — 0
and this implies the exactness of 0 - Q®z Gy — Q®z Gy — Q®z G;” — 0because Q is torsion-free
(Theorem 8.3.5, [9]). However, this is an exact sequence of Q-vector spaces and hence dimg(Q ®z, G,) =
dimg(Q®z G3) + dimg (Q ®z G1). This establishes the claim because, in general dim G = dimg Q®z G
by (Theorem 8.22, [2]) for dim G > 1and dim G = 0 < dimgp(Q®z GY) =0. O

Fix n € Z. Denote by u; the multiplication-by-n map A — A for an abelian group A, given by
Un(a) =naforac A.

Lemma 2. y,: G — G, 0 # n € Z, is an isogeny for a protorus G.

Proof. i, is a surjective morphism because G is a divisible abelian topological group, so the adjoint
uy : GY — GV is injective, whence [GY : u,y (GV)] is finite by (Proposition 6.1.(a), [7]). It follows that
ker y,, is finite and p;, is an isogeny. [

A profinite group is either finite or uncountable (Proposition 2.3.1, [8]). The profinite integers Zis

the inverse limit of cyclic groups of order n. Z is topologically isomorphic to || Z, (Example 2.3.11, [8])
peP

and to the profinite completion of Z (Example 2.1.6.(2), [8]), whence ZMisa finitely generated profinite
abelian group, 0 < m € Z.

For a protorus G, the Resolution Theorem for Compact Abelian Groups states that G contains a profinite
subgroup A such that G =~ AX%‘(G) where T is a discrete subgroup of A x £(G) and G/A = T4mG
(Theorems 8.20 and 8.22, [2]). In this case, the exact sequence A — G —» TdmG JQualizes to
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dim G

Z4mG . GV — AV where, without loss of generality, G¥ < Q¥™C 5o that AV = Zgﬁ c %T =~

(%)dim G, whence by duality there is an epimorphism Z4mG _, A, because 7 = (%)v (Example
2.9.5, [8]). It follows that, in the context of protori, the profinite groups of the Resolution Theorem are
simultaneously finitely generated profinite abelian groups and finitely generated profinite Z-modules.
The continuous scalar multiplication Z x A — A is componentwise: if x = (xq,...,X) € A, where
Xj = (Xj,),ep, then kx = (kxq, ..., kxi) where the scalar multiplication in each coordinate is given
by kx; = (kx;

iy )pep- applying the usual scalar multiplications for Z,, and Z(p"). A locally compact
abelian group K for which Zg is profinite for each x € K contains a unique p-Sylow subgroup, p € P
(Theorem 3.3, [3]), and a profinite group H can be decomposed uniquely into the product of its p-Sylow

subgroups (Proposition 2.3.8, [8]).

Lemma 3. The algebraic structure of a finitely generated profinite abelian group uniquely determines its
topological structure.

Proof. A profinite group has a neighborhood basis at 0 consisting of open (whence closed) subgroups
(Theorem 1.34, [2]). A subgroup of a finitely generated profinite abelian group is open if and only if it
has finite index (Lemma 2.1.2, Proposition 4.2.5, [8]). It follows that finitely generated profinite abelian
groups are topologically isomorphic if and only if they are isomorphic as abelian groups. O

In light of Lemma 3, we usually write = in place of = when working with profinite subgroups
of protori.

Set Z(p") = anZ for 0 < r € Z. We introduce the notation Z(p") & pfé =S p%Z if0<n<ow
P
and Z(p™) £ Z, for p € P. With the conventions p*Z, < 0 and p*Z; < Z, for p # g, we see that
p”iz p”Zp x J] Z]and% ;z(p")forpePand0<neZu{oo}.
p#qeP prL

Proposition 1. A nonzero finitely generated profinite abelian group is isomorphic to

m
A= n H Z(pr%’(j)) for some 0 < r1p(j) € Z U {00},
j=1pelP

pelP,1<j<m, wherer,(j) = 1p(k) < j <k, and ry(m) > 0 for some q € P.

Proof. By Theorems 4.3.5 and 4.3.6 in [8], a finitely generated profinite abelian group is isomorphic to
i ~ .
(can be represented as) [ [ Z(p™")) for some 0 < 1,(j) € Zu {w}, p € P,1 < j < m. The representation
j=1peP
is indexed by {1, ...,m} x IP. With regard to uniqueness up to isomorphism, there is no significance to
the order of the factors Z(pr%’(j)) appearing. As long as the exact same aggregate list of 1, (j) appears in
such a representation, the associated groups are isomorphic.
For each p € P, we rearrange the m exponents ry(1),...,r,(m) into descending order and relabel
the ordered exponents s,(1),...,s,(m): {rp(1),...,rp(m)} = {sp(1),...,sp(m)} wheres,(1) > s,(2) >
- = sp(m). If, after applying this ordering for each p € P, we get r,(m) = 0 for all p € P, then we
remove all Z(p" (™) for p € P, and reduce the value of m accordingly. We repeat this weaning process
right-to-left, so it terminates in a finite number of steps because 1 < m € Z. In this way, we see that,
without loss of generality, m is minimal for a representation with the given characteristics. [
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Define the standard representation of a nonzero finitely generated profinite abelian group to

m ~ . ~ .
be the unique A = [ ] Z(p™")) in Proposition 1 to which it is isomorphic. Set A =TT Z(p™ 0y,
j=1peP peP

1<j<mandA, = ﬁ 2(prp(]'))’pep_
j=1

Let D be a finitely generated profinite abelian group. For D # 0 with standard
representation A as in Proposition 1, define the non-Archimedean width of D to be widthya D = m
and set width {0} = 0. Define the non-Archimedean dimension of D to be dimya D = |{j €

{1,...,m}: Ajis infinite}|.

Corollary 1. Non-Archimedean dimension of finitely generated profinite abelian groups is well-defined.

Proof. Isomorphic finitely generated profinite groups have the same standard representation. [

A supernatural vector is any i = (ny,...,n,) € S, 0 < m € Z. Set1= ] po e S
peP
- m o .
and T £ (1,1,...,1) € S". Fix a finitely generated profinite abelian group A = [] [] Z(p*?)) as in
j=1peP
~ ~ ~ i ~
Proposition 1. We write Z(n) £ [] Z(p™) forne Sand Z(R) = [] [] Z(p"¥) for i € S™; note that

peP j=1peP
supernatural vectors fi, i’ € S™ associated to standard representations of isogenous finitely generated
profinite groups agree in each coordinate except for a finite number of primes for which the exponents

~ ~ ~ m ~
are finite. We introduce the notation nZ £ [] p™Z, forne Sand AZ™ = [] [] p"*Z, forn e S™.
peP j=1peP

Corollary 2. A nonzero finitely generated profinite abelian group A is isomorphic to i(ﬁ) where i € S™,
m = widthy, 4 A, and the sequence AZ™ ~— Z™ — Z(1) is exact.

Proof. Proposition 1 gives that a finitely generated profinite abelian group is isomorphic to Z(ﬁ)

~ m ~ 5 ~
for some 1 € S™. For each p € P, AZ" has p-Sylow subgroup [] p"*Z,. Because p%i ~ Z(p") for
j=1

1%y -
Zm 7m m 2 m p m 7 ~
0<reZu{w}weget L — 2" ~T] L2 __ ~ P = [] b = 7Z(h). O
nzm in5 ; P ; P : P
RZ 111172, =1 pl;[PP Ly =1 pl;[PP Zp =1 pep P P Ly

j=1pelP

3. Structure of Protori

For a torus-free protorus G with profinite subgroup A inducing a torus quotient, we have by
(Corollary 8.47, [2]) an accompanying injective morphism exp: £(G) — G given by exp(r) = r(1). Set

Zp = Anexpgs £(G),

Tp @ {(a,—expgla): weZp},

Ta: A x £(G) — A, the projection map onto A,

r: A x £(G) — £(G), the projection map onto £(G).

Then, tA(Tp) = Za and mr(Ty) = expg1 Za by the Resolution Theorem for Compact Abelian
Groups (Theorem 8.20, [2]). Note: K for K G will always mean closure of K in G unless explicitly
stated otherwise.

Lemma 4. If A is a profinite subgroup of a torus-free protorus G such that G/A =~ TdMG  then oa: A x
£(G) — G, given by ga(a,7) = & + exp 1, satisfies ker pp = Z4mC.

Proof. By (Theorem 8.20, [2]), ker ¢p = I'p and the projection rrr: A x £(G) — £(G) restricts to
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a topological isomorphism 7tg|r,: I'a — expglA = expg; 1Za, where exp is injective because G
is torus-free (Corollary 8.47, [2]). In addition, £(G) = RIMG and T, is discrete by (Theorem
8.22 (6) = (7), [2]). Thus, T'h = expg1 Za =~ ZF for some 0 < k < dim G (Theorem A1.12, [2]).
However, [A x £(G)]/Tp =t G is compact, so k = dimG. Thus, kergpy = T = Z4MC ag

discrete groups. [

The next lemma identifies a simultaneously set-theoretic, topological, and algebraic property
unique to profinite subgroups in a protorus which induce tori quotients.

Lemma 5. If A is a profinite subgroup of a torus-free protorus G such that G/A =TY™C then 7, = A
and Zy is closed in the subspace exp £(G).

Proof. By (Theorem 8.20, [2]), a profinite subgroup A such that G/A =; T4™C always exists and for
such a A we have G >~ Gp = %A(G) where 'y = {(exps7,—7) : r € £(G),expsr € A} is a free
abelian group and rankI'y = dimG = rank [A nexp; £(G)] by Lemma 4 and the fact that exp
is injective when G is torus-free (Corollary 8.47, [2]). We have 75(Ty) = Zy € A = Zp, s0 Ty is

AX {O}+FA
I'a

a subgroup of A’ x £(G). Because A — c G, is a topological isomorphism onto its image,

A — % < Gy is as well. Since T’ is discrete in A x £(G) (Theorem 8.20, [2]), it is discrete
in A’ x £(G), so Gy = [A' x £(G)]/Ta is a Hausdorff subgroup of G,. However, (A\ A') x £(G) is
openin A x £(G) and the quotient map ga: A x £(G) — G, is an open map , so a[(A\ A') x £(G)] =
[(A\A') x £(G) +Tp]/Ta = Ga\ Gy, is open in Gy. It follows that G, is a compact abelian subgroup of

Gy _ [AxE&(G)/Ta ~ AXL(G) _ A
Gpand g = [[A’>><<£(G)]]/FAA =t A’>><<£(G)) Y

Gy — Gp — &. Now, dimA = 0 = dim(A/A’) = 0 and we know A/A’ is compact Hausdorff,
so A/A' s totally disconnected (Corollary 7.72, [4]). Thus, (A/A")" is torsion (Corollary 8.5, [2]).
By Pontryagin duality, (A/A’)” embeds in the torsion-free group Gx, so (A/A’)” =0and A = A’ = Zj.

Lastly, if x lies in the closure of Z, in exp; £(G) under the (metric) subspace topology, then
x € exp; £(G) and x is the limit of a sequence of elements of Z,. However, A is closed, so x €
A nexpi £(G) = Zp. This proves that Zj is closed in the subspace exp; £(G). O

by (Theorem 5.35, [5]). Thus, there is an exact sequence

Define L(G) = {A < G: A a profinite subgroup such that G/A is a torus} for a protorus G.
In Proposition 2, we show that L(G) is a lattice with + as join and n as meet; in particular, L(G)
is directed upward and downward. We then prove a number of useful closure properties for L(G),
which are applied for the remainder. However, first a remark regarding some facts which we use freely
going forward without further mention.

Remark 1. (i) By (Theorem 8.46.(iii), [2]), a path-connected protorus is a torus. Thus, if a protorus
G has a profinite subgroup D and G/D is the continuous image of a torus, then automatically
D € L(G). (ii) A profinite subgroup D of a torus H is finite: H/D is a path-connected protorus, whence
a torus of the same dimension as H by Lemma 1. By duality, (H/D)Y and H" are free abelian with
rk(H/D)V =rkHY and (H/D)Y »— HY »~» DV exact, so DY, whence D, is finite.

Proposition 2. For a torus-free protorus G, L(G) is a countable lattice under  for meet and + for join.
L(G) is closed under:

preimages via py, 0 # n € Z.

finite extensions.

scalar multiplication by nonzero integers.
join (+). and

meet (N).

Gl L=
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Given any A, A’ € L(G), there exists 0 < k € Z such that kA = N'. If N’ < A, then [A: A'] < o0.

Proof. Each A € L(G) corresponds via Pontryagin duality to a unique-up-to-isomorphism torsion
abelian quotient of X = GV by a free abelian subgroup Z, with rkZ, = rkX. Because X is countable
and there are countably many finite subsets of a countable set (corresponding to bases of Z,s,
counting one basis per Z,), it follows that L(G) is countable.

1. un: G — G has finite kernel by Lemma 2 so its restriction y#, 'A — A has finite kernel
for A € L(G). Since ker i, and A € L(G) are zero-dimensional compact abelian groups, it follows
from Lemma 1 that the compact Hausdorff subgroup u,, 'A is zero-dimensional, whence profinite.
Because the natural map G/A — G/u;, ' A is surjective and G/A is a torus, it follows that G/u;, 1A is
path-connected, whence G/u;,” 1A is a torus (Theorem 8.46.(iii), [2]) and Uy IAeL(G).

2. If A e L(G) hasindex 1 < m € Z in a subgroup D of G, then D is the sum of finitely many copies
of A, so D is compact. Thus, A € D < u;,'A € L(G) by 1, so D is profinite. The natural morphism
G/A — G/D is surjective and G/A a torus, so D € L(G).

3. pjla: A — jAis surjective with finite kernel by Lemma 2, so jA is profinite. G is divisible so
#j: G — G is surjective, thus inducing a surjective morphism % - ng' It follows that jA € L(G).

4. Addition defines a surjective morphism A x A’ — A + A’. By Lemma 1, it follows that A x A/,

whence A + A’, is profinite. Because the natural map % — 55 is surjective, A + A’ € L(G).

A+A
. / . .
5. The kernel of & — AfA, is 244 a zero-dimensional subgroup of § by Lemma 1.
. . / / . . . . .
As a zero-dimensional subgroup of a torus, 2K =~ 8 is finite, so there is a nonzero integer

such that IA’ € A. Lemma 1 gives that A n A’ is zero-dimensional, whence profinite. We know by 3
that /A’ € L(G), thus the natural map l% - ﬁ is a surjective morphism, whence A n A’ € L(G).

It follows from 4 and 5 that L(G) is a lattice. It remains to show that, if A’ € A, then [A: A'] < .
Arguing as in 5, there exists 0 < k € Z such that kA < A’. A is a finitely generated profinite abelian
group, thus [A: A'] < [A: kA] < 0. O

Corollary 3. Elements of L(G) are mutually isogenous in a torus-free protorus G.

Proof. Suppose that A, A; € L(G). We proved in Proposition 2 that there exist nonzero integers k
and ! such that kA; € Ay, Ay © Ay, [A2: kAq] < o0, and [A1: [A;] < . The multiplication-by-k
and multiplication-by-/ morphisms thus exhibit an isogeny between A and A;. O

Lemma 6. Non-Archimedean dimension of finitely generated profinite groups is invariant under isogeny.

Proof. If two such groups, say D and D’ are isogenous, then so are their standard representations,
say Ap and Ap/, as in Proposition 1. Multiplying both groups by the same sufficiently large
integer, say N, produces isogenous groups ND and ND’ with dimps(ND) = widthya(ND)
and dimuya (ND') = width,a(ND’). By Corollary 2, ND and ND’ have standard representations,
say Z(ﬁ) and Z(fi/) for some supernatural vectors #i and @’. If Z(ﬁ) and Z(ﬁ/) have distinct

non-Archimedean dimensions, then one of the two has an extra coordinate k for which there are
factors Z(p“kp) for infinitely many primes p and/or factors isomorphic to one or more copies of
some 2q for some prime g; this is impossible if 2(?1) and Z(ﬁ') are isogenous because supernatural
vectors associated to standard representations of isogenous groups can differ for any given coordinate
at only a finite number of primes and only at those primes having finite exponents. Thus,
the definition of non-Archimedean dimension and its preservation under multiplication by N give that
dimpa D = dimpa (ND) = dimpa Z(#) = dimpa Z(R') = dimpa (ND') = dimpa D'. O

Define the non-Archimedean dimension of a protorus G to be dimyp G = dimpa A for a profinite
subgroup A of G for which G/A is a torus.
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Corollary 4. Non-Archimedean dimension of protori is well-defined.

Proof. Elements of L(G) for a protorus G are isogenous by Corollary 3, so the result follows by
Lemma 6. [J

A protorus G with profinite subgroup A satisfying G/A =~ T9™C will always satisfy dimpp G =
dimppa A < widthya A < dim G; and for G torus-free, always rk Zy = dim G.

A protorus G is factorable if there are non-trivial protori Gl and Gp such that G = Gy x Gy, and G
is completely factorable if G = ]_[ G; where dim G; = 1,1 < i < n. A result by Mader and Schultz [10]

i=1
has the surprising implication that the classification of protori up to topological near-isomorphism

reduces to that of protori with no one-dimensional factors.

Proposition 3. If D is a finitely generated profinite abelian group, then there is a completely factorable protorus
G containing a closed subgroup A = D such that G/ is a torus.

Proof. First, note that the finite cyclic group Z(r), 0 < r € Z, is isomorphic to the closed subgroup

% of the torus %, so it follows that (1/# is a profinite subgroup of % inducing a torus quotient.

Next, by Proposition 1 there is no loss of generality in assuming D = Z("’) for some i € S where
Aj(m) # 0 for 1 < j < m. If Aj(n) is finite then it must be isomorphic to Z(r;) for some 0 < r; €

Z; in this case, set G; £ § and E; ¥ (1/;) . If Aj(1i) is not finite, then G; = [A;(H) x R]/Z(1,1) is

a solenoid (1- dlmensmnal protorus) containing a closed subgroup E; = A]( 1) satisfying G;/E; = T

(Theorem 10.13, [5]). It follows that G = G; x - - - x Gy, is a protorus containing the closed subgroup
A = Ey x -++ x Eyy > D and satisfying G/A =~ T". O

Corollary 5. If D is a finitely generated profinite abelian group with widthya D = dimpa D, then there is
a completely factorable torus-free protorus G containing a closed subgroup A = D such that G/A is a torus.

Proof. In this case, no Aj(n) factor is finite cyclic in the proof of Proposition 3. [

An arbitrary topological group K is compactly ruled if it is a directed union of compact open
subgroups (Definition 1.4, [3]). An abelian compactly ruled group satisfies Zg is compact for each
g € K (Corollary 1.12, [3]). A locally compact abelian group K is periodic if it is totally disconnected
and Zg is compact for each ¢ € K (Definition 1.13, [3]). Abbreviate totally disconnected locally
compact tdlc and locally compact abelian LCA. Every element g in a periodic LCA group K satisfies

Zg =11 Z( *) for some s € S and there corresponds a Z-module structure on K with continuous scalar
peP

multiplication ZxK—K compatible with the unique p-Sylow decomposition of K (pp. 4849, [3]):

z-h = (z- h)pep = (2)pep - (1) pep for z € Zandhe 7g (Proposition 4.21, [3]). A periodic LCA group

Ais a topological divisible hull of a profinite group A if A is an algebraic divisible hull of A with

the unique group topology for which an isomorphic copy of A is an open subgroup (Theorem 3.42, [3]).
For a torus-free protorus G and a sublattice L < L(G) satisfying (| L = 0, set

° AL o Z A.
w A€eL
° VL = Z ZA = U ZA.
AeL AeL

o I ¥ {(a,—expzla):ae Vi)

Proposition 4. If G is a torus-free protorus and L is a sublattice of L(G) satisfying (L = 0, then the group
Ar topologized by taking L to be an open neighborhood basis at 0 is a periodic Z-module with Zg 7.g for each
g€ Ap, and Ay x £(G) is locally compact with closed subgroup I'y. The identity map to the subspace topology
on KL is continuous.
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Proof. L(G) is closed under finite sums and directed upward by Proposition 2, so Ap = U A.
AeLl
The elements of L are finitely generated profinite abelian groups with [D;: D; n D] < o for

i = 1,2 for any Dq,D; € L, and thus are compact in the topology defined on A} by declaring
L to be a neighborhood basis of 0. This Hausdorff topology ((|L = 0) is therefore compactly
ruled, whence locally compact (Proposition 1.3, [3]). It follows that AL x £(G) is locally compact.
By Proposition 2, L is a countable neighborhood basis at 0 of compact open subgroups, and so A is

metrizable (Theorem 8.3, [5]) and totally disconnected (Theorem 1.34, [2]). Thus, A 1 is periodic, whence
Zg = Zg foreach g € A € L and Ay is a Z-module with continuous bilinear scalar multiplication
(Proposition 4.22, [3]). To see that I' is closed, suppose that {(a;,7j)}j>1 = I'L converges to some
(B,s) € Ar x £(G). Then, p and {a;};>n lie in some Ag € L for some 1 < N € Z. We can
assume without loss of generality that N = 1. Since r; — s € £(G), continuity of exp; implies
—aj = expg(rj) — expg(s) = —B € Ao nexpg£(G) = Zp, = Vi, whence (B,s) € T'L. Next,
by (Theorem 8.22, [2]), a basic open neighborhood of G can be taken to have the form A + exp B for
A € L and B a Euclidean open ball about 0 in £(G); then A is an open subset of A; under its locally

compact topology, and A is contained in the open subset (A + exp; B) n Ap of A under its subspace
topology, so the identity map is continuous. O

The group of path components of a protorus G is 719(G) £ G/ exp; £(G). The next proposition

describes properties of substructures of a protorus, to be fine-tuned in Theorem 1.

Proposition 5. If G is a torus-free protorus with no factors = QV, then

1. torG tor KL( G)/ AL( c) is divisible, and Vy ) is dense in G.

2. Byg/b= (Q/Z)d‘mcfor each A € L(G) and G/AL ~ (R/Q)dimG,
3. A =t lim (AL (G)/) where AL (G)/D is a discrete groupfor each A € L(G).
AeL(G)

4. expg £(G), the path component 0 in G, is divisible and torsion-free.
5. m(G) = Ext(GY,Z) = AJZ for each A € L(G).

Proof. 1. If x e Gand nx € KL(G) for some 0 # 1 € Z, then nx € A for some A € L(G),so x € u;; 'A
A Ap(c) by Proposition 2. Thus, G/ KL (G) 1s torsion-free whence tor G = tor KL( c)-Hye &L(G) and 0 #
k € Z, then because G is divisible there is a z € G such that kz = y; as we have shown this implies
zZ€E AL( G); this proves that AL(G) is divisible. Because tor G is dense in G (Corollary 8.9, [2]), for VL(G) to

be dense in G it suffices to show that Vy () is dense in AL( G) VL = Y72 Y Th= A= AL(G)
AeL A€l A€l

2. Let A € L(G). By 1, G/AL(G) ~ (G/A)/(AL(G)/A) is torsion-free so G/A =~ T4mG whence
tor(G/A) < Ay )/A. Conversely, if x € Ay ), then x € A’ for some A’ € L(G), whence kx € A for some
0 # k € Z by Proposition 2; thatis, x + A € tor(BL(G)/A). Thus, KL(G)/A = tor(G/A) = tor(T4mG) —
(Q/Z)mC 50 G/Ay ) = THmC /(Q/Z)HmC = (R/Z)4mC /(Q/Z) mC = (R/Q)ImE,

3. Under its locally compact topology, Ay () is periodic (Proposition 4), so the result follows by
(pp. 4849, [3]).

4. Theorem 8.30 [2], gives that exp; £(G) is the path component of 0. G is torus-free,
so the corestriction exp;: £(G) — exp £(G) is an isomorphism of abelian groups (Corollary 8.47, [2]).
Thus, exp; £(G) is divisible and torsion-free because £(G) = RIMG js (Propositions 7.25 and 7.36, [2]).

5. (Theorem 8.30, [2]) and (Corollary 8.33, [2]). O

~

We define an apparatus upon which our proof of Theorem 1 depends. The setting involves
an n-dimensional torus-free protorus G. For such G, exp: £(G) — G is injective (Corollary 8.47, [2])
and R" =; £(G) (Proposition 7.24, [2]). We argue relative to a fixed A* € L(G) and its dense rank-n
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free abelian subgroup Zx+ = A* nexp; £(G) (Lemma 5). There exists an algebraic isomorphism
Opx: R" — exps £(G) with Zpsx = Opx (Z") < 0p+(Q") < exps £(G) = 0% (R"), where 05+ (Q") =
{w € exps £(G): kw € A* for some 0 # k € Z}.

We fix a unit hemisphere H and introduce a parameter Y to represent an arbitrary rank-n
torsion-free abelian group with H  Z" < Y < Q"; note that Ox« (h)/p ¢ Zpx foranyhe Hand p € P.
With A* € L(G), 0p+: R" — exp; £(G), and a unit hemisphere H — Z" fixed, we itemize pertinent
background information for Theorem 1:

(@) Xisafixed value of Y for which Z" — X — X/Z" dualizes A* — G — G/A*.
(b) Ay = A* +Z0xx(y) € L(G) and Zy, = Zpx + ZOpx(y), y € Y (Proposition 2), Ay & ZY Ay.
ye
(© Y*Z0r(Y) = Zysz and Ly = { % Ay:Y' <Y, Y finite} U {A e L(G): A = A*} < L(G).
ye yey’

(d) sYeSwhere {sf(p)} pep is the height sequence in Y of z € H.

(e) s}{mo(z)“':"f IT p*, 2P = {% JLeZ, ] s}ifnoo(z)}, and Y = ZHszi%.
ze

0<sY(p)<oo '
() sh(z) & []p® ze0 & {%: j,eZ, s (2)},and Yoo & Yz .
plsY zeH

(g) Yi- and Yy, are quotient-divisible: Yi© /Z" and Yo /Z" are divisible.

Theorem 1. (Structure Theorem for Protori) A protorus is topologically isomorphic to T" x (Q¥)¥ x G for
some n-dimensional protorus G with no factors = T or Q" and nonnegative integers r,k,n where the three factors
are uniquely determined up to topological isomorphism. In view of the definitions and notation above— with
fixed A*, fixed unit hemisphere H, fixed X =~ GV, and arbitrary Y with H c Z"" < X,Y < Q"—the structure
of G is as follows:

1. Ly isalattice, VI, = Y* = gy nexps £(G),and 'y, =Y.
2. Ay, = Ay has a periodic LCA topology, and Y* is dense in G < Y has no free summands.
3. g >~ AY%S(G); in particular, G = AXXTS(G) where X* %X ~ GV isAdense in G.
4. Ax,, isatopological divisible hull of A* and tor G = tor Ay () = tor Agn.
~ loc ~
5. Axy, =t [[((Bx,)p, B)) = lim (Ax, /A); XY= im(G/A); and X=lim (G/A)Y.
peP AeLy,, A€Ly A€Ly

Proof. Let K be a protorus. By Corollary 3.8.3 in [9], K¥ = Z @ C where Z is free abelian and C is
a subgroup with no free summands which is uniquely determined by KV . By Corollary 4.2.5 in [9],
C = R® D where D is a torsion-free divisible group uniquely determined by C, and R is unique up to
isomorphism. The first statement of the theorem thus follows by duality. The remainder of the proof
involves the n-dimensional protorus G with no factors =; T or Q".

1. Y* is the directed union of free abelian groups F with Zyx < F < Y*, and F/Zu« is finite
for such F. Hence, A < F € L(G) by Proposition 2, whence Ar nexp; £(G) = Za, = F (Lemma 5)
and Ar € Ly for such F. Thus, Ly = {Ap: Zpx < F € Y, F free abelian } U {A € L(G): A € A*}is
a lattice.

In addition, Ay A expg £(G) = (X Ay) nexpg £(G) = U By nexpg £(G)) = U Zy, =
yey yey yey -

2. Za, = Y*. By Lemma 4, Y* = Vi, and the closed subgroup I';, = {(lx,—expc_;1 w): e Vi }
yey

is equal to {(«, — expg1 a):weY* Yt =Y.

2. By definition, KLY = A= XN = Ay, and N A = {0}, so Ay has a periodic
A€Ly yey A€eLy
LCA topology by Proposition 4. The morphism exp is continuous and injective (Corollary 8.47, [2])

with exp; £(G) dense in G. Thus, Y* is dense in G < Y* is dense in exp; £(G) < expgl(Y*) is
dense in L(G) because the map ¢: A* x £(G) — G given by @(«,7) = & + exp; r is a local isometry
(Proposition 2.14, [1]). However, expgl(Y*) isdenseinL(G) & Y = GA_*l expg [expgl(Y*)] is dense in
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R" < Y has no free summands.
3. We produce a topological isomorphism from a “classical” resolution of a protorus to a new

resolution independent of any particular A € L(G). The group M is LCA by 1 and 2. In the proof
of Lemma 4, we found that a subset U of Ay is open if and only 1f UnAisopeninAforall A e Ly,
thus the inclusion map A* x £(G) — Ay x £(G) is a morphism of LCA groups. Define 7y : % —

AY%S(G) to be the morphism induced by inclusion.
Y

We get n7[(a,7) + Tpx] = (x,7) + T, = 0 = (a,7) € [A* x &(G)]nTy, =1 = —expglzx so
a = —expsr € A* nexps £(G) = Zpx, whence («,7) € Tpx; since also I'px < I't,, and I'r, is closed,
it follows that 7y is a well-defined injective morphism.

Next, let (B,s) € Ay x £(G). By 1, B € Ap = F for some free abelian F with Zyx < F <
Y* = Vi, and Ar nexp; £(G) = F, so that B = § +y for some § € A* and y € Y* < exp; £(G).
Thus, (y, — expgl y) eIy, and (B,s) + I, = (6+y,s)— (v, — expgl y)+Ty, = (6,5 + expgl y)+
I, =ny[(6,s+ expg1 y) + I'a#]. This proves that 7y is surjective, whence a topological isomorphism

by the open mapping theorem (Theorem 5.29, [5]). Thus, G = w via the diagonal embedding of
Y >~ Y*,

4. Let 0 # x € Xo. Then, Xy is not p-divisible at x if and only if the unique zx € Qx n H
has p-height 0 in X. This is equivalent to Qx n X = Z(p)zx, where Z(p) is the localization of Z at p.

However, P QZQXJ”Z ~ X, s0A* = [] (W) v and A* is p-divisible at the point (6;),ecy with
zeH zeH

0, = 0forz # zy and J,;, = 1 where Z(6;)zey = (QZmZiXJFZ) , making appropriate identifications.
If X is p-divisible at 0 # x € Xq, then (J;).ep has p-torsion or (Z(6;)zen)p = Zp; but Ox% (zx) € Xoo
is p-divisible so (d;),ey is p-divisible in AXOO according to the topological isomorphism #x_ in 3.
By construction, X%, is the minimal quotient-divisible torsion-free extension of X* in G, so ﬁxw is
the minimal divisible subgroup of G extending A*.

For the last assertion, tor G = tor AL( ) by Proposition 5, and this is the same as tor AQn by 2.

loc
5. AXoc =t [[((Bxy,)p Ap) =¢ Lim (AXOO /A) is an application of (Theorem 3.3, [3]) to the divisible
peP AeLy,,

periodic LCA group Ay . For the remaining limits, note that in 3 we saw how the lattice Ly allows
us to uniquely determine the topology on Ay and in turn an associated resolution of G. In the range

X <Y < Q" we get aresolution w where Y* is dense in G because G is torus-free. In particular,
the topology on the compactly ruled Ax is coherent with the collection Ly and it follows Ay is
homeomorphic to the the topology on the direct limit of Ly where the upwardly directed partial
order of the lattice Ly is preserved. One readily verifies that the topology on the direct limit gives
a topological group and our homeomorphism is a topological isomorphism with the tdlc group 3 X-
In parallel, the lattice Mx = {Zx: A € Ly} is isomorphic to the lattice Ly, thus the group X* i
isomorphic to the direct limit of Mx. The collection {A —» G — G/A: A € Lx} of exact sequences
dualizes to the collection of exact sequences {Zx — X — X/Zp: Zp € Mx}. We conclude that
X=lim (G/A)Y and, by duality, XV=¢lim(G/A). O
AeLyx AeLyx

The Structure Theorem for Protori has a number of immediate useful consequences, beginning
with the following corollary. Recall the notation A p introduced for the unique p-Sylow subgroup of
the p-Sylow decomposition of a periodic LCA group A (Theorem 3.3, [3]).

N ~ loc
Corollary 6. If G is a torus-free protorus, then G = A’“%Q‘(G) where Ax, =t []((Ax,)p, Dp) is
peP

a topological divisible hull of each A € Lx and (ﬁxw)p Q DX Z(p®)sr for some 0 < rp,5,€Z, peP.

Proof. All statements follow directly from Theorem 1 and (Theorem 3.3, Proposition 3.42, [3]). O
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Ax., x£(G)
Xog

For a torus-free protorus G, define of Corollary 6 to be a universal resolution of G;

the terminology is justified by the fact that BXoo is a topological divisible hull of every A € Ly
and previously the only resolutions of protori known to exist were those given in terms of a single
element of L. Recall the notation connotes the closed diagonal embedding X, — X% — FLXOO c

~ G) . . . . ~
Ax_ x £(G). Note that AXLC( is a resolution of G in terms of the canonical subgroups A ,
Xeo (G). Apccynexpg £(G) groups Ay,(g)

generated by all zero-dimensional subgroups (see the proof of Proposition 7), and the path component
of 0, exp; £(G), where A i) and expg £(G) have their non-locally-compact subspace topologies,

and AL(G) nexpgs £(G) = Q4MG (1 in Theorem 1).

Corollary 7. If G is an n-dimensional torus-free protorus and Y is torsion-free with Z" < Y < Q", then the map
py: Ay x £(G) — G defined by ¢y(a,r) = a+expgr is a local isometry which is open, continuous,
and surjective.

Proof. For each A € L(G), the map ¢p: A x £(G) — G given by ¢a(a,7) = « + exp 7 is a local
isometry that is open, continuous, and surjective [1, Proposition 2.2]. By 3 in Theorem 1, the map
@y has kernel I't, and induces w =t G, whereY — Y* - Ty, < Ay x £(G) is the diagonal
embedding. However, Ly is a neighborhood basis at 0 of compact open subgroups for the locally
compact topology on Ay by Proposition 4, and ¢y agrees with ¢, for each A € Ly, so ¢y is a local
isometry which is open, continuous, and surjective. [

Define ﬁxw x £(G) to be a minimal divisible locally compact cover of G. The terminology is
justified by the fact that KXOO is a topological divisible hull of each A € Ly, the product is locally
compact and divisible, and the map ¢x, : A X, X £(G) — G is open, continuous, and surjective by
Corollary 7.

Corollary 8. With the apparatus of Theorem 1 in place for an n-dimensional torus-free protorus G,
set My = {F: F is a free rank-n subgroup of Y with F < Z" < Y or Z" < F < Y}. Then, Ly — My
given by A — Gg*l(ZA) is bijective and Y* = 3 Za.

AGLY

Proof. This follows directly from 1 in Theorem 1, 5 in Theorem 1. O

Remark 2. (i) Suppose G is as in Corollary 8 with Y = Q". Then, Ly = L(G) and My = Mg« = {F: F
is a free rank-n subgroup of Q" with F < Z" or Z" < F} with Y* = AL(G) nexps £(G) = Q".
(ii) Suppose that F is a free rank-n subgroup of AL(G) nexp; £(G) such that F & Zpx and Zy+ & F.
LetZ" Y < Q" with F € Y*. Then, F ¢ My and F ¢ L(G).

Proposition 6. (Protori Lattices) With the apparatus of Theorem 1 in place for an n-dimensional torus-free

protorus G, A* € L(G) with standard representation 1_[ 11 Z( (), z" < Y < Q", and m € S with

j=1peP
m, = sup{ht;,/(z)}, Ly is isomorphic to the lattice of compact open subgroups of the periodic group
zeH
loc m
D= H(Dp, p), where D, < HDP() » & ]_[ p(7);
peP j=1
o Dy(j) = Qp andefZ ifsp(j) = OO'

. Dp(j) = Z(p*) and C (]) = p_SP p/Z sz sp(j) < ooand my = ©;
o Dy(j) =p V"™Z,/Zy and C, = p~*Z /Zp if 0 < sp(j) +my < o0;

C < J[ Cpisopen in D; D/C = én} {[ 0 @ Z(pso)] ® [ @ p=0 mPZ/Z]}

peP j=1 sp(j)+mp=00 sp(j)+mp<oo
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discrete; and the dual of the lattice Ly is isomorphic to the lattice of finite subgroups of D/C.

Proof. All periodic LCA groups decompose as a local product as indicated for D by Braconnier’s theorem
(Theorem 3.3, [3]), thus it suffices to determine the p-Sylow components D, and Cp. In the proof of
Theorem 1, it became evident that the mitigating factor determining the structure of Ly is the supremum
of the p-heights in Y of elements in H for each p € P. A* =~ X/Z™ is the base upon which Ay is formed
via the topological isomorphism #y of 3 in Theorem 1. The last statement is an application of Pontryagin
duality to D and its compact open subgroups (Lemma 3.82, [3]). O

Remark 3. (i) If dim G > 1, then the lattice of closed subgroups of the protorus G, also called the Chabauty
space S(G), is equal to the lattice of closed subgroups of Ap ), which is distributive only when G is

a solenoid (Theorem 5, [11]). (ii)) S (&L(G)) is homeomorphicto [] S(A) (Proposition 1.22, [3]).
AeL(G)

4. Applications

Protori structure in place, several applications related to morphisms of protori and otherwise follow.

Lemma 7. A morphism fx: Ag — Ay with f(Zp,) = Za,, for some torus-free protori G, H and Ag € L(G),
Ay € L(H) extends to an epimorphism f: G — H.

Proof. The morphism ¢g: Ag x £(G) — G of the Resolution Theorem (Proposition 2.2, [1]) is an open
map and Zp, =t expg1 A = ker gg. Let V = R¥, 0 < k € Z, denote a real vector space satisfying
£(G) = spanR(expE1 A)@ V. Then, G 2 ¢g(Ag x V) = Ag x V. The compactness of G implies k = 0,
so expgl Zp = expg1 A spans £(G).

Continuity of fo with f(Za.) = Za,, ensures that fj is surjective and dimg £(G) = rkZs, >
tkZy, = dimg £(H). Define fgr: £(G) — £(H) by setting fR(expgl(z)) = expgl(f(z)) for z €
Zy,, and extending R-linearly. Then, fo x fr: Ag x £(G) — Ay x £(H) is an epimorphism with
(fa x fr)(Tg) = Ty, so fa x fr induces an epimorphism f: AGT—S(G) - A”T-f’(H)
induces an epimorphism of protori f: G — H with f[y,= fa. O

and f in turn

A projective resolution of a protorus G = Gy is an exact sequence K — P — G where P is
a torsion-free protorus and K is a torsion-free profinite group. The following result is proven in
the narrative immediately following [2, Definitions 8.80].

Corollary 9. A protorus has a projective resolution.

Proof. Let G be a protorus and set r = dim G. By the Resolution Theorem, G has a profinite subgroup
inducing a torus quotient, which we can take without loss of generality to be Z(1i) for some ii € S™,
m = width, 4 Z(R). Identifying Z" in the natural way as a subgroup of 7', an isomorphism of free
abelian groups Z" — Zi(ﬁ) extends by continuity to an epimorphism fx: Z’—»Z(ﬁ), thus inducing
an exact sequence K — 2’—»2(?1) where K is torsion-free profinite. We have (2’ x R")/diag(Z") =
P(G) = (Q®GV)V. By Lemma 7, fa induces a projective resolution K — [ZV x £(P(G))/Tp) —
[Z(&) x £(G)]/Tg. O

A completely decomposable group is a torsion-free abelian group isomorphic to the dual of
a completely factorable protorus. An almost completely decomposable (ACD) group is a torsion-free
abelian group quasi-isomorphic to a completely decomposable group. The Pontryagin dual G of
an ACD group is distinguished in the setting of protori by its uniqueness up to topological isomorphism
being dependent on a finite factor of an element of L(G).
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Corollary 10. If G is a protorus with dim G = dimy G, then GV is an ACD group.

Proof. Let Ag € L(G). Multiplying A¢ by a sufficiently large N € Z effects widthna NAG =
dimpp NAg. Since NG = G, we can assume without loss of generality that widthys Ag = dimpa Ag =
dim G. Let Ay denote the standard representation for Ag and ¢: A — Ap an isomorphism with
P(Zpg) = Zay, & Zey @ - - ® Zegim g Where ej = (0,...,0,1;,0,...,0), 1; = (1jp)pep, 1 < j < m.
By Corollary 5 there is a completely factorable protorus H with dimH = dim G and Ay € L(H).
By Lemma 7, there is an epimorphism ¢: G — H extending . Symmetrically, there is an epimorphism
f: H— G extending 7 £ ¢~': Ay — Ag. It follows that ¥ : HY — GY and ¥: G¥Y — HY are
monomorphisms. By [7, Corollary 6.2.(d)], G¥ and H" are quasi-isomorphic. It follows that H" is
completely decomposable and GY is an ACD group. O

We return to the analysis of morphisms of protori. There is a functor £ from the category
of topological abelian groups to the category of real topological vector spaces [2, Corollary 7.37]:
for a morphism f: G — H of topological abelian groups, the map £(f): £(G) — £(H) given by
£(f)(r) = f or is a morphism of real topological vector spaces satisfying expy o £(f) = f o exp,.

Proposition 7. A morphism G — H between torus-free protori restricts to morphisms AL(G) — KL(H),
exp; £(G) — expy £(H), and a continuous map Xg — Xg.

Proof. Let D be a profinite subgroup of G. If A € L(G), then A + D is profinite because it is compact
and zero-dimensional: the addition map A x D — A + D is a continuous epimorphism and the kernel
K is closed (whence profinite), so we get an exact sequence K — A x D — A 4+ D, whence dim(A +
D) = dim(A x D) —dimK = dimA + dim D — dim K = 0 by Lemma 1. The natural map G/A —
G/(A + D) is surjective, so A+ D € L(G). Hence, D €« A+ D < KL(G). We conclude that KL(G) =
>{D: D a profinite subgroup of G}, and similarly for KL( H)- In particular, XL(G) contains all profinite
subgroups of G; similarly for KL( H)-

Let f denote a morphism G — H. If A € L(G), then K = ker f n A is profinite, so A/K = f(A)
is profinite. Thus, f(A) < &L(H). It follows that f(gL(G)) c AL(H). In addition, expy o £(f) =
f oexp implies that flexp; £(G)] < expy £(H). Lastly, Theorem 1 gives that f(Xg) = f(&L(G) N
exp; £(G)) € f(Arg)) N flexpg £(G)) € Apy nexpy £(H) = Xp. O

Remark 4. The continuous map X — Xp in Proposition 7 is not, in general, a homomorphism of
torsion-free abelian groups.

Proposition 8. For a morphism f: G — H of torus-free protori there exist Ag € L(G), Ay € L(H) such that
f lifts to a product map fla, x £(f): Ag x £(G) — Ay x £(H).

Proof. Let Ag € L(G). By Proposition 7, f(gL(G)) c EL(H). By Theorem 1, KL(H) = |J A.EachAe
AeL(H)

L(H) is open in EL( H) because the intersection of any two elements of L(H) is an element of L(H)
with finite index in any other element of L(H) containing it (Proposition 2.1.2, [8]). By Proposition 7,
flAg) < KL(H). Because f(Ag) is compact and the elements of L(H) are open in AL(H), there are
finitely many elements of L(H) which cover f(Ag); let Ay € L(H) denote the sum of these elements.
Then, f(Ag) < Ap. Since expyo £(f) = foexpg, it follows that f |5, x £(f): Ag x £(G) —
Ay x £(H)isaliftingof f: G - H. O

A morphism of torus-free protori lifts to one between the minimal divisible locally compact covers:

Theorem 2. (Structure Theorem for Morphisms) A morphism f: G — H of torus-free protori with duals X
and Y lifts to a product map f |3 xfe: Ax, x £(G) — Ay, x £(H).
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Proof. This follows from Proposition 8 because A X = 2 A O
AELXm
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