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Abstract: A Structure Theorem for Protori is derived for the category of finite-dimensional protori
(compact connected abelian groups), which details the interplay between the properties of density,
discreteness, torsion, and divisibility within a finite-dimensional protorus. The spectrum of
resolutions for a finite-dimensional protorus are parameterized in the structure theorem by the dual
category of finite rank torsion-free abelian groups. A consequence is a universal resolution for
a finite-dimensional protorus, independent of a choice of a particular subgroup. A resolution is also
given strictly in terms of the path component of the identity and the union of all zero-dimensional
subgroups. The structure theorem is applied to show that a morphism of finite-dimensional
protori lifts to a product morphism between products of periodic locally compact groups and real
vector spaces.
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1. Introduction

All compact groups herein are finite-dimensional and all torsion-free groups have finite rank.
We carry out a study of the structure of compact, connected abelian groups, or protori. A practical new
perspective on the category of torsion-free abelian groups, from the point of view of the dual category
of protori, emerges organically from a detailed analysis of the algebro-topological structure of protori.
A Structure Theorem for Protori (Theorem 1) is derived which applies to all objects in the category
of protori.

Rather than a study involving specialization and classification relative to a particular morphism,
we take a holistic approach to the category of protori. The main results are a Structure Theorem
for Protori (Theorem 1), a universal resolution for a protorus (Corollary 6), a structural result on
the lattice of compact open subgroups of zero-dimensional subgroups of a protorus under a natural
locally compact topology (Proposition 6), and a lifting theorem for morphisms of protori (Theorem 2),
which facilitates a reduction to a decoupled analysis of morphisms between periodic LCA groups.

The Structure Theorem for Protori is formulated for an arbitrary protorus by applying the key
new Lemma 5, intrinsically engineered for protori, to the Resolution Theorem for Compact Abelian
Groups (Proposition 2.2, [1]), which states that a compact abelian group H is topologically isomorphic
to r∆ ˆ LpHqs{Γ for a totally disconnected Γ and a profinite subgroup ∆ of H such that H{∆ is
a torus, where LpHq is the Lie algebra of H (Proposition 7.36, [2]). An immediate consequence of
the Structure Theorem for Protori is the existence of a universal resolution for a protorus G (Corollary 6):
rp∆X8 ˆ LpGqs{X8, where p∆X8 is a periodic (Definition 1.13, [3]), locally compact topological divisible
hull of a profinite ∆ of a given resolution of G, X8 is a minimal quotient-divisible extension of
an intervening Pontryagin dual of G, and the concept of minimal divisible locally compact cover of G
is introduced (Corollary 7) and realized via p∆X8 ˆ LpGq. The canonical zero-dimensional periodic
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group p∆X8 is an inverse limit of discrete groups, topologically isomorphic to the local direct product
of its divisible p-Sylow components, each isomorphic to a product of powers of the p-adic numbers
pQp and/or the Prüfer group Zpp8q (pp. 48–49, [3]). Proposition 4 details a fundamental new
result deconstructing periodic LCA groups intrinsic to protori; the result facilitates an approach
enabling one to assess the impact in situ of addition to a fixed profinite ∆˚ a torsion-free Y˚ with
rk Y˚ “ dim G, effecting a parametrization of topologically isomorphic resolutions via the spectrum of
such torsion-free groups.

We would be remiss not to toot the horn a bit, emphasizing Theorem 1 gives for the first time
resolutions of a protorus G not in terms of a particular profinite subgroup in LpGq but rather in terms
of its topological divisible hull in G; further, a topological divisible hull of some ∆ P LpGq serves merely
as an upper bound for the spectrum of resolutions associated with torsion-free subgroups spanning
the region between a dense free subgroup Z∆ of ∆ and a minimal quotient-divisible extension of
the Pontryagin dual of G; in the large, the Structure Theorem for Protori gives a pseudoalgorithm
for deriving a periodic LCA group and associated resolution determined by any torsion-free group
bounded below by Z∆, ∆ P LpGq, and above by the divisible hull of Z∆ in G. The Structure Theorem for
Protori not only describes the structure of an arbitrary protorus, but it provides a tool, with instructions,
for surgically deconstructing protori.

Applying the structure theory developed in Theorem 1, we derive a Structure Theorem for
Morphisms (Theorem 2) a new result stating that a morphism f : G Ñ H of protori with duals X
and Y lifts to a product map between minimal divisible locally compact covers f |

p∆ ˆ fL : p∆X8 ˆ

LpGq Ñ p∆Y8 ˆ LpHq. Because LpGq and LpHq are finite-dimensional real topological vector spaces
(Proposition 7.24, [3]), the Structure Theorem for Morphisms reduces the analysis of protori morphisms
to those between divisible periodic LCA groups. Because p∆X8 and p∆Y8 are divisible periodic
LCA groups topologically isomorphic to the local product of their p-Sylow components, respected
by protori morphisms, protori morphisms are an amalgam of their restrictions to p-Sylow factors,
where the action on such a factor is uniquely determined by its action on a compact open subgroup.
Thus, the Structure Theorem for Morphisms implies that deconstructing protori morphisms effectively
reduces to the analysis of morphisms between finitely generated pZp-modules. Lastly, we state without
proof that Theorem 2 generalizes the analogous result that a morphism between complex tori lifts to
a complex-linear map between complex vector spaces (Proposition 2.1, [4]).

Regarding the breakdown of sections comprising the paper: Section 2 provides the requisite
background for our study. Section 3 proves the main structure theory results. Section 4 gives
several illustrative applications involving projective resolutions, ACD groups, and morphisms of protori,
culminating in a general lifting theorem for the category of protori.

2. Background

A protorus is a compact connected abelian group. The name protorus derives from the formulation
of its definition as an inverse limit of tori (Corollary 8.18, Proposition 1.33) [2], analogous to a profinite
group as an inverse limit of finite groups. A morphism between topological groups is a continuous
homomorphism. A topological isomorphism is an open bijective morphism between topological
groups, which we indicate by –t. Set T “def R{Z with the quotient topology induced from the Euclidean
topology on R, for which Z is discrete under the subspace topology. A torus is a topological group
topologically isomorphic to Tn for some positive integer n. A protorus is torus-free if it contains no
subgroups topologically isomorphic to a torus.

All groups herein are abelian and all topological groups are Hausdorff. All finite-dimensional
real topological vector spaces are topologically isomorphic to a real Euclidean vector space of the same
dimension. All references to duality refer to Pontryagin duality. Finitely generated in the context of
profinite groups will always mean topologically finitely generated. If A and B are topological groups
which each contain an isomorphic copy X˚ of a torsion-free group X such that X˚ embeds diagonally
in A ˆ B as a closed subgroup, then we write pAˆ Bq{X for the associated quotient. Some authors use
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the term solenoid or solenoidal group to describe protori; we use protorus to connote compact connected
abelian group and solenoid to mean one-dimensional protorus.

Pontryagin duality is a contravariant endofunctor on the category of locally compact abelian
groups under continuous homomorphism, _ : LCA Ñ LCA, given by G_ “ Hom

continuous
pG,Tq under

the topology of compact convergence and ρ_ : H_ Ñ G_ by ρ_pχq “ χ ˝ ρ for ρ : G Ñ H, such that __

is naturally isomorphic to the identify functor. Each object in the category is isomorphic to some image
of the Pontryagin duality functor. Pontryagin duality restricts to an equivalence between the category
of discrete abelian groups and the opposite category of compact abelian groups (Theorem 7.63) [2]
wherein compact abelian groups are connected if and only if they are divisible (Proposition 7.5(i), [2]),
(24.3, [5]), (23.17, [5]), (24.25, [5]). Some locally compact abelian groups, such as finite cyclic groups
Zpnq, the real numbers R, the p-adic numbers pQp, and the adeles A are categorical fixed points of
the Pontryagin duality functor.

For a compact abelian group G, the Lie algebra LpGq “def Hom
continuous

pR, Gq, consisting of the set of

continuous homomorphisms under the topology of compact convergence, is a real topological vector
space (Proposition 7.36, [2]). The exponential function of G, expG : LpGq Ñ G given by expGprq “ rp1q,
is a morphism of topological groups, and expG is injective when G is torus-free (Corollary 8.47, [2]).
Let G0 denote the connected component of the identity and Ga “ expG LpGq the path component of
the identity in G (Theorem 8.30, [2]).

The dimension of a compact abelian group G is dim G “
def dimR LpGq. When G is a compact abelian

group, LpGq –t RdimG as topological vector spaces (Proposition 7.24, [2]) and dim G “ dimQpQbZ G_q

when G has positive dimension (Theorem 8.22, [2]). A sequence of compact abelian groups G1
φ
�

G2
ψ
� G3 is exact if φ and ψ are, respectively, injective and surjective morphisms and Ker ψ “ Im φ;

note that automatically φ is open onto its image and ψ is open (Theorem 5.29, [5]). For a morphism
ρ : G Ñ H of locally compact abelian groups, the adjoint of ρ is the morphism ρ_ : H_ Ñ G_ given

by ρ_pχq “ χ ˝ ρ (Theorem 24.38, [5]). A sequence of compact abelian groups G1
φ
� G2

ψ
� G3 is exact

if and only if G_3
ψ_

� G_2
φ_

� G_3 is an exact sequence of discrete abelian groups (Theorem 2.1, [6]).
A compact abelian group G is totally disconnectedô dim G “ 0 ô G_ is torsionô dimpQbG_q “ 0
(Corollary 8.5, [2]).

Torsion-free abelian groups A and B are quasi-isomorphic if there is f : A Ñ B, g : B Ñ A,
and 0 ‰ n P Z such that f g “ n ¨1B and g f “ n ¨1A; A and B are nearly-isomorphic if for each 0 ‰ n P Z
there is a relatively prime m P Z, f : A Ñ B, and g : B Ñ A such that f g “ m ¨ 1B and g f “ m ¨ 1A.
By (Corollary 7.7, [7]), A and B are quasi-isomorphic if and only if there is a monomorphism h : A Ñ B
such that A{ f pBq is finite. It follows by Pontryagin duality that A and B are quasi-isomorphic if
and only if there is a surjective morphism h_ : B_ Ñ A_ with finite kernel. This is exactly the definition
of isogeny between protori: G and H are isogenous if there is a surjective morphism G Ñ H with
finite kernel. Define protori G and H to be topologically nearly-isomorphic if G_ and H_ are nearly
isomorphic. Evidently from the definitions, quasi-isomorphism and near-isomorphism of torsion-free groups
and isogeny and topological near-isomorphism of protori are equivalence relations.

Let P denote the set of prime numbers. A supernatural number is a formal product n “
ś

pPP
pnp

where 0 ď np P ZYt8u (Section 2.3, [8]). We denote the p-adic integers pZp and the p-adic numbers pQp.
Let S denote the set of all supernatural numbers. A height sequence pnpqpPP is a sequence of exponents
of a supernatural number. Define an equivalence relation on S by stipulating that supernatural
numbers m and n are equivalent if their height sequences are equal except for a finite number of
primes p for which mp, np ă 8. Define a type to be an equivalence class of a height sequence, denoted
τ “ rpnpqpPPs. For an element a of a torsion-free group X, the p-height of a in X, htX

p paq, p P P, is n
if there exists 0 ď n P Z such that a P pnXzpn`1X and 8 otherwise. The height sequence of a in X
is phtX

p paqqpPP. Define the type of a in X to be rphtX
p paqqpPPs. Because any two nonzero elements of

a rank-1 torsion-free group A have the same type in A, the type of A, typepAq, is the type of any
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nonzero element in A. Two rank-1 groups A and B are isomorphic if and only if typepAq “ typepBq,
and given n P S there is a rank-1 torsion-free group C with typepCq “ rpnpqpPPs (Theorem 1.1, [7]).
For a torsion-free group X, set τsuppXq “

def
rpsupthtX

p paq : 0 ‰ a P XuqpPPqs.
An abelian group D is divisible if for every 0 ‰ d P D and 0 ‰ k P Z there is a d1 P D such that

kd1 “ d. A torsion-free group X is quotient-divisible if it contains a free subgroup F such that X{F is
a divisible (torsion) group (p. 473, [9]). Define the radius of 0 ‰ z “ pz1, . . . , znq P Zn, 0 ă n P Z, to be
rpzq “def gcdpz1, . . . , znq and set rp0q “def 0. Set Bnprq “def

tz P Zn : rpzq ď ru and define a unit hemisphere
H Ă Zn to be a subset of Bnp1qzt0u for which each line through 0 in Qn passes through exactly one point
in H. A minimal quotient-divisible extension of a rank-n torsion-free group X with H Ď Zn Ď X Ď Qn,
H a unit hemisphere, is X8 “

def ř

zPH

ř

pPP

ř

htX
p pzqą0

Zr 1
p sz where Zr 1

p s “ t˘
j

p` : 0 ď j, ` P Zu.

A profinite group is an inverse limit of finite groups or, equivalently, a totally disconnected
compact Hausdorff group (Theorem 1.34, [2]); such a group is finitely generated if it contains a dense
finitely generated subgroup. Profinite abelian groups D and E are isogenous if there are morphisms
f : D Ñ E and g : E Ñ D such that E{ f pDq and D{gpEq are bounded torsion groups; for finitely
generated D and E, this is equivalent to E{ f pDq and D{gpEq being finite. By symmetry, isogeny of
profinite abelian groups is an equivalence relation. Proceeding strictly according to Pontryagin duality,
one would conclude that torsion abelian groups A and B be defined as quasi-isomorphic if there are
morphisms h : A Ñ B and k : B Ñ A such that B{hpAq and A{kpBq are bounded torsion groups; this is,
in fact, the definition for quasi-isomorphism between torsion abelian groups (see Proposition 1.8, [7]).

The development of a structure theory for protori is very much dependent on the theory of
profinite abelian groups. The profinite theory in this section is derived in large part from the standard
reference by Ribes and Zaleeskii [8]. We begin by showing that the additivity of dimension for vector
spaces also holds for compact abelian groups.

Lemma 1. If 0 Ñ G1 Ñ G2 Ñ G3 Ñ 0 is an exact sequence of compact abelian groups, then dim G2 “

dim G1 ` dim G3.

Proof. The exactness of 0 Ñ G1 Ñ G2 Ñ G3 Ñ 0 implies the exactness of 0 Ñ G_3 Ñ G_2 Ñ G_1 Ñ 0
and this implies the exactness of 0 Ñ QbZ G_3 Ñ QbZ G_2 Ñ QbZ G_1 Ñ 0 because Q is torsion-free
(Theorem 8.3.5, [9]). However, this is an exact sequence of Q-vector spaces and hence dimQpQbZ G2q “

dimQpQbZ G3q`dimQpQbZ G1q. This establishes the claim because, in general dim G “ dimQQbZ G_

by (Theorem 8.22, [2]) for dim G ě 1 and dim G “ 0 ô dimQpQbZ G_q “ 0.

Fix n P Z. Denote by µn the multiplication-by-n map A Ñ A for an abelian group A, given by
µnpaq “ na for a P A.

Lemma 2. µn : G Ñ G, 0 ‰ n P Z, is an isogeny for a protorus G.

Proof. µn is a surjective morphism because G is a divisible abelian topological group, so the adjoint
µ_n : G_ Ñ G_ is injective, whence rG_ : µ_n pG_qs is finite by (Proposition 6.1.(a), [7]). It follows that
ker µn is finite and µn is an isogeny.

A profinite group is either finite or uncountable (Proposition 2.3.1, [8]). The profinite integers pZ is
the inverse limit of cyclic groups of order n. pZ is topologically isomorphic to

ś

pPP
pZp (Example 2.3.11, [8])

and to the profinite completion of Z (Example 2.1.6.(2), [8]), whence pZm is a finitely generated profinite
abelian group, 0 ď m P Z.

For a protorus G, the Resolution Theorem for Compact Abelian Groups states that G contains a profinite

subgroup ∆ such that G –t
∆ˆLpGq

Γ where Γ is a discrete subgroup of ∆ˆLpGq and G{∆ –t Tdim G

(Theorems 8.20 and 8.22, [2]). In this case, the exact sequence ∆ � G � Tdim G dualizes to
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Zdim G � G_ � ∆_ where, without loss of generality, G_ Ď Qdim G so that ∆_ – G_
Zdim G Ď

Qdim G

Zdim G –

p
Q
Z q

dim G, whence by duality there is an epimorphism pZdim G � ∆, because pZ –t p
Q
Z q
_ (Example

2.9.5, [8]). It follows that, in the context of protori, the profinite groups of the Resolution Theorem are
simultaneously finitely generated profinite abelian groups and finitely generated profinite pZ-modules.
The continuous scalar multiplication Zˆ ∆ Ñ ∆ is componentwise: if x “ px1, . . . , xmq P ∆, where

xj “ pxjpqpPP , then kx “ pkx1, . . . , kxmq where the scalar multiplication in each coordinate is given

by kxj “ pkxjpqpPP , applying the usual scalar multiplications for pZp and Zpprq. A locally compact

abelian group K for which Zg is profinite for each x P K contains a unique p-Sylow subgroup, p P P
(Theorem 3.3, [3]), and a profinite group H can be decomposed uniquely into the product of its p-Sylow
subgroups (Proposition 2.3.8, [8]).

Lemma 3. The algebraic structure of a finitely generated profinite abelian group uniquely determines its
topological structure.

Proof. A profinite group has a neighborhood basis at 0 consisting of open (whence closed) subgroups
(Theorem 1.34, [2]). A subgroup of a finitely generated profinite abelian group is open if and only if it
has finite index (Lemma 2.1.2, Proposition 4.2.5, [8]). It follows that finitely generated profinite abelian
groups are topologically isomorphic if and only if they are isomorphic as abelian groups.

In light of Lemma 3, we usually write – in place of –t when working with profinite subgroups
of protori.

Set Zppnq “
def Z

pnZ for 0 ď r P Z. We introduce the notation pZppnq “
def

pZp

pnpZp
– Z

pnZ if 0 ď n ă 8

and pZpp8q “def
pZp for p P P. With the conventions p8pZp “

def 0 and p8pZq “
def

pZq for p ‰ q, we see that

pn
pZ “ pn

pZp ˆ
ś

p‰qPP
pZq and pZ

pnpZ
– pZppnq for p P P and 0 ď n P ZY t8u.

Proposition 1. A nonzero finitely generated profinite abelian group is isomorphic to

∆ “
m
ź

j“1

ź

pPP

pZpprppjqq for some 0 ď rppjq P ZY t8u,

p P P, 1 ď j ď m, where rppjq ě rppkq ô j ď k, and rqpmq ą 0 for some q P P.

Proof. By Theorems 4.3.5 and 4.3.6 in [8], a finitely generated profinite abelian group is isomorphic to

(can be represented as)
m
ś

j“1

ś

pPP
pZpprppjqq for some 0 ď rppjq P ZYt8u, p P P, 1 ď j ď m. The representation

is indexed by t1, . . . , mu ˆ P. With regard to uniqueness up to isomorphism, there is no significance to

the order of the factors pZpprppjqq appearing. As long as the exact same aggregate list of rppjq appears in
such a representation, the associated groups are isomorphic.

For each p P P, we rearrange the m exponents rpp1q, . . . , rppmq into descending order and relabel

the ordered exponents spp1q, . . . , sppmq: trpp1q, . . . , rppmqu “ tspp1q, . . . , sppmquwhere spp1q ě spp2q ě

¨ ¨ ¨ ě sppmq. If, after applying this ordering for each p P P, we get rppmq “ 0 for all p P P, then we

remove all pZpprppmqq for p P P, and reduce the value of m accordingly. We repeat this weaning process
right-to-left, so it terminates in a finite number of steps because 1 ď m P Z. In this way, we see that,
without loss of generality, m is minimal for a representation with the given characteristics.
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Define the standard representation of a nonzero finitely generated profinite abelian group to

be the unique ∆ “
m
ś

j“1

ś

pPP
pZpprppjqq in Proposition 1 to which it is isomorphic. Set ∆j “

def ś

pPP
pZpprppjqq,

1 ď j ď m, and ∆p “
def

m
ś

j“1

pZpprppjqq, p P P.

Let D be a finitely generated profinite abelian group. For D ‰ 0 with standard
representation ∆ as in Proposition 1, define the non-Archimedean width of D to be widthnA D “

def m
and set widthnAt0u “

def 0. Define the non-Archimedean dimension of D to be dimnA D “
def
|tj P

t1, . . . , mu : ∆j is infiniteu|.

Corollary 1. Non-Archimedean dimension of finitely generated profinite abelian groups is well-defined.

Proof. Isomorphic finitely generated profinite groups have the same standard representation.

A supernatural vector is any ~n “ pn1, . . . , nmq P Sm, 0 ď m P Z. Set 1 “def ś

pPP
p0 P S

and~1 “def
p1, 1, . . . , 1q P Sm. Fix a finitely generated profinite abelian group ∆ “

m
ś

j“1

ś

pPP
pZpprppjqq as in

Proposition 1. We write pZpnq “def ś

pPP
pZppnpq for n P S and pZp~nq “def

m
ś

j“1

ś

pPP
pZppnjpq for~n P Sm; note that

supernatural vectors~n,~n1 P Sm associated to standard representations of isogenous finitely generated
profinite groups agree in each coordinate except for a finite number of primes for which the exponents

are finite. We introduce the notation npZ “def ś

pPP
pnp pZp for n P S and~npZm “

def
m
ś

j“1

ś

pPP
pnjp pZp for~n P Sm.

Corollary 2. A nonzero finitely generated profinite abelian group ∆ is isomorphic to pZp~nq where ~n P Sm,
m “ widthnA ∆, and the sequence~npZm � pZm � pZp~nq is exact.

Proof. Proposition 1 gives that a finitely generated profinite abelian group is isomorphic to pZp~nq

for some ~n P Sm. For each p P P, ~npZm has p-Sylow subgroup
m
ś

j“1
pnjp pZp. Because pZ

prpZ
– pZpprq for

0 ď r P ZY t8u, we get pZm

~npZm “
pZm

m
ś

j“1

ś

pPP
pnjp

pZp

–
m
ś

j“1

pZ
ś

pPP
pnjp

pZp
–

m
ś

j“1

ś

pPP
pZp

ś

pPP
pnjp

pZp
–

m
ś

j“1

ś

pPP

pZp

pnjp
pZp
“ pZp~nq.

3. Structure of Protori

For a torus-free protorus G with profinite subgroup ∆ inducing a torus quotient, we have by
(Corollary 8.47, [2]) an accompanying injective morphism expG : LpGq Ñ G given by expGprq “ rp1q. Set

• Z∆ “
def ∆X expG LpGq,

• Γ∆ “
def
tpα,´ exp´1

G αq : α P Z∆u,
• π∆ : ∆ˆLpGq Ñ ∆, the projection map onto ∆,
• πR : ∆ˆLpGq Ñ LpGq, the projection map onto LpGq.

Then, π∆pΓ∆q “ Z∆ and πRpΓ∆q “ exp´1
G Z∆ by the Resolution Theorem for Compact Abelian

Groups (Theorem 8.20, [2]). Note: K for K Ď G will always mean closure of K in G unless explicitly
stated otherwise.

Lemma 4. If ∆ is a profinite subgroup of a torus-free protorus G such that G{∆ –tTdim G, then ϕ∆ : ∆ˆ
LpGq Ñ G, given by ϕ∆pα, rq “ α` expG r, satisfies ker ϕ∆ –t Zdim G.

Proof. By (Theorem 8.20, [2]), ker ϕ∆ “ Γ∆ and the projection πR : ∆ ˆ LpGq Ñ LpGq restricts to
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a topological isomorphism πR|Γ∆ : Γ∆ Ñ exp´1
G ∆ “ exp´1

G Z∆, where expG is injective because G
is torus-free (Corollary 8.47, [2]). In addition, LpGq –t Rdim G and Γ∆ is discrete by (Theorem

8.22 (6) ñ (7), [2]). Thus, Γ∆ –t exp´1
G Z∆ –t Zk for some 0 ď k ď dim G (Theorem A1.12, [2]).

However, r∆ ˆ LpGqs{Γ∆ –t G is compact, so k “ dim G. Thus, ker ϕ∆ “ Γ∆ –t Zdim G as

discrete groups.

The next lemma identifies a simultaneously set-theoretic, topological, and algebraic property
unique to profinite subgroups in a protorus which induce tori quotients.

Lemma 5. If ∆ is a profinite subgroup of a torus-free protorus G such that G{∆ –tTdim G, then Z∆ “ ∆
and Z∆ is closed in the subspace expG LpGq.

Proof. By (Theorem 8.20, [2]), a profinite subgroup ∆ such that G{∆ –t Tdim G always exists and for

such a ∆ we have G –t G∆ “
def ∆ˆLpGq

Γ∆
where Γ∆ “ tpexpG r,´rq : r P LpGq, expG r P ∆u is a free

abelian group and rank Γ∆ “ dim G “ rank r∆ X expG LpGqs by Lemma 4 and the fact that expG

is injective when G is torus-free (Corollary 8.47, [2]). We have π∆pΓ∆q “ Z∆ Ď ∆1 “def Z∆, so Γ∆ is

a subgroup of ∆1 ˆLpGq. Because ∆ � ∆ˆt0u`Γ∆
Γ∆

Ă G∆ is a topological isomorphism onto its image,

∆1 � ∆1ˆt0u`Γ∆
Γ∆

Ă G∆ is as well. Since Γ∆ is discrete in ∆ˆ LpGq (Theorem 8.20, [2]), it is discrete

in ∆1 ˆ LpGq, so G∆1 “
def
r∆1 ˆ LpGqs{Γ∆ is a Hausdorff subgroup of G∆. However, p∆z∆1q ˆ LpGq is

open in ∆ˆLpGq and the quotient map q∆ : ∆ˆLpGq Ñ G∆ is an open map , so q∆rp∆z∆1q ˆLpGqs “
rp∆z∆1qˆLpGq` Γ∆s{Γ∆ “ G∆zG∆1 , is open in G∆. It follows that G∆1 is a compact abelian subgroup of

G∆ and G∆
G∆1

“
r∆ˆLpGqs{Γ∆
r∆1ˆLpGqs{Γ∆

–t
∆ˆLpGq
∆1ˆLpGq –t

∆
∆1 by (Theorem 5.35, [5]). Thus, there is an exact sequence

G∆1 � G∆ � ∆
∆1 . Now, dim ∆ “ 0 ñ dimp∆{∆1q “ 0 and we know ∆{∆1 is compact Hausdorff,

so ∆{∆1 is totally disconnected (Corollary 7.72, [4]). Thus, p∆{∆1q_ is torsion (Corollary 8.5, [2]).

By Pontryagin duality, p∆{∆1q_ embeds in the torsion-free group G_∆ , so p∆{∆1q_ “ 0 and ∆ “ ∆1 “ Z∆.

Lastly, if x lies in the closure of Z∆ in expG LpGq under the (metric) subspace topology, then
x P expG LpGq and x is the limit of a sequence of elements of Z∆. However, ∆ is closed, so x P
∆X expG LpGq “ Z∆. This proves that Z∆ is closed in the subspace expG LpGq.

Define LpGq “ t∆ Ă G : ∆ a profinite subgroup such that G{∆ is a torusu for a protorus G.
In Proposition 2, we show that LpGq is a lattice with ` as join and X as meet; in particular, LpGq
is directed upward and downward. We then prove a number of useful closure properties for LpGq,
which are applied for the remainder. However, first a remark regarding some facts which we use freely
going forward without further mention.

Remark 1. (i) By (Theorem 8.46.(iii), [2]), a path-connected protorus is a torus. Thus, if a protorus
G has a profinite subgroup D and G{D is the continuous image of a torus, then automatically
D P LpGq. (ii) A profinite subgroup D of a torus H is finite: H{D is a path-connected protorus, whence
a torus of the same dimension as H by Lemma 1. By duality, pH{Dq_ and H_ are free abelian with
rkpH{Dq_ “ rk H_ and pH{Dq_ � H_ �� D_ exact, so D_, whence D, is finite.

Proposition 2. For a torus-free protorus G, LpGq is a countable lattice under X for meet and ` for join.
LpGq is closed under:

1. preimages via µn, 0 ‰ n P Z.
2. finite extensions.
3. scalar multiplication by nonzero integers.
4. join (+). and
5. meet (X).
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Given any ∆, ∆1 P LpGq, there exists 0 ă k P Z such that k∆ Ď ∆1. If ∆1 Ď ∆, then r∆ : ∆1s ă 8.

Proof. Each ∆ P LpGq corresponds via Pontryagin duality to a unique-up-to-isomorphism torsion
abelian quotient of X “ G_ by a free abelian subgroup Z∆ with rkZ∆ “ rkX. Because X is countable
and there are countably many finite subsets of a countable set (corresponding to bases of Z∆s,
counting one basis per Z∆), it follows that LpGq is countable.

1. µn : G Ñ G has finite kernel by Lemma 2 so its restriction µ´1
n ∆ Ñ ∆ has finite kernel

for ∆ P LpGq. Since ker µn and ∆ P LpGq are zero-dimensional compact abelian groups, it follows
from Lemma 1 that the compact Hausdorff subgroup µ´1

n ∆ is zero-dimensional, whence profinite.
Because the natural map G{∆ Ñ G{µ´1

n ∆ is surjective and G{∆ is a torus, it follows that G{µ´1
n ∆ is

path-connected, whence G{µ´1
n ∆ is a torus (Theorem 8.46.(iii), [2]) and µ´1

n ∆ P LpGq.
2. If ∆ P LpGq has index 1 ď m P Z in a subgroup D of G, then D is the sum of finitely many copies

of ∆, so D is compact. Thus, ∆ Ď D Ď µ´1
m ∆ P LpGq by 1, so D is profinite. The natural morphism

G{∆ Ñ G{D is surjective and G{∆ a torus, so D P LpGq.
3. µj|∆ : ∆ Ñ j∆ is surjective with finite kernel by Lemma 2, so j∆ is profinite. G is divisible so

µj : G Ñ G is surjective, thus inducing a surjective morphism G
∆ Ñ

G
j∆ . It follows that j∆ P LpGq.

4. Addition defines a surjective morphism ∆ˆ ∆1 � ∆` ∆1. By Lemma 1, it follows that ∆ˆ ∆1,

whence ∆` ∆1, is profinite. Because the natural map G
∆ Ñ

G
∆`∆1 is surjective, ∆` ∆1 P LpGq.

5. The kernel of G
∆ � G

∆`∆1 is ∆`∆1
∆ , a zero-dimensional subgroup of G

∆ by Lemma 1.

As a zero-dimensional subgroup of a torus, ∆`∆1
∆ – ∆1

∆X∆1 is finite, so there is a nonzero integer l
such that l∆1 Ď ∆. Lemma 1 gives that ∆X ∆1 is zero-dimensional, whence profinite. We know by 3

that l∆1 P LpGq, thus the natural map G
l∆1 Ñ

G
∆X∆1 is a surjective morphism, whence ∆X ∆1 P LpGq.

It follows from 4 and 5 that LpGq is a lattice. It remains to show that, if ∆1 Ď ∆, then r∆ : ∆1s ă 8.

Arguing as in 5, there exists 0 ă k P Z such that k∆ Ď ∆1. ∆ is a finitely generated profinite abelian
group, thus r∆ : ∆1s ď r∆ : k∆s ă 8.

Corollary 3. Elements of LpGq are mutually isogenous in a torus-free protorus G.

Proof. Suppose that ∆1, ∆2 P LpGq. We proved in Proposition 2 that there exist nonzero integers k
and l such that k∆1 Ď ∆2, l∆2 Ď ∆1, r∆2 : k∆1s ă 8, and r∆1 : l∆2s ă 8. The multiplication-by-k
and multiplication-by-l morphisms thus exhibit an isogeny between ∆1 and ∆2.

Lemma 6. Non-Archimedean dimension of finitely generated profinite groups is invariant under isogeny.

Proof. If two such groups, say D and D1 are isogenous, then so are their standard representations,
say ∆D and ∆D1 , as in Proposition 1. Multiplying both groups by the same sufficiently large
integer, say N, produces isogenous groups ND and ND1 with dimnApNDq “ widthnApNDq
and dimnApND1q “ widthnApND1q. By Corollary 2, ND and ND1 have standard representations,

say pZp~nq and pZp~n1q for some supernatural vectors ~n and ~n1. If pZp~nq and pZp~n1q have distinct

non-Archimedean dimensions, then one of the two has an extra coordinate k for which there are
factors pZppnkpq for infinitely many primes p and/or factors isomorphic to one or more copies of
some pZq for some prime q; this is impossible if pZp~nq and pZp~n1q are isogenous because supernatural
vectors associated to standard representations of isogenous groups can differ for any given coordinate
at only a finite number of primes and only at those primes having finite exponents. Thus,
the definition of non-Archimedean dimension and its preservation under multiplication by N give that
dimnA D “ dimnApNDq “ dimnA

pZp~nq “ dimnA
pZp~n1q “ dimnApND1q “ dimnA D1.

Define the non-Archimedean dimension of a protorus G to be dimnA G “
def dimnA ∆ for a profinite

subgroup ∆ of G for which G{∆ is a torus.
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Corollary 4. Non-Archimedean dimension of protori is well-defined.

Proof. Elements of LpGq for a protorus G are isogenous by Corollary 3, so the result follows by
Lemma 6.

A protorus G with profinite subgroup ∆ satisfying G{∆ –t Tdim G will always satisfy dimnA G “

dimnA ∆ ď widthnA ∆ ď dim G; and for G torus-free, always rkZ∆ “ dim G.
A protorus G is factorable if there are non-trivial protori G1 and G2 such that G –t G1ˆG2, and G

is completely factorable if G –t
n
ś

i“1
Gi where dim Gi “ 1, 1 ď i ď n. A result by Mader and Schultz [10]

has the surprising implication that the classification of protori up to topological near-isomorphism
reduces to that of protori with no one-dimensional factors.

Proposition 3. If D is a finitely generated profinite abelian group, then there is a completely factorable protorus
G containing a closed subgroup ∆ – D such that G{∆ is a torus.

Proof. First, note that the finite cyclic group Zprq, 0 ă r P Z, is isomorphic to the closed subgroup
p1{rqZ

Z of the torus R
Z , so it follows that p1{rqZZ is a profinite subgroup of R

Z inducing a torus quotient.

Next, by Proposition 1 there is no loss of generality in assuming D “ pZp~nq for some ~n P Sm where
∆jp~nq ‰ 0 for 1 ď j ď m. If ∆jp~nq is finite then it must be isomorphic to Zprjq for some 0 ă rj P

Z; in this case, set Gj “
def R

Z and Ej “
def p1{rjqZ

Z . If ∆jp~nq is not finite, then Gj “
def
r∆jp~nq ˆ Rs{Zp1, 1q is

a solenoid (1-dimensional protorus) containing a closed subgroup Ej –t ∆jp~nq satisfying Gj{Ej –t T
(Theorem 10.13, [5]). It follows that G “

def G1 ˆ ¨ ¨ ¨ ˆ Gm is a protorus containing the closed subgroup
∆ “def E1 ˆ ¨ ¨ ¨ ˆ Em –t D and satisfying G{∆ –t Tm.

Corollary 5. If D is a finitely generated profinite abelian group with widthnA D “ dimnA D, then there is
a completely factorable torus-free protorus G containing a closed subgroup ∆ – D such that G{∆ is a torus.

Proof. In this case, no ∆jpnq factor is finite cyclic in the proof of Proposition 3.

An arbitrary topological group K is compactly ruled if it is a directed union of compact open
subgroups (Definition 1.4, [3]). An abelian compactly ruled group satisfies Zg is compact for each
g P K (Corollary 1.12, [3]). A locally compact abelian group K is periodic if it is totally disconnected
and Zg is compact for each g P K (Definition 1.13, [3]). Abbreviate totally disconnected locally
compact tdlc and locally compact abelian LCA. Every element g in a periodic LCA group K satisfies
Zg –

ś

pPP
pZppspq for some s P S and there corresponds a pZ-module structure on K with continuous scalar

multiplication pZˆ K Ñ K compatible with the unique p-Sylow decomposition of K (pp. 48–49, [3]):
z ¨ h “def

pz ¨ hqpPP “ pzqpPP ¨ phqpPP for z P pZ and h P Zg (Proposition 4.21, [3]). A periodic LCA group
p∆ is a topological divisible hull of a profinite group ∆ if p∆ is an algebraic divisible hull of ∆ with
the unique group topology for which an isomorphic copy of ∆ is an open subgroup (Theorem 3.42, [3]).

For a torus-free protorus G and a sublattice L Ď LpGq satisfying
Ş

L “ 0, set

• p∆L “
def ř

∆PL
∆.

• VL “
def ř

∆PL
Z∆ “

Ť

∆PL
Z∆.

• ΓL “
def
tpα,´ exp´1

G αq : α P VLu.

Proposition 4. If G is a torus-free protorus and L is a sublattice of LpGq satisfying
Ş

L “ 0, then the group
p∆L topologized by taking L to be an open neighborhood basis at 0 is a periodic pZ-module with pZg “ Zg for each
g P p∆L, and p∆L ˆLpGq is locally compact with closed subgroup ΓL. The identity map to the subspace topology
on p∆L is continuous.



Axioms 2019, 8, 93 10 of 16

Proof. LpGq is closed under finite sums and directed upward by Proposition 2, so p∆L “
Ť

∆PL
∆.

The elements of L are finitely generated profinite abelian groups with rDi : D1 X D2s ă 8 for
i “ 1, 2 for any D1, D2 P L, and thus are compact in the topology defined on p∆L by declaring
L to be a neighborhood basis of 0. This Hausdorff topology (

Ş

L “ 0) is therefore compactly
ruled, whence locally compact (Proposition 1.3, [3]). It follows that p∆L ˆ LpGq is locally compact.
By Proposition 2, L is a countable neighborhood basis at 0 of compact open subgroups, and so p∆L is

metrizable (Theorem 8.3, [5]) and totally disconnected (Theorem 1.34, [2]). Thus, p∆L is periodic, whence
pZg “ Zg for each g P ∆ P L and p∆L is a pZ-module with continuous bilinear scalar multiplication
(Proposition 4.22, [3]). To see that ΓL is closed, suppose that tpαj, rjqujě1 Ă ΓL converges to some

pβ, sq P p∆L ˆ LpGq. Then, β and tαjujěN lie in some ∆0 P L for some 1 ď N P Z. We can
assume without loss of generality that N “ 1. Since rj Ñ s P LpGq, continuity of expG implies

´αj “ expGprjq Ñ expGpsq “ ´β P ∆0 X expG LpGq “ Z∆0 Ă VL, whence pβ, sq P ΓL. Next,

by (Theorem 8.22, [2]), a basic open neighborhood of G can be taken to have the form ∆` expG B for

∆ P L and B a Euclidean open ball about 0 in LpGq; then ∆ is an open subset of p∆L under its locally

compact topology, and ∆ is contained in the open subset p∆` expG Bq X p∆L of p∆L under its subspace
topology, so the identity map is continuous.

The group of path components of a protorus G is π0pGq “
def G{ expG LpGq. The next proposition

describes properties of substructures of a protorus, to be fine-tuned in Theorem 1.

Proposition 5. If G is a torus-free protorus with no factors –t Q_, then

1. tor G “ tor p∆LpGq, p∆LpGq is divisible, and VLpGq is dense in G.
2. p∆LpGq{∆ – pQ{Zqdim G for each ∆ P LpGq and G{p∆LpGq – pR{Qqdim G.
3. p∆LpGq –t lim

ÐÝ
∆PLpGq

pp∆LpGq{∆q where p∆LpGq{∆ is a discrete group for each ∆ P LpGq.

4. expG LpGq, the path component 0 in G, is divisible and torsion-free.
5. π0pGq – ExtpG_,Zq – ∆{Z∆ for each ∆ P LpGq.

Proof. 1. If x P G and nx P p∆LpGq for some 0 ‰ n P Z, then nx P ∆ for some ∆ P LpGq, so x P µ´1
n ∆ Ă

p∆LpGq by Proposition 2. Thus, G{p∆LpGq is torsion-free whence tor G “ tor p∆LpGq. If y P p∆LpGq and 0 ‰
k P Z, then because G is divisible there is a z P G such that kz “ y; as we have shown this implies
z P p∆LpGq; this proves that p∆LpGq is divisible. Because tor G is dense in G (Corollary 8.9, [2]), for VLpGq to

be dense in G it suffices to show that VLpGq is dense in p∆LpGq: VLpGq “
ř

∆PL
Z∆ Ě

ř

∆PL
Z∆ “

ř

∆PL
∆ “ p∆LpGq

.

2. Let ∆ P LpGq. By 1, G{p∆LpGq – pG{∆q{pp∆LpGq{∆q is torsion-free so G{∆ – Tdim G, whence

torpG{∆q Ă p∆LpGq{∆. Conversely, if x P p∆LpGq, then x P ∆1 for some ∆1 P LpGq, whence kx P ∆ for some

0 ‰ k P Z by Proposition 2; that is, x` ∆ P torpp∆LpGq{∆q. Thus, p∆LpGq{∆ “ torpG{∆q – torpTdim Gq “

pQ{Zqdim G so G{p∆LpGq – Tdim G{pQ{Zqdim G “ pR{Zqdim G{pQ{Zqdim G – pR{Qqdim G.

3. Under its locally compact topology, p∆LpGq is periodic (Proposition 4), so the result follows by
(pp. 48–49, [3]).

4. Theorem 8.30 [2], gives that expG LpGq is the path component of 0. G is torus-free,
so the corestriction expG : LpGq Ñ expG LpGq is an isomorphism of abelian groups (Corollary 8.47, [2]).
Thus, expG LpGq is divisible and torsion-free because LpGq –t Rdim G is (Propositions 7.25 and 7.36, [2]).

5. (Theorem 8.30, [2]) and (Corollary 8.33, [2]).

We define an apparatus upon which our proof of Theorem 1 depends. The setting involves
an n-dimensional torus-free protorus G. For such G, expG : LpGq Ñ G is injective (Corollary 8.47, [2])
and Rn –t LpGq (Proposition 7.24, [2]). We argue relative to a fixed ∆˚ P LpGq and its dense rank-n



Axioms 2019, 8, 93 11 of 16

free abelian subgroup Z∆˚ “ ∆˚ X expG LpGq (Lemma 5). There exists an algebraic isomorphism
θ∆˚ : Rn Ñ expG LpGq with Z∆˚ “ θ∆˚pZnq Ă θ∆˚pQnq Ă expG LpGq “ θ∆˚pRnq, where θ∆˚pQnq “

tw P expG LpGq : kw P ∆˚ for some 0 ‰ k P Zu.
We fix a unit hemisphere H and introduce a parameter Y to represent an arbitrary rank-n

torsion-free abelian group with H Ă Zn Ď Y Ď Qn; note that θ∆˚phq{p R Z∆˚ for any h P H and p P P.
With ∆˚ P LpGq, θ∆˚ : Rn Ñ expG LpGq, and a unit hemisphere H Ă Zn fixed, we itemize pertinent
background information for Theorem 1:

(a) X is a fixed value of Y for which Zn � X � X{Zn dualizes ∆˚ � G � G{∆˚.
(b) ∆y “

def ∆˚ `Zθ∆̊ pyq P LpGq and Z∆y “ Z∆˚ `Zθ∆̊ pyq, y P Y (Proposition 2), p∆Y “
def ř

yPY
∆y.

(c) Y˚ “def
θ∆˚pYq “

ř

yPY
Z∆y and LY “

def
t
ř

yPY1
∆y : Y1 Ă Y, Y1 finiteu Y t∆ P LpGq : ∆ Ď ∆˚u Ď LpGq.

(d) sY
z P S where tsY

z ppqupPP is the height sequence in Y of z P H.

(e) sY
fin8pzq“

def ś

0ăsY
z ppqă8

p8, z8fin “
def
t

jz
` : j, ` P Z, ` | sY

fin8pzqu, and Y8fin “
def ř

zPH
z8fin.

(f) sY
8pzq “

def ś

p|sY
z

p8, z8 “
def
t

jz
` : j, ` P Z, ` | sY

8pzqu, and Y8 “
def ř

zPH
z8 .

(g) Y8fin and Y8 are quotient-divisible: Y8fin{Z
n and Y8{Zn are divisible.

Theorem 1. (Structure Theorem for Protori) A protorus is topologically isomorphic to Tr ˆ pQ_qk ˆ G for
some n-dimensional protorus G with no factors–t T or Q_ and nonnegative integers r,k,n where the three factors
are uniquely determined up to topological isomorphism. In view of the definitions and notation above— with
fixed ∆˚, fixed unit hemisphere H, fixed X – G_, and arbitrary Y with H Ă Zn Ď X, Y Ď Qn—the structure
of G is as follows:

1. LY is a lattice, VLY “ Y˚ “ p∆Y X expG LpGq, and ΓLY – Y.
2. p∆LY “

p∆Y has a periodic LCA topology, and Y˚ is dense in G ô Y has no free summands.

3. G –t
p∆YˆLpGq

Y ; in particular, G –t
p∆XˆLpGq

X where X˚ – X – G_ is dense in G.
4. p∆X8 is a topological divisible hull of ∆˚ and tor G “ tor p∆LpGq “ tor p∆Qn .

5. p∆X8 –t
loc
ś

pPP
ppp∆X8qp, ∆˚pq –t lim

ÐÝ
∆PLX8

pp∆X8{∆q; X_–t lim
ÐÝ

∆PLX

pG{∆q; and X– lim
ÝÑ

∆PLX

pG{∆q_.

Proof. Let K be a protorus. By Corollary 3.8.3 in [9], K_ “ Z ‘ C where Z is free abelian and C is
a subgroup with no free summands which is uniquely determined by K_. By Corollary 4.2.5 in [9],
C “ R‘D where D is a torsion-free divisible group uniquely determined by C, and R is unique up to
isomorphism. The first statement of the theorem thus follows by duality. The remainder of the proof
involves the n-dimensional protorus G with no factors –t T or Q_.

1. Y˚ is the directed union of free abelian groups F with Z∆˚ Ď F Ď Y˚, and F{Z∆˚ is finite
for such F. Hence, ∆F “

def F P LpGq by Proposition 2, whence ∆F X expG LpGq “ Z∆F “ F (Lemma 5)
and ∆F P LY for such F. Thus, LY “ t∆F : Z∆˚ Ď F Ď Y, F free abelian u Y t∆ P LpGq : ∆ Ď ∆˚u is
a lattice.

In addition, p∆Y X expG LpGq “ p
ř

yPY
∆yq X expG LpGq “

Ť

yPY
p∆y X expG LpGqq “

Ť

yPY
Z∆y “

ř

yPY
Z∆y “ Y˚. By Lemma 4, Y˚ “ VLY and the closed subgroup ΓLY “ tpα,´ exp´1

G αq : α P VLYu

is equal to tpα,´ exp´1
G αq : α P Y˚u – Y˚ – Y.

2. By definition, p∆LY “
ř

∆PLY

∆ “
ř

yPY
∆y “ p∆Y, and

Ş

∆PLY

∆ “ t0u, so p∆Y has a periodic

LCA topology by Proposition 4. The morphism expG is continuous and injective (Corollary 8.47, [2])

with expG LpGq dense in G. Thus, Y˚ is dense in G ô Y˚ is dense in expG LpGq ô exp´1
G pY˚q is

dense in LpGq because the map ϕ : ∆˚ ˆ LpGq Ñ G given by ϕpα, rq “ α` expG r is a local isometry

(Proposition 2.14, [1]). However, exp´1
G pY˚q is dense in LpGq ô Y “ θ´1

∆˚ expGrexp´1
G pY˚qs is dense in
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Rn ô Y has no free summands.
3. We produce a topological isomorphism from a “classical” resolution of a protorus to a new

resolution independent of any particular ∆ P LpGq. The group
p∆YˆLpGq

ΓLY
is LCA by 1 and 2. In the proof

of Lemma 4, we found that a subset U of p∆Y is open if and only if U X ∆ is open in ∆ for all ∆ P LY,
thus the inclusion map ∆˚ˆLpGq ãÑ p∆Y ˆLpGq is a morphism of LCA groups. Define ηY : ∆˚ˆLpGq

Γ∆˚
Ñ

p∆YˆLpGq
ΓLY

to be the morphism induced by inclusion.

We get ηrpα, rq ` Γ∆˚s “ pα, rq ` ΓLY “ 0 ñ pα, rq P r∆˚ ˆ LpGqs X ΓLY ñ r “ ´ exp´1
G α so

α “ ´ expG r P ∆˚ X expG LpGq “ Z∆˚ , whence pα, rq P Γ∆˚ ; since also Γ∆˚ Ď ΓLY and ΓLY is closed,
it follows that ηY is a well-defined injective morphism.

Next, let pβ, sq P p∆Y ˆ LpGq. By 1, β P ∆F “ F for some free abelian F with Z∆˚ Ď F Ď

Y˚ “ VLY and ∆F X expG LpGq “ F, so that β “ δ ` y for some δ P ∆˚ and y P Y˚ Ă expG LpGq.
Thus, py,´ exp´1

G yq P ΓLY and pβ, sq ` ΓLY “ pδ ` y, sq ´ py,´ exp´1
G yq ` ΓLY “ pδ, s ` exp´1

G yq `
ΓLY “ ηYrpδ, s` exp´1

G yq ` Γ∆˚s. This proves that ηY is surjective, whence a topological isomorphism

by the open mapping theorem (Theorem 5.29, [5]). Thus, G –t
p∆YˆLpGq

Y via the diagonal embedding of
Y – Y˚.

4. Let 0 ‰ x P X8. Then, X8 is not p-divisible at x if and only if the unique zx P Qx X H
has p-height 0 in X. This is equivalent to QxX X “ Zppqzx, where Zppq is the localization of Z at p.

However,
À

zPH

QzXX`Zn

Zn – X
Zn , so ∆˚ –

ś

zPH
p
QzXX`Zn

Zn q_ and ∆˚ is p-divisible at the point pδzqzPH with

δz “ 0 for z ‰ zx and δzx “ 1 where ZpδzqzPH – p
QzxXX`Zn

Zn q_, making appropriate identifications.
If X8 is p-divisible at 0 ‰ x P X8, then pδzqzPH has p-torsion or pZpδzqzPHqp – pZp; but θ∆˚pzxq P X8
is p-divisible so pδzqzPH is p-divisible in p∆X8 according to the topological isomorphism ηX8 in 3.
By construction, X˚8 is the minimal quotient-divisible torsion-free extension of X˚ in G, so p∆X8 is
the minimal divisible subgroup of G extending ∆˚.

For the last assertion, tor G “ tor p∆LpGq by Proposition 5, and this is the same as tor p∆Qn by 2.

5. p∆X8 –t
loc
ś

pPP
ppp∆X8qp, ∆˚pq –t lim

ÐÝ
∆PLX8

pp∆X8{∆q is an application of (Theorem 3.3, [3]) to the divisible

periodic LCA group ∆X8 . For the remaining limits, note that in 3 we saw how the lattice LY allows
us to uniquely determine the topology on p∆Y and in turn an associated resolution of G. In the range

X Ď Y Ď Qn, we get a resolution
p∆YˆLpGq

Y where Y˚ is dense in G because G is torus-free. In particular,
the topology on the compactly ruled p∆X is coherent with the collection LX and it follows p∆X is
homeomorphic to the the topology on the direct limit of LX where the upwardly directed partial
order of the lattice LX is preserved. One readily verifies that the topology on the direct limit gives
a topological group and our homeomorphism is a topological isomorphism with the tdlc group p∆X.
In parallel, the lattice MX “

def
tZ∆ : ∆ P LXu is isomorphic to the lattice LX, thus the group X˚ is

isomorphic to the direct limit of MX. The collection t∆ � G � G{∆ : ∆ P LXu of exact sequences
dualizes to the collection of exact sequences tZ∆ � X � X{Z∆ : Z∆ P MXu. We conclude that
X– lim

ÝÑ
∆PLX

pG{∆q_ and, by duality, X_–t lim
ÐÝ

∆PLX

pG{∆q.

The Structure Theorem for Protori has a number of immediate useful consequences, beginning
with the following corollary. Recall the notation p∆p introduced for the unique p-Sylow subgroup of
the p-Sylow decomposition of a periodic LCA group p∆ (Theorem 3.3, [3]).

Corollary 6. If G is a torus-free protorus, then G –t
p∆X8ˆLpGq

X8 where p∆X8 –t
loc
ś

pPP
ppp∆X8qp, ∆pq is

a topological divisible hull of each ∆ P LX and pp∆X8qp – pQrp
p ˆZpp8qsp for some 0 ď rp, sp P Z, p P P.

Proof. All statements follow directly from Theorem 1 and (Theorem 3.3, Proposition 3.42, [3]).
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For a torus-free protorus G, define
p∆X8ˆLpGq

X8 of Corollary 6 to be a universal resolution of G;

the terminology is justified by the fact that p∆X8 is a topological divisible hull of every ∆ P LX
and previously the only resolutions of protori known to exist were those given in terms of a single
element of LX. Recall the notation connotes the closed diagonal embedding X8 Ñ X˚8 Ñ ΓLX8

Ď

p∆X8 ˆLpGq. Note that
p∆LpGqˆexpG LpGq
p∆LpGqXexpG LpGq

is a resolution of G in terms of the canonical subgroups p∆LpGq,

generated by all zero-dimensional subgroups (see the proof of Proposition 7), and the path component
of 0, expG LpGq, where p∆LpGq and expG LpGq have their non-locally-compact subspace topologies,

and p∆LpGq X expG LpGq – Qdim G (1 in Theorem 1).

Corollary 7. If G is an n-dimensional torus-free protorus and Y is torsion-free with Zn Ď Y Ď Qn, then the map
ϕY : p∆Y ˆ LpGq Ñ G defined by ϕYpα, rq “ α ` expG r is a local isometry which is open, continuous,
and surjective.

Proof. For each ∆ P LpGq, the map ϕ∆ : ∆ ˆ LpGq Ñ G given by ϕ∆pα, rq “ α ` expG r is a local
isometry that is open, continuous, and surjective [1, Proposition 2.2]. By 3 in Theorem 1, the map

ϕY has kernel ΓLY and induces
p∆YˆLpGq

Y –t G, where Y Ñ Y˚ Ñ ΓLY Ď
p∆Y ˆ LpGq is the diagonal

embedding. However, LY is a neighborhood basis at 0 of compact open subgroups for the locally
compact topology on p∆Y by Proposition 4, and ϕY agrees with ϕ∆ for each ∆ P LY, so ϕY is a local
isometry which is open, continuous, and surjective.

Define p∆X8 ˆ LpGq to be a minimal divisible locally compact cover of G. The terminology is
justified by the fact that p∆X8 is a topological divisible hull of each ∆ P LX, the product is locally
compact and divisible, and the map ϕX8 : p∆X8 ˆ LpGq Ñ G is open, continuous, and surjective by
Corollary 7.

Corollary 8. With the apparatus of Theorem 1 in place for an n-dimensional torus-free protorus G,
set MY “

def
tF : F is a free rank-n subgroup of Y with F Ď Zn Ď Y or Zn Ď F Ď Yu. Then, LY Ñ MY

given by ∆ ÞÑ θ´1
∆˚ pZ∆q is bijective and Y˚ “

ř

∆PLY

Z∆.

Proof. This follows directly from 1 in Theorem 1, 5 in Theorem 1.

Remark 2. (i) Suppose G is as in Corollary 8 with Y “ Qn. Then, LY “ LpGq and MY “ MQn “ tF : F
is a free rank-n subgroup of Qn with F Ď Zn or Zn Ď Fu with Y˚ “ p∆LpGq X expG LpGq – Qn.

(ii) Suppose that F is a free rank-n subgroup of p∆LpGq X expG LpGq such that F Ę Z∆˚ and Z∆˚ Ę F.
Let Zn Ď Y Ď Qn with F Ď Y˚. Then, F R MY and F R LpGq.

Proposition 6. (Protori Lattices) With the apparatus of Theorem 1 in place for an n-dimensional torus-free

protorus G, ∆˚ P LpGq with standard representation
m
ś

j“1

ś

pPP
pZppsppjqq, Zn Ď Y Ď Qn, and m P S with

mp “ sup
zPH
thtY

p pzqu, LY is isomorphic to the lattice of compact open subgroups of the periodic group

D “
def

loc
ś

pPP
pDp, Cpq, where Dp “

def
m
ś

j“1
Dppjq; Cp “

def
m
ś

j“1
Cppjq;

• Dppjq “ pQp and Cp “ pZp if sppjq “ 8;
• Dppjq “ Zpp8q and Cppjq “ p´sppjqpZp{pZp if 0 ď sppjq ă 8 and mp “ 8;
• Dppjq “ p´sppjq´mp pZp{pZp and Cp “ p´sppjqpZp{pZp if 0 ď sppjq `mp ă 8;

C “def ś

pPP
Cp is open in D; D{C –

m
À

j“1

#

„

À

sppjq`mp“8

Zpp8q


‘

„

À

sppjq`mpă8

p´sppjq´mpZ{Z


+

is
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discrete; and the dual of the lattice LY is isomorphic to the lattice of finite subgroups of D{C.

Proof. All periodic LCA groups decompose as a local product as indicated for D by Braconnier’s theorem
(Theorem 3.3, [3]), thus it suffices to determine the p-Sylow components Dp and Cp. In the proof of
Theorem 1, it became evident that the mitigating factor determining the structure of LY is the supremum
of the p-heights in Y of elements in H for each p P P. ∆˚ – X{Zm is the base upon which p∆Y is formed
via the topological isomorphism ηY of 3 in Theorem 1. The last statement is an application of Pontryagin
duality to D and its compact open subgroups (Lemma 3.82, [3]).

Remark 3. (i) If dim G ą 1, then the lattice of closed subgroups of the protorus G, also called the Chabauty
space SpGq, is equal to the lattice of closed subgroups of p∆LpGq, which is distributive only when G is

a solenoid (Theorem 5, [11]). (ii) Spp∆LpGqq is homeomorphic to
ś

∆PLpGq
Sp∆q (Proposition 1.22, [3]).

4. Applications

Protori structure in place, several applications related to morphisms of protori and otherwise follow.

Lemma 7. A morphism f∆ : ∆G Ñ ∆H with f pZ∆Gq “ Z∆H for some torus-free protori G, H and ∆G P LpGq,
∆H P LpHq extends to an epimorphism f : G Ñ H.

Proof. The morphism ϕG : ∆G ˆLpGq Ñ G of the Resolution Theorem (Proposition 2.2, [1]) is an open
map and Z∆G –t exp´1

G ∆ –t ker ϕG. Let V –t Rk, 0 ď k P Z, denote a real vector space satisfying
LpGq “ spanRpexp´1

G ∆q ‘V. Then, G Ě ϕGp∆G ˆVq –t ∆G ˆV. The compactness of G implies k “ 0,
so exp´1

G Z∆ “ exp´1
G ∆ spans LpGq.

Continuity of f∆ with f pZ∆Gq “ Z∆H ensures that f∆ is surjective and dimR LpGq “ rkZ∆G ě

rkZ∆H “ dimR LpHq. Define fR : LpGq Ñ LpHq by setting fRpexp´1
G pzqq “ exp´1

H p f pzqq for z P
Z∆G and extending R-linearly. Then, f∆ ˆ fR : ∆G ˆ LpGq Ñ ∆H ˆ LpHq is an epimorphism with

p f∆ ˆ fRqpΓGq “ ΓH , so f∆ ˆ fR induces an epimorphism f̃ : ∆GˆLpGq
ΓG

Ñ
∆HˆLpHq

ΓH
and f̃ in turn

induces an epimorphism of protori f : G Ñ H with f |∆G“ f∆.

A projective resolution of a protorus G “ G0 is an exact sequence K � P � G where P is
a torsion-free protorus and K is a torsion-free profinite group. The following result is proven in
the narrative immediately following [2, Definitions 8.80].

Corollary 9. A protorus has a projective resolution.

Proof. Let G be a protorus and set r “ dim G. By the Resolution Theorem, G has a profinite subgroup
inducing a torus quotient, which we can take without loss of generality to be pZp~nq for some~n P Sm,

m “ widthnA
pZp~nq. Identifying Zr in the natural way as a subgroup of pZr, an isomorphism of free

abelian groups Zr Ñ Z
pZp~nq extends by continuity to an epimorphism f∆ : pZr�pZp~nq, thus inducing

an exact sequence K � pZr�pZp~nq where K is torsion-free profinite. We have ppZr ˆRrq{diagpZrq –t

PpGq “def
pQb G_q_. By Lemma 7, f∆ induces a projective resolution K � rpZr ˆ LpPpGqqs{ΓPpGq �

rpZp~nq ˆLpGqs{ΓG.

A completely decomposable group is a torsion-free abelian group isomorphic to the dual of
a completely factorable protorus. An almost completely decomposable (ACD) group is a torsion-free
abelian group quasi-isomorphic to a completely decomposable group. The Pontryagin dual G of
an ACD group is distinguished in the setting of protori by its uniqueness up to topological isomorphism
being dependent on a finite factor of an element of LpGq.
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Corollary 10. If G is a protorus with dim G “ dimnA G, then G_ is an ACD group.

Proof. Let ∆G P LpGq. Multiplying ∆G by a sufficiently large N P Z effects widthnA N∆G “

dimnA N∆G. Since NG “ G, we can assume without loss of generality that widthnA ∆G “ dimnA ∆G “

dim G. Let ∆H denote the standard representation for ∆G and ψ : ∆G Ñ ∆H an isomorphism with

ψpZ∆Gq “ Z∆H “
def Ze1 ‘ ¨ ¨ ¨ ‘ Zedim G where ej “ p0, . . . , 0, 1j, 0, . . . , 0q, 1j “ p1jpqpPP, 1 ď j ď m.

By Corollary 5 there is a completely factorable protorus H with dim H “ dim G and ∆H P LpHq.
By Lemma 7, there is an epimorphism pψ : G Ñ H extending ψ. Symmetrically, there is an epimorphism
pη : H Ñ G extending η “

def
ψ´1 : ∆H Ñ ∆G. It follows that pψ_ : H_ Ñ G_ and pη_ : G_ Ñ H_ are

monomorphisms. By [7, Corollary 6.2.(d)], G_ and H_ are quasi-isomorphic. It follows that H_ is

completely decomposable and G_ is an ACD group.

We return to the analysis of morphisms of protori. There is a functor L from the category
of topological abelian groups to the category of real topological vector spaces [2, Corollary 7.37]:
for a morphism f : G Ñ H of topological abelian groups, the map Lp f q : LpGq Ñ LpHq given by
Lp f qprq “ f ˝ r is a morphism of real topological vector spaces satisfying expH ˝ Lp f q “ f ˝ expG.

Proposition 7. A morphism G Ñ H between torus-free protori restricts to morphisms p∆LpGq Ñ
p∆LpHq,

expG LpGq Ñ expH LpHq, and a continuous map XG Ñ XH .

Proof. Let D be a profinite subgroup of G. If ∆ P LpGq, then ∆`D is profinite because it is compact
and zero-dimensional: the addition map ∆ˆD � ∆`D is a continuous epimorphism and the kernel
K is closed (whence profinite), so we get an exact sequence K � ∆ˆD � ∆`D, whence dimp∆`
Dq “ dimp∆ ˆ Dq ´ dim K “ dim ∆ ` dim D ´ dim K “ 0 by Lemma 1. The natural map G{∆ Ñ

G{p∆` Dq is surjective, so ∆` D P LpGq. Hence, D Ď ∆` D Ď p∆LpGq. We conclude that p∆LpGq “
ř

tD : D a profinite subgroup of Gu, and similarly for p∆LpHq. In particular, p∆LpGq contains all profinite
subgroups of G; similarly for p∆LpHq.

Let f denote a morphism G Ñ H. If ∆ P LpGq, then K “ ker f X ∆ is profinite, so ∆{K –t f p∆q
is profinite. Thus, f p∆q Ď p∆LpHq. It follows that f pp∆LpGqq Ď

p∆LpHq. In addition, expH ˝ Lp f q “
f ˝ expG implies that f rexpG LpGqs Ď expH LpHq. Lastly, Theorem 1 gives that f pXGq “ f pp∆LpGq X

expG LpGqq Ď f pp∆LpGqq X f pexpG LpGqq Ď p∆LpHq X expH LpHq “ XH .

Remark 4. The continuous map XG Ñ XH in Proposition 7 is not, in general, a homomorphism of
torsion-free abelian groups.

Proposition 8. For a morphism f : G Ñ H of torus-free protori there exist ∆G P LpGq, ∆H P LpHq such that
f lifts to a product map f |∆G ˆ Lp f q : ∆G ˆLpGq Ñ ∆H ˆLpHq.

Proof. Let ∆G P LpGq. By Proposition 7, f pp∆LpGqq Ď
p∆LpHq. By Theorem 1, p∆LpHq “

Ť

∆PLpHq
∆. Each ∆ P

LpHq is open in p∆LpHq because the intersection of any two elements of LpHq is an element of LpHq
with finite index in any other element of LpHq containing it (Proposition 2.1.2, [8]). By Proposition 7,
f p∆Gq Ď p∆LpHq. Because f p∆Gq is compact and the elements of LpHq are open in p∆LpHq, there are
finitely many elements of LpHqwhich cover f p∆Gq; let ∆H P LpHq denote the sum of these elements.
Then, f p∆Gq Ď ∆H . Since expH ˝ Lp f q “ f ˝ expG, it follows that f |∆G ˆ Lp f q : ∆G ˆ LpGq Ñ
∆H ˆLpHq is a lifting of f : G Ñ H.

A morphism of torus-free protori lifts to one between the minimal divisible locally compact covers:

Theorem 2. (Structure Theorem for Morphisms) A morphism f : G Ñ H of torus-free protori with duals X
and Y lifts to a product map f |

p∆ ˆ fL : p∆X8 ˆLpGq Ñ p∆Y8 ˆLpHq.
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Proof. This follows from Proposition 8 because p∆X8 “
ř

∆PLX8

∆.
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