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Abstract: The fractional traveling wave solution of important Whitham-Broer-Kaup equations was
investigated by using the g-homotopy analysis transform method and natural decomposition method.
The Caputo definition of fractional derivatives is used to describe the fractional operator. The obtained
results, using the suggested methods are compared with each other as well as with the exact results
of the problems. The comparison shows the best agreement of solutions with each other and with
the exact solution as well. Moreover, the proposed methods are found to be accurate, effective, and
straightforward while dealing with the fractional-order system of partial differential equations and
therefore can be generalized to other fractional order complex problems from engineering and science.

Keywords: g-Homotopy analysis transform method; Natural decomposition method;
Whitham-Broer-Kaup equations; Caputo derivative

1. Introduction

The modern, broadly considered concept of fractional calculus was developed from a question
raised by L'Hospital to Gottfried Wilhelm Leibniz in 1695. L'Hospital insisted on knowing about the
outcome of the derivative of order « = %, which laid down the foundation of a powerful fractional
calculus [1,2]. Since then, the new theory of fractional calculus has gained the full attention of
mathematicians, physicists, biologists, engineers, and economists in many areas of applied science.
In modern decades, researchers have recognized that fractional-order differential equations contributed,
in a natural way, to the study of different physical problems, such as diffusion processes, signal
processing, viscoelastic systems, control processing, fractional stochastic systems, biology and ecology,
quantum mechanics, wave theory, biophysics, and other research fields [3,4].

Partial differential equations (PDEs) involving non-linearities explain different phenomena
in applied sciences, technology, and engineering, ranging from gravity to mechanics. In general,
non-linear PDEs are important tools that can be used in various fields such as plasma physics,
mathematical biology, solid state physics, and fluid dynamics for modeling nonlinear dynamic
phenomena [5]. The majority of dynamic schemes can be denoted by an acceptable array of PDEs. It is
also well-appreciated that PDEs, such as Poincare and Calabi conjecture models, are utilized to solve
mathematical difficulties.

It has been found that the non-linear development of shallow water waves in the fluid dynamics is
described by utilizing the coupled scheme Whitham-Broer—Kaup equations (WBKEs) [6]. The coupled
scheme of the above equations was developed by Whitham, Broer, and Kaup [7-9]. The above equation
defines the propagation of shallow water waves with specific diffusion families.
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In the classical order, the major equations of the said phenomena are given as:

5 ou(a,n) | ou(a,) | ov(a,n)
o f—
Dﬂy(a”?)—i_‘u(“/’?) a“ + a“ +g a“ _0/
5 ov(a, ou(a, Pula, %v(a,
D§ua )+ o) ) gy ) TH) VO g5

Here u(a, 1) and v(a,7) describe the straight velocity and height, which deviate from the
equilibrium situation of the fluid, respectively, and p and g are constants expressed in various
diffusion forces. Investigating solutions to such nonlinear PDEs over the last several decades it is an
important research area [10]. Several scientists have developed numerous mathematical techniques
to explore the approximate solutions to nonlinear PDEs. Aminikhah and Biazar [11] used the HPM
(homotopy perturbation method) to solve the coupled model of Brusselator and Burger equations.
Noor and Mohyud-Din [12] utilized HPM to examine the solutions of different classical orders of PDEs.
Ahmad et al. [5] studied a coupled scheme result of WBKEs by the Adomian decomposition method
(ADM). Whitham-Broer—Kaup equations are solved by other researchers using different analytical
and numerical methods, such as the hyperbolic function method [13], residual power series method
(RPSM) [14], Adomian decomposition method [15], reduced differential transformation method [16],
homotopy perturbation method [17,18], exp-function method [19], Lie Symmetry analysis [20,21],
G/ G?-Expansion method [22], and homotopy analysis method [23]. Recently, Amjad et al. [10] used
the result of a standard order coupled of fractional-order Whitham—-Broer-Kaup equation by the
Laplace decomposition method.

Singh et al. [24] suggested the g-HATM, which is a well-designed mixture of Laplace transform
and q-HAM. The future system monitors and manipulates the sequences result, which converges
quickly to the exact solutions for the problem. The strength of the proposed technique is its ability to
combine two powerful algorithms to solve both numerically and analytically linear and non-linear
fractional-order differential equations. A future procedure has several study properties that include
a non-local effect, straightforward result system, promising broad convergence area, and free of
any perturbation, discretization and assumption. It is worth disclosing that, using semi-analytical
techniques, the Laplace transform takes less C.P.U. time to determine the solutions of complex nonlinear
models and phenomena that occur in technology and science. The solution q-HATM includes two
auxiliary parameters i and 1, which aims to help us modify and control the solution’s convergence [25].
Recently, with the help of g-HATM, several researchers studied different phenomena in different
fields for example, Singh et al. studied to find the advection-dispersion equation solution [26] and
Srivastava et al. used an arbitrary order vibration equation model [27].

The natural decomposition method (NDM) is a mixture of the Adomian decomposition method
and the natural transform method (NTM). In 2014, S. Maitama and M. Rawashdeh first implemented
the NDM [28,29] to solve linear and non-linear ordinary differential equations (ODEs) and PDEs that
occur in several fields of science. A huge quantity of physical models have been studied using NDM,
such as the study of fractional order diffusion equations [30], fractional order delay PDEs [31] nonlinear
PDEs [32,33], the fractional uncertain flow of a system of polytropic gas [34], fractional-order physical
schemes [35], fractional wave and heat problems [36], and fractional telegraph equation [37].

In the current research article, two analytical methods, namely the natural decomposition
method and g-homotopy analysis transform method are used to solve the fractional-order
Whitham-Broer-Kaup equation. The solutions obtained by the proposed techniques are very simple
and straightforward. Moreover, the accuracy of the present methods is sufficient to obtain the analytical
solution of the targeted problems. The obtained solutions are compared and to found to be in a good
agreement with the exact solution for the problem. This article introduces an approximate analytical
solution of a multi dimensional, time fractional model of the Whitham-Broer-Kaup equation by
implementing NDM and q-HATM.
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2. Preliminaries Concepts

Definition 1. The Laplace transformation of a Caputo fractional derivative D°g(1) is described as:

ED%g(n)] = $"R(s) = T 0D (0")] m—1<5<m
j=0

Definition 2. The natural transformation of the g(17) function is represented by N*[g(y)] for n € R and
identified by:

NT[g(n)] = R(s,u) = /j; e g(n)dy; s,u€ (—oo,00),

where the natural transformation variables are s and u. If g(n)Q(1) is described on the real positive axis, the
natural transformation is described as:

N*g(nQUn) = N* (3] = R*(s,u) = [ e Igpdn; s,ue (0,00), and yeR

where Q(n) represents the function of Heaviside. Simply, for u = 1, the equation is reduced to the Laplace
transformation, and for s = 1, the equation is the Sumud transformation.

Theorem 1. Let R(s,u) be the natural transformation of the function g(n), then the natural transform
Rs(s, u) of the Riemann—Liouville fractional derivative of g(1) is symbolized by D°g (1) and is presented as:

6 m—1 j )
N D) = Rolsi) = SR Gs) = L, 507 )0
o

where § is the order and m be any positive integer. Furthermore, m —1 < § < m.

Theorem 2. Let R(s,u) be the natural transformation of the g(17), then the natural transformation R (s, u)
of the Caputo fractional derivative of g(1) is symbolized by D°g(n) and is represented as:

+r1co c S(s k= S(S_(j_'_l)
NT[D°g(n)] = Ri(s,u) = 5R(s,u) = ZO
j=

i [ng(ﬂ)]ﬂio m—1<é<m

Definition 3. The fractional derivative of ¢ € C™; in the Caputo sense is represented as:

a"g(17) _
pjgn =4 "
oy Jo (1= @) 07" (@)ag, m—1<s<m, meN.

Definition 4. Function of Mittag—Leffler, E5(b) for 6 > 0 is defined as:

o0 bm
Es(h))= Y ——— 6>0 beC,
2(0) Eor(dmﬂ)

3. The Procedure of NDM

In this section, we describe the NDM solution scheme for fractional partial differential equations.

Dip(a,n) + Ra(p,v) + Mi(p,v) — Pr(, ) =0,

1
ng(zx,ﬂ) + Ro(u,v) + No(p,v) — Pa(a,n) =0, 0<66<1, W
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with the initial condition:
u(e,0) = g1(a), v(a,0) = ga(a). 2)

where is Dg = % the Caputo fractional derivative of order §, Rq, R, and N, N, are linear and
non-linear functions or operators, respectively, and P;,P, are source functions.
Applying the natural transform to Equation (1),

N*[Dyp(a, )]+ NT[Ry(p,v) + N, v) — Pr(w,1)]
N*[Dv(, )] + N*[Ra(u,v) + Na(p,v) — Pa(a, )]

7

0
®)
0.

Using the differentiation property of natural transform, we get:

ud m—1 g0—k=1 gk

+ _w p(e 1) ”j + _”75 +
N*[p(a,)] = 5 kZ T o =0+ NP, )] = F N H{Ra(w,v) + M)},
0

Aml&klak( ) ul 1 N (4)
N ) = 55 ¥ S TR o SN Paa )] - SN {Ra(v) + Mo )}
k=0 n
NDM describes the solution of infinite series p(«,7) and v(a, 77),
n =Y #mlan), viay) Z v (@, 77), ()
m=0
Adomian polynomials of non-linear terms of A7 and N, are represented as:
N1 Z AH’ll NZ ;’l/ Z BH’H (6)
All forms of non-linearity of the Adomian polynomials can be defined as:
1 am d k d k
Am:f o N1 Z/\]xlk,Z/\l/k ,
m! | AT — —
k=0 k=0 A=0 @)
Bu= |2y (Y Ak, YA
m= 1 gam 2 k;) Vkrk;) Vi ,
= = A=0
Substituting Equations (13) and (14) into Equation (12) gives:
yb m=1 go—k— 1aky( )
NIY pin(a)] = 5L =0+ 5 LN Py )} —N*{Rl( Y s Y )+ 3 An,
m=0 k=0 m=0 m=0 m=0 (8)
N yb m=l g6—k-1 akv(a,”) ud " ud . 0 0
N [Z v (&, 17)] = 3 Z Sk © |r7:0 + 5N {Pa(a, 1)} — =N {Ra( Z Hm, Z Um) + Z B},
m=0 5" k=0 U o Ul s s m=0 m=0 m=0
Applying the inverse natural transformation of Equation (16),
0 yd m=1 go—k— 18"]4( ) u ud o0 )
L (e =N 15 L S T + SN (Puel NN RACL o 1 o) + L An]
m=0 =0 m=| m= =l
0 0ml§klak( ) e © 0 (9)
Z Vi (&, 77) = [S,; 2 ok |;7 0"" N+{P2(“ 1)} — N7[57N+{R2 Zoﬂm Zovm + 2 B},
m=0 k=0 m= m= =
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we define the following terms,

ud m= 1 g0— k—1 Kk
e e M X))

(Sml(Sklak( (10)

) = N[5 T S P N Pt

)
_u
pa(e,77) = =N [57N+{R1(Pio,vo) + Ao}l,
6
_u
vi(a ) = =N~ [FN"{Ra(po, v0) + Bo}],
the general for m > 1, is given by:
T
Hn1 (@ 17) = =N7[ZNT{R (i, vin) + A},
)
_u
U (a,77) = =N [57N+{R2(P‘erm) + B}l

4. Fundamental Idea of q-Homotopy Analysis Transform Method

To introduce the basic concept of the current method, we consider a fractional-order nonlinear
PDEs of the form:

Dju(e, B, 1) + Rp(ee, B, ) + Nu(e, B, 1) = f(a, B,77), 1<6<n, (11)

where D¢ y(tx B,1) denote’s the Caputo’s fractional derivative R and N are linear and non-linear
functlons or operators. Using the differentiation property of the Laplace transform on Equation (12),
we get:

2£u(e, B,1)] — k;) 0k 1W|q o+ £[Rp(a, B,17) + Nu(w, B,1)] = £[f(a, B,7)],  (12)

) 0
£IDfuto )] = luto )~ 5y T PGB 13

On simplifying Equation (13), we have:

uo,Bp) — 2"“8’“"5’%_ L bRy, 1) + Nuw o) — fla, )] = 0. (19)

We can describe the non-linear operator as:

N(p(a, B1;9)) = £lp(e, B, 1:0)] — L Z ok 1W\q:o+%£[1€¢(«x,ﬁ/w)]
k=0 T ° (15)

L eINg(a, B 9)]) — —£Lf (2, b)),

where g € [0, ] and ¢(a, B, 17;q) is real function of «, B, 77, and q. The concept of a nonzero auxiliary
function of homotopy is the following:

(1 —nq)E[¢(a, B,m;q) — pole, B,17) = hgH(a, B,n)N[p(a, B,1,9)], (16)
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where £ a sign of the Laplace transformation, g € [0, ](n > 1) is the embedding parameter, 71 # 0 is
an auxiliary parameter, H(«, B, 77) signifies a nonzero auxiliary function, ¢(«, B, 7;q) is an unidentified
function, and po(a, B, 7) is an initial guess of (&, B, 17). The subsequent outcomes hold correspondingly
forg=0andg = 1.

¢(a, B,1;0) = po(e, B, 1), (e, B, 17, 1) = (e, B,1) (17)

Thus, by intensifying g from 0 to , the result ¢(a, B, 17;q) converge from pg(a, B, 7) to the solution
u(a, B,1). Expand the function (/)(uc B,1,q) in sequences form by using the Taylor theorem near to g,
where one can get:

¢(a, B,17;9) = pole, B, 1) + i (e, B,1)g™, (18)

m=1

where,

1 9"p(wpma) | 19
Hole o) = L ———5m— |4 (19)

On selecting the auxiliary linear operator, ug(«, B,77) , n and i, the series (19) converge at g = % and
then it produces one of the results for Equation (12):

[
) = pole o) + X ente o))" 20

Now, differentiating the zero-th order distortion Equation (17) m-times with respect to g and then
dividing by m! and lastly taking g = 0, which provides:

Elpm (e, B,1) — Kimptm—1(a, B,17)] = 1R (pr 1), (21)

where,
H = po(e, B,17) + p1(a, B,17)eeeenes i (&, B, 77). (22)

Using the inverse Laplace transformation on Equation (22), it produces:

pm (@, B,1) = Kptm—1 (2, B,17) + HE R (1) 1)] (23)
where,
Km 0
(1) = s o )] = = 52T 0GB i )
1 (24)
+ Sl(g"g[?)%(,um—l + Hm—l]r
And,
ko = {O’mgl (25)
I,m>1

In Equation (25), H;, denotes a homotopy polynomial and is defined as:

19"
Hin = po(a, B, 1) = .qu—o and  p(a, B,17;9) = Po + 41 + 42 + (26)
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By Equations (24) and (25), we have:

b B, 1) = o W), Bp) — (1 )2 1[2 2k 13"(“5 TP o 1 Lelfa, 1)
oy (27)

1
+he! [sjg[m(ym_l + Hy—1))-

On solving Equation (28) for m = 1,2, 3,4, ...... with the help of yg(«, B, 1) = u(x,y,0) and Equation (25),
we get the iterative terms of y,,(«, B,717). The g-homotopy analysis transform method series solution is
given by:

e, B,yp) = ZO“'”(“’ B i) (28)

5. Numerical Examples

Example 1. Consider the coupled system of the fractional-order Whitham—Broer—Kaup equations with:

5 ou(a,17) | op(a,n) | ov(a,n)
0 _
Dy p(a,n) + p(e, 1) P 0,
ov(a, 1) opu(w,n) | LPu(a,n)  0*v(wn) (29)
) _ =
Dyvie, i) + pla, ) —5 = +vlan)——7 == +3—> 3 2 Y

0<6<1 —-1<y<1 -10<a<10,

with the initial condition:

{ p(a,0) = 1 — 8tanh(—24), 30)

v(w,0) = 16 — 16 tanh?(—2a).

Firstly , we will solve this scheme by using the NDM.

After the natural transformation of Equation (29), we get:

65 w, a w, a o, aV «,
N+{ya(17517)}:_N+ |:,‘I/l(06,1’]) y(aan)_F ,u(aaﬁ)_F (80(77):|,

v (a, ov(w, Pula, Pula,
N = N o) P v 2 TR T,

op(a,
ow
g 51
%N+ {p(a,m)} - 57;4(“,0) = _N* {y(alﬂ)aﬂg’z m E_) n av(apzﬂ)}

J o—1 3 2
SNt _$ _ Nt (e, 1) (e, ) L O°p(a, 1)  O7v(a, 1)
SN ()} = v(w0) = <N [, G o, B 5T S

The above algorithm is reduced to be simplified:

N (o)) = & (w0} — SN [t 2] Blee) | S]],

(31)
1 v(a, 3 Pula,n)  *v(w,
N* {v(a,n)} = g{v(a,O)}f%W {ﬂ(lx,ﬂ) V(;;”) +v(a,1) ”(a'x 1) g ;;(:; ) "8(52'7)},
Applying inverse natural transformation, we get:
_ - [w (e, ) | Oplayy) | dv(a,n)
p(a,n) = p(a,0) =N bN* [ﬂ(a,ﬂ) o T ot o H o)

u‘s 1% 14 3 21/
o) = v(0,0) = N~ [N [ 20 o, 21 T n) Frle )]
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Assume that the unknown functions p(«,77) and v(«, 77) infinite series solution is as follows:

o) e}

) =Y pm(,n), and v(a,n) =Y vmla,n)

m=0 m=0

Remember that pp, =Y 50— Am, Wa = Yyeo Bm and viy = Y5 Cin are the Adomian polynomials
and the nonlinear terms were characterized. Using such terms, Equation (32) can be rewritten in
the form:

hgk

pn 1) = (2, 0) = N [g‘fm [i A+ 28] a““"”H :

m=0 m=0
© ) [ee] (o) 3 2
_ CN- N *plw,n)  o7v(a, i)

mgow(%ﬂ) =v(a,0) =N lS-N L;08m+mgocm+3 =3 el il

3 plan) = 3~ Blanh( -2 - N [”fm{i A+ 2 H

P (33)
i V”’(a'”) =16— 16tanh2(721x) - N~ |: N* |:Z Bm + Z Cm ( ]1) az a(az 17):|:| ’
m=0 m=0 a

According to Equation (7), all forms of non-linearity the Adomian polynomials can be defined as:

_dup /) ayo 9y oy I
Ao—ﬂOTa, A1—Moa to s BO—VOTﬁr =Ho=, 9B +His, T
_ O I dpo
Co = Vo G = Vo - F Vi

Thus, we can easily obtain the recursive relationship by comparing two sides of Equation (33):

mo(a, ) = % — 8tanh(—2a), vp(a,7) = 16 — 16 tanh?(—2a),

Form =0,
2 ’7(5 2 77(5
— — = — he (-2 nh(—2
ui(a, 1) 8sech”( Z(X)F((S 1’ vi(a, 1) 32sech”(—2a) tanh( a)l"(é 1’
Form =1,

20
)t
T(20+1)
vy (e, 1) = —32sec h?(—2a) {40 sec h?(—2«) tanh(—2a) + 96 tanh(—24) — 2 tanh?(—2a) — 32 tanh®(—2a)

26

_ 20 Ui
25 sec h*( 2“)}F(25+l)'

2(a,m) = —16sech?(—2a) (4sec h?(—2a) — 8 tanh?(—2a) + 3 tanh(—2x
M Ui

In the same procedure, the remaining t,, and v, (m > 2) components of the NDM solution can be
obtained smoothly. We therefore determine the sequence of alternatives as:

) = 3 ) = polesB) ) + il B) + s (0. B) +

v(a,n) = i vin(a, B) = vo(a, B) +v1(a, B) +va(a, B) +va(a, ) +

m=0
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)

1 oy 2(_ Ui
y(a,iy)—z 8tanh(—2a) — 8sech”( 2“)1"((5—#1)

26

- 2 2 Ay 2 _ n .
16 sec h*(—2a) <4sech( 2a) — 8tanh”(—2a) + 3 tanh( Zoc)) T20 1)

)

v(a,5) = 16 — 16 tanh?(—24) — 32 sec h?(—2«) tanh(—za)ﬁ

— 32sec h?(—2a){40 sec h*(—2a) tanh(—24) 4 96 tanh(—2a) — 2 tanh?(—2«) — 32 tanh®(—2a)

26

_ 2.
25sec h*( 2“”1"(2(5—1—1)

In Figures 1 and 2, the exact and natural decomposition method (NDM) solutions at an
integer-order 6 = 1 are represented for both y(«,7) and v(a,n) of Example 1. It is observed that
NDM solutions are in good contact with the exact solution of the problems. In Figures 3 and 4, various
fractional-order solutions of Example 1, at different fractional-orders, § = 1,0.8,0.6,04 and 7 = 1
are plotted. It is investigated that for Example 1, the fractional-order solutions are convergent to an
integer-order solution for both y(«, 1) and v(a, 7).

Exact

Figure 1. Exact and NDM solution of p(a,7) até = 1.

Exact NDM

Figure 2. Exact and NDM solution of v(«,7) at 6 = 1.
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| Exact solution
| Approximate * * *
6
"
-
|]_-
"
_4_-
N
16 4
Exact solution
i Approximate *
12 4
104
3
é
44
24
04

Figure 4. Exact and NDM solution of v(«, 7) at different fractional order 6 = 1,0.8,0.6,0.4, and 7 = 1.

]

5.1. g-Homotopy Analysis Transform Method

The Example 1 approximate solution with the help of q-HATM.
After the Laplace transformation of Equation (29), we get:

£{ulan)} = %{y(w,o)} - %5 [y(a,ﬂ)aﬂ(a";’?) L onley) | dv(e)

o du |’ (34)
_1 1 v (a, 1) ou(wn) | Pulen)  v(en)
£l )} = 5 (0,00} = S o) 5 o0, DG TN 2
By the help of Equation (34) we define the nonlinear operator as:
NY[g1 (e, 7;9), ¢a(a, 1739)]
1 1 ) ) , o ,
= £ pulo ) — 5 (@0} + 5 {r(a) 242 Brf) | S,
(35)

N[ (a,7;9), 2, 7;9)]

3 2
= £ |2l 0) = 5 (0200} + 55 {r(om) P o) Sy 50 T,
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By applying proposed algorithm, the deformation equation of m-th order is given as
ﬁ[ﬂm(ﬂil ’7) - Kmﬂmfl (D‘r 77)] = hﬁl,m[?mflr 711171]/ (36)
E[Vm (“z 77) — Kinvip—1 (‘X/ 77)] = h%Z,m[7m—1/ 7m—1]/
R [Tt V] = £l () — (1= ) 12— Btanh(~20))
m=l allmf 4("‘/’7) Opm—1(a, ) | Im—1(2,7)
‘5{ 2 Hi® 18134] : Bltx * ala H
1 (37)
§R2,m[7m—1/ 7m—l} = E[mel (DC 77) - g{lﬁ —16 tanhz(—th)}

= o +3 o’ B on? -

1 m= oy o, m=1 Olpy—i—1(a, P (a, Py 1w,
+57{§yj(a, M+ZVJ(“ 17) Hm—j 1( '7) 2 1(0( 17) V. 1(0( 17)
=
By applying inverse Laplace transform on Equation (36), we get:

pm (&, 1) = Kypty—1(,17) +hL™ 1%1m 7m 1, Vm 1), (38)
Vi (00,7) = KoV 1(6,7)] + AL Ry [ w1, Vo,

By the help of given initial condition, we have:

1
Ho(a, ) = 5~ 8tanh(—2a), (39)
vo(a, ) = 16 — 16 tanh? (—2«).

To find the value of po(«, 7) and vg(a, 77), set m = 1 in Equation (38), then we get:

(e, ) = Kupio (e, 1) +hE" R 1[0, Vo), @)
via, 1) = Kavo(a, )] + ™ Raa [Ho, Vo],
From Equation (37) for m = 1, we get:

Ri(#o, Vo] = £luola, 7)) — (1 - kl) {* — 8tanh(—2a)}

+ ot (e ) P8 aﬂo(w"” n a”Og‘j;”) .

(41)
Ror |70, Vo = £lvola, )] — (1—"4) {16 — 16 tanh?(—20)}

1 v (a, 1) aﬂo(wlﬂ) Puo(a,n)  *vo(w, 1)
+7£[{VO(R/U)T+VO(‘X/U) 80( +3 aa3 aaz }]

Then by using Equations (25) and (41) in Equation (40), we get:

(e 7) = e[ (5~ 8tanh(~200} — (1~ ) {7 ~ Btanh(~2a)}

+ Sl (o) 2521 o BT a”’éi’”) M,

vi(a, 1) = h£71[%{16 — 16 tanh?(—2a)} —

(42)
(1—7) {16—16tanh2( w)}

1 ovo(a, 1) dpo(a, 1) uo(v«,n) ~ Pwp(w 1)
+ st {poe ) P g (a, ) PO 5 TS 0,

¢ s
pi(e, ) = —8hsech2(—2a)r((;7+ 1)’ vi(a, ) = —32hsech2(—21x) tanh(—2oc)r((;7+ il
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Similarly from Equations (40) and (41) for m =2, we have:

po(a ) = () R el ()] — (1= )T~ Stanh(~200) + el o ) L)

opo(a, ;) | dpa(a, ) | ova(a, 1)
ow + o + ow HI

valn) = o)+ & el )] — (1= ) 16— 16 tanh®(~200) + Ll ) 21

g (w, duq(a,
a2 P

+ (e, 1)
(43)

oo ) | L Pm(wn)  Pun(an)
on +3 on’ T a2 I

In the case of simplified, the above calculation eliminates as described:

)

Ha(w,17) = —8(n + h)l sec h*(—20) - ( 5’7+ 5~ 1612 sec h2(—2a) (4 sec h2(—2a)
5 e
— 8tanh”(—2u) + 3tanh(—2a))m,
5
va(a,n) = —32(n + h)hsec h*(—2x) tanh(—Za)ﬁ — 32h% sec h*(—2) {40 sec h*(—2a) tanh(—2«)
25

—2a) — 2(—2a) — 3(—2n) — 2(_ _n

+ 96 tanh(—2a) — 2 tanh”(—2a) — 32 tanh” (—2a) — 25sec h*( 204)}F<2§+1),

The rest of the iterative terms can be used in the same way. Formerly, the family of g-homotopy
analysis transform technique series result of Equation (29) is assumed by:

o

1 m

wle, ) = pola )+ 3 () (5)"
- (44)

o0 1 m

vie, ) =vola, )+ Y vn(a, ) (2",

m=1
The exact solution of Equation (29) atd =1,
1

ula,n) = E—Stanh{—Z (w—g)}, )

2 n
v(a,77) = 16 — 16 tanh {—2 (zx - E) } .

In Figure 5, the graph of exact and q-HATM solutions for i (a, 77) of Example 1 are displayed. It is
observed that, the solutions of ¢-HATM are in good agreement with the exact and NDM solutions.
Similarly Figure 6, express the exact and q-HATM solutions for v(«, 7). The plot representation also
confirmed the higher accuracy of the proposed method with the exact solution for v(«, 7). Furthermore,
the graphical representations of the solutions of the proposed method have reflected its applicability
and reliability. This provides the motivation to apply the current techniques for other fractional-order
partial differential equations.
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Figure 5. Exact and g-HATM solution of y(«, %) até = 1.

¢ HATM

Figure 6. Exact and q-HATM solution of v(a, %) at § = 1.

Example 2. Consider the coupled system of fractional-order Whitham—Broer—Kaup equations with:

ou(a, )  1ou(a,n)  ov(a,n)
6 pla,n) | Lopla n _
DqV(“IW)"‘V(’Xr’?) aa +2 a“ + aa _0/

av(a, 1) (e, ) _ 19%v(a, 1) (46)
5 —_ =
D,]V(DC,U) +,u(“;77)T+V(“/77) o 2 o2 0,

0<d6<1 0<ny<1, —-100<a <100,

with the initial condition:

{ #(a,0) = ¢ — k coth[x(a + 6)], (7)

v(a,0) = —x2cosech?[k(x + 0)].

Firstly, we will solve this scheme by using the NDM.
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After the natural transformation of Equation (46), we get:

R R T s et

N {a%a(;;m} = -N* [ﬂ(a,ﬂ)w +u(a,,7)aﬂ(a":£’7) _ ;azva(:cz,n)] ,
f;N* {V(“/U)}—S;ly(a,O) — _N* {y(a,,?)a%f(av;m %ay(ﬁ{”) N av(})»;vy)}
ZZW {v(o )} - i;lv(w) = -N* [w,n)a”g‘;’” v ) 20 ;822)(;2@] ,

The above algorithm is reduced to the simplified form as:

)
N* {u(a, )} = %{y(a,o)} _ LS%NJF [u(w)a”gl’") N %ay(aﬂzﬂ) N 81/(80‘:77)] ,

A (48)
1 u° ov(a,7) ou(a,n)  10%v(a,n)
+ _ = NG ovie, 1) )2 ’
N o) = § (vl 00 = SN [, 25 ) ) -
Applying the inverse natural transformation, we get:
_[ud ou(x, 10u(a, ov(a,
u(a,n) =pu(a,0) — N —b.N+ u(a,n) G + = G/ + (1) ,

s ou 2 ow ou (49)

J 2
e e el !

Assume that the unknown functions p (&, 77) and v(, i7) infinite series solution is as follows:
wlan) = 3 (), and v(an) =} velan),
m=0 m=0
Remember that ppy = Y 50— Am, Wa = Ypy—o Bm and viy = Y5 Cin are the Adomian polynomials

and the nonlinear terms were characterized. Using such terms, Equation (49) can be rewritten in
the form:

[e.9)

r) [}
_ N | BNt Lop(a, ) | ovia,y)
pm(a,1) = p(a,0) = N [55 N [EOA’" 2w T '

m=0
e v [ [Ee B 32552
m=0 m=0

m=0

ngk:

) oo 9 ) P )
tm(a, 1) = & —xcoth[x(a +0)] — N~ [Z&N+ LZZOA"”L; V(a";ﬂ) i V(al’;ﬂ)H ,

m=0

(50)
1 0o 00 >

) = —eosecx(a+0)] - N | SN | & Byt 3 G- 3 201 |

s m=0 m=0 2 a“

[1e

m=0

According to Equation (7), all forms of non-linearity the Adomian polynomials can be defined as:

LSI7) g M

_ .%o _ 9, OHo _ .M _ o, 9
Ao—#oa“, A= T Bo—}loaﬁ, B1—#oaﬁ+ﬂlaﬁ,

dpo dpy dpo

Co = VOW' G = VOW +V1$,



Axioms 2019, 8, 125 15 of 21

Thus, we can easily obtain the recursive relationship by comparing two sides of Equation (50):

po(a,n) = & — kcoth[x(a +0)], vo(a,n) = —k>cosech®[x(a + 6)],

Form =0,
2 2 n°
1 (a,n) = —&x>cosech”[x(a + 6)}m,
5
(o 7) = ~Excoseck?[x(a +6)| cothlx(a + ) 5
Form =1,

o (a, 17) = Ex*cosech® [ic(a + 0)] { ( 28T (26 + 1)1 (3 coth?([k(a + )] — 1))y }

[(60+1))2T(3s+1) r(26+1) ’
1 Ercosech® (3 coth? ([x(a + 0)] — 1))
va(a, 1) = W[Z(,‘K%osechz[ic(a +0)]]] TG+ T 1)
2&xcosech? coth? ([k(a + 0)])% 2 coth(3cosech? ([x(a 4 )] — 1))52
T(6+1)(35+1) Bl T(20+1) ]'

In the same procedure, the remaining 1, and vy, (m > 2) components of the NDM solution can be
obtained smoothly. Thus, we determine the sequence of alternatives as:

we ) = Y e B) = oo B) + ua (o, ) + eale, B) + is(a, B) +

m=0
W) = 3 v ) = v0(0 )+ v1 (@, B) + v, )+ vs(a, ) +
m=0
1
u(a,n) = & — x coth[x(a + )] — Excosech® [k (a + 9)]%
25xkT(20 + 1) (3 coth®([k(a +6)] — 1))
+ ateoseci(a +6) { (T(6+1))T(35+1) T(25+1) }_
)
v(a, ) = —x>cosech® [k (a 4 )] — Ex>cosech? [k (a + 6)] coth[k(a + 6)] ﬁ
K 2(3 coth?([x — %
+ 7”51_’_ 0 (2 cosech? [k (w +9)]][§ cosecth ?(5 —T—hl)(l[“(gl);—'—i_—(i))] D)1
2&xcosech? coth? ([k(a + 0)])y%  2¢ coth(3cosech? ([x(a + 6)] — 1))y
T(0+1)L(36+1) B T(20 +1) I-

Figures 7 and 8 describe the graphical behavior of both the unknown variables yu(a,7) and
v(a,17) of Example 2 at an integer-order § = 1 respectively. The procedures of NDM and q-HATM
are implemented to obtain the desire accuracy. The higher accuracy and rate of convergence are
achieved by the proposed techniques as shown in Figure 9. The plot analysis demonstrates the validity
and accuracy of the proposed techniques and considered to be the best techniques to solve other
fractional-order problems.
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Figure 7. Exact and NDM solution of p(a,7) atd = 1.

Exact NDM

oo 1 1m0 1

Figure 8. Exact and NDM solution of v(«,77) at 6 = 1.

Figure 9. Error plot of y(a, 7) and v(«, 17).
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5.2. g-Homotopy Analysis Transform Method

The Example 1 approximate solution with the help of q-HATM.
By taking the Laplace transformation of Equation (46), we get:

£l = ¢ {u(w0)) — 5 [y(a,q)ay(“'”) Loy av(,x,ﬂ)} ’

ox 2 ox o
(51)

VX 14 21/ o
£} = (0000} = 5 [ula, 2 sy o, ) ATV,

Using Equation (51) we define the nonlinear operator as:

N'[gr(a,1:9), 4>z(w 7:9)]
—c[ormn) - a0} + 5 {orap 2 000 S,

N2[1 (2, 77;9), 4’2(0‘ 1:9)]
— [@(mn, )~ L0+ {mzx "

(52)

i (a,1)  13°¢(a, 1) H .

0
¢2( )+¢(0”7) a2 a2

By applying the proposed algorithm, the deformation equation of m-th order is given as:

Elpm (@, 1) — Kinpim—1(2,7)] = hR4 [ 7y, V1],

53
Elvm(a, 1) — KV —1(a,7)] = h§R2m[7m71r 7m,1], 9

Rt [ 7o, V1] = Elpm—1(a,7) — (1 — @) {& — kcoth[x(a + 6)]}

1 m=l Mm—1-j(a,m) 1 aym_l(a,n) oy —1 (e, 77)
mal Z Vj(“'n) Jx + 2 o + o .

1 (54)
Romn[ Hm-1, V1] = Elvm-1(a, ) — g{—KZCOSEd’lZ[K(& +0)]}

1 m=1 y—1—j(a,77) M=} Mm—j—1(a,7)  10%v,_1(a, 1)
e e

By applying the inverse Laplace transform on Equation (53), we get:

Vm(“/ 77) = Km]/‘m—l (0(, 77) + hL_léRl,m [7m—1/ 7m—1}/

_ (55)
Vin(a, 1) = Kny—1(, ’7)] +hL 1§R2,m[7m71/ 7m71}-

By the help of the given initial condition, we have:

to(a, ) = & — x cothlx(a + 6)],

vo(a, ) = —x*cosech*[x(a + 6)]. (56)

To find the value of po(«, 7) and vg(a, 77), set m = 1 in Equation (38), then we get:

pi(a, 1) = Kypo(a, 1) + hE IR 1[0, Vo),

57
1/1(0(,17) = Kﬂ/o(ﬁ(,ﬂ)} + h£_1§Rz,1[70, 70], ( )
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From Equation (54) for m = 1, we conclude:

Rua[Ho, Vol = £[uola,m)] — (1 - h )< {€ — xcoth[x(a + )]}
+%£[{uo(w,n)a”°§i"’7) +%3}40§aﬂ7) N 8vO§z,n)}]/
ki1 (58)

Roa[Ho, Vol = £[vo(a,7)] — (1 - —s{x Zcosech®[xc(a + 0)]}

ovp(a,77) opo(a, 1) 19%wp(a, 1)
)=y Htrlen) =T, 5 oz V)

1
+ —£[{po(a, 7

Then by using Equations (25) and (58) in Equation (57), we get

(o) = RE[{E — rcothx(a+ 6)]} — (1~ ) {& — xcothlx(a +6)])

4 s%ﬁ[{yo(“,ﬂ)aﬂoa(z,ﬂ) %a,uoa(zr 77) + aVOE()if 77) }”, o)
v1(e, 1) = h£‘1[§{—xzcosech2[1<(a +0)]} —(1- %)%{—K2cosech2[1<(1x +0)]}

1 v (a, 1) dpo(a, 7)) 10%wg(a, )
+ 75[“‘0(“/’7)7 +vo (e, 17) ™ 3 o2 HI
(e, 1) = —EhxZcosech™[ic(a + 9)]1_(;]7_‘:_1), v (&, 77) = —&hx2cosech®[ic(a + )] coth[x (a + 6)] r(éﬂj- 0y’

Similarly from Equations (57) and (58) for m = 2, we have:

pala ) = mpa o, ) B el ()] — (1= ) 24— wcoths(a+ )]} + S el{pofa,n) 21

1) 1op(a,n)  ovi(a,y)
+2 o + o }H (60)

1) +hE £ (a, )] — (1 - 7) {—x%cosech®[ic(a +6)]} + £[{F40(0< ,])31/1(“ 1)
1)

+ pa(a, )

e +vl<a,n>a”°§§ ) 18l

Ho(a,

o

(o, 1) = 1y (a,
o,

pr ) 220 P

In simplified, the above calculation eliminates as described:

o
pa(a, ) = —g(n+ h)thcosech2 [k(a + 9)]%

K 1)y 3 coth? 0)] — 1))n29
s s AT vl -,
vy (a,n) = —&(n + h)hx*cosech® [k (a 4 )] coth[x(a + 0)] (577_(:_1)

1 Excosech® (3 coth?([x(a + 0)] — 1))
FREy oo {s(a+ O G+ DIE5+1)
[x

2¢xcosech? coth? ([i(a + 0)])y®  2& coth(3cosech?([x(a + 0)] — 1))7%
T(6+1)r(36+1) a T(20+1) I
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The rest of the iterative terms can be used in the same way. Formerly, the family of g-homotopy
analysis transform technique series result of Equation (46) is assumed by:

> 1
e ) = pola )+ 3 (o) (5)",
m=1
~ , (61)
vie, ) = vole, ) + Y vin(e,m) ()™
m=1
The exact solution of Equation (46) at = 1 and taking ¢ = 0.005, # = 10 and x = 0.1.
p(a, 1) == ¢ — xcoth[i(a 46 — )], ©2)

v(a, ) = —x*cosech®[k(a 4 6 — &n)].

The solutions u(a,7) and v(«, ) are also obtained by using q-HATM and found to be in good
agreement with the exact solution of problems. For better understanding the results for both the
variables u(a,77) and v(a, ) of Example 2 are plotted in Figures 10 and 11 respectively where the
higher accuracy is observed.

¢ HATM

0

100”1 100”1
Figure 10. Exact and q-HATM solution of y(«,7) at§ = 1.

Exact ¢-HATM

oo 1 oo 1

Figure 11. Exact and q-HATM solution of v(«, 77) at 6 = 1.
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6. Conclusions

In this paper, we studied the factional view of Whitham-Broer-Kaup equations by using two
analytical powerful techniques. With the help of the Laplace and natural transformations, the procedure
strengthened and became easy for implementation. A very close contact of the obtained solutions
with the exact solution of the problem was observed. It was found that the rate of convergence of the
proposed methods was sufficient for solving fractional-order partial differential equations. Therefore,
the proposed techniques could be extended to solve other complicated fractional-order problems.
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